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Abstract

We consider the problem of mapping the risk from a disease using a series of re-
gional counts of observed and expected cases, and information on potential risk factors.
To analyse this problem from a Bayesian viewpoint we propose a methodology, which
extends a spatial partition model by including categorical covariate information. Such
an extension allows to detect clusters in the residual variation, reflecting further, pos-
sibly unobserved, covariates. The methodology is implemented by means of reversible
jump Markov chain Monte Carlo sampling. An application is presented, in order to
illustrate and compare our proposed extensions with a purely spatial partition model.

Here we analyse a well-known dataset on lip cancer incidence in Scotland.

1 Introduction

Statistical methods for analysing the geographical variation of disease rates have received
increasing interest in the recent literature. Bayesian approaches to this problem typically
introduce parameters, which may or may not have a spatial structure a priori, and can be
seen as surrogates for unobserved or latent covariates. The inclusion of observed covariates in
such analyses has been recognized as very crucial, see e.g. Clayton and Bernardinelli (1992).
Indeed, the ultimate goal of statistical disease mapping would be to include all relevant causal
factors and, thus, remove the need for covariate surrogates (Knorr-Held and Besag, 1998).
However, in practice, this is not possible. Furthermore, if available, often such information is
either incomplete or very imprecise so it becomes very important to insert such information
properly into the statistical model.

The aim of the present paper is to present flexible methodologies suited to incorporate
information on categorical covariates into Bayesian analysis of disease maps. We propose

to combine the data not only into spatial clusters, but also into clusters according to the



observed levels of each potential explanatory factor. Three different models are introduced,
taking into account the order of the covariate categories in more or less restrictive ways.

Our specification is a natural generalization of an approach proposed in Knorr-Held and
Rasser (1999a) to model spatial variation in disease maps. Basically their model assumes
that the area considered can be partitioned into several clusters, that is, sets of contiguous
regions, where each cluster has constant relative risk. Our aim is to adjust the spatial risk
surface for categorical covariates. We compare the risk estimates with and without inclusion
of such covariates.

The plan of the paper is as follows. Section 2 introduces the Scotland lip cancer dataset
with emphasis on the relevant details for our application. Section 3 specifies the proposed
model. Section 4 gives some details on the implementation. Section 5 describes results from
several analyses of the Scotland dataset with and without a relevant covariate. We close

with some comments and possible extensions in Section 6.

2 The dataset

The Scotland lip cancer example is well-known in the literature and has been analysed
several times, since Clayton and Kaldor (1987) introduced it. However, a short summary of
the data will be given in this section, as the implementation of our models will be described
with reference to this dataset.

In Scotland there are n = 56 regions. For each region the number of observed and
expected cases is given. These numbers are not presented here, but can be found, for instance,
in Clayton and Bernardinelli (1993). Figure 1 shows a map of the standard mortality ratios
(SMR), calculated for each region by simply dividing the number of observed cases by the

number of expected cases. Note that the SMR’s vary between 0 and 6.52.



Besides this basic information, for each region the percentage of population employed
in agriculture, fishing and forestry is given. This covariate (agr for brevity) has m = 6
categories with levels L;, [ =1,...,m. In Table 1 for each category such percentage (L;) is
shown, along with the SMR’s calculated by summing up the observed (Y;) and expected (E;)
cases of all regions within each category [. The number of regions in one category, referred

to as the size of the category, is also presented.

Category | L; || Y, E; SMR. || Size
1 0 | 48 | 122.28 | 0.39 5
2 1 85 | 157.55 | 0.54 11
3 7 | 126 | 91.11 | 1.38 14
4 10 || 120 | 76.81 | 1.56 12
5 16 || 129 | 77.14 | 1.67 10
6 24 || 28 | 11.12 | 2.52 4

Table 1: Categories for the Scotland lip cancer data.

From Table 1, note that the categories are not homogeneous with respect to the expected
cases Ej nor to the size and, furthermore, the regions within the categories are not geographi-
cally contiguous, as can be seen from Figure 1, which also displays the geographical variation
of the SMR’s.

The covariate agr is suspected to be related to sunlight exposure, a known risk factor for
lip cancer, so with higher values of L;, that is higher category [ in our notation, the relative
risk of lip cancer is also supposed to be higher. The crude SMR’s within the six categories
in Table 1 do in fact support this. Incidentally, the values L; seem to be not the exact values
of agr for each district, but are chosen as approximate centers of underlying intervals < 0.5,

0.5—1.5,1.5—8.5, 8.5 —12.5, 12.5 — 20, > 20, see Figure 5a) in Clayton, Bernardinelli and



Montomoli (1993).

In former analyses of this dataset (see e.g. Breslow and Clayton, 1993, Clayton, Bernar-
dinelli and Montomoli, 1993, Breslow, Leroux and Platt, 1998), the influence of L, is supposed
to be linear on the log relative risk. This so-called exponential relative risk model is stan-
dard in epidemiology and has certain advantages in interpretation. However, it might also
be interesting to allow for deviations from linearity. In our models we therefore refrain from

this assumption and propose several less restrictive formulations.

3 The proposed model

Let y; and e; represent, respectively, the observed and the expected number of events (e.g.
deaths or illnesses) in a certain region ¢, for i = 1,...,n. The target of our investigation is the
unknown relative risk \; in region ¢. Observations y; are assumed to be realizations from a
Poisson distribution with mean e;)\;. Conditional independence of responses y = (y1, ..., Yn),

given A = (Aq,...,\,), leads to the likelihood function

L(y|)\) — ﬁ (62)‘1‘)% exp(—ei)\i)-

=1 z°

To include covariate information in the model, we propose a multiplicative decomposition

of the relative risk \; as follows:

The above equation factorizes the relative risk into two components, which will be assumed
to be independent; a spatial component 6(i), and a covariate component v/(i).

Following the Bayesian paradigm, we shall now describe the prior distribution for both
components. Regarding the spatial component we apply the method of Knorr-Held and

Rasser (1999a), which will be recalled briefly. The main assumption is that 6(i) is constant



over a set of one or more contiguous regions. This defines clusters C;, j = 1,..., k, a partition

of regions with constant relative risk 6;. More formally,
0(2) = Hj, for ¢ € Cj.

The number of clusters k is treated as unknown with £ € {1,...,n}. The clusters
are defined by marking £ randomly drawn regions as so—called cluster centers zi,..., 2.
Assigning each of the remaining regions to the “nearest” cluster center leads to a unique
cluster configuration, given Z, = (z1,...,2;). Here, the distance between two regions is
defined as the minimal number of boundaries that have to be crossed to move from one to
the other.

We now specify the prior distributions for the unknown parameters. For the number
of clusters k£ we apply a uniform distribution on {1,...,n} in this paper. Other choices
may also be appropriate, for example a geometric distribution, as thoroughly discussed in

Knorr-Held and Rasser (1999b). For a given k, we assume that each vector of cluster centers

7y, has equal probability Pr(Z|k) = (n;!k)!. Components of O, = (64,...,0;) are treated
independently a priori, with log(f;) normally distributed with mean ;1 and variance o2, that
is:

0; ~ LN(u,0?).

Both hyperparameters are also random. For pu, we take an uniform prior on the whole

2 a highly dispersed, but proper, inverse gamma distribution, that is,

real line and for o
0? ~ 1G(a, b) with suitable values for the hyperparameters a and b.

Without including any covariate this will be our model 1, giving in some sense a reference
for comparing the estimates of the relative risks .

We now introduce our proposed prior model for the covariate component. We assume to

consider the effects of one categorical covariate, which is observed in m distinct levels. This



assumption is only convenient, and does not imply any loss of generality, as, if more than
one covariate is available, we can simply consider the observed joint levels.

Let Lq,..., L, be the observed levels in m categories of the covariate. Each level corre-
sponds to a certain covariate effect. In a first step, we estimate the influences v, ..., v, of
all categories separately. In this model, which will be referred to as model 2, the dimension
of N, = (v1,..., V) is fixed and no further restrictions on NN, are imposed. Therefore this
model allows the estimated influences of two or more categories to be nearly equal. If so, it
might be interesting to test whether the effects of all m categories are really different. Gen-
eralizing this model, we allow to combine two or more ”similar” categories into one group,
in which the contained categories have the same effect. This will be done in two different
ways, which will now be described in more detail.

First, we consider a collection of partial exchangeability structures on NN,,, each corre-
sponding to a partition of the regions, as induced by the observed levels of the covariate.
Obviously, the partition with most groups will be that with exactly m groups, and the sim-
plest will be that with only one group, corresponding to complete exchangeability. In the
latter case, the covariate will clearly have no effect. It may be the case that only one of such
partitions is to be considered. This occurs when strong prior opinion on how the covariate
may affect the disease pattern is known. In this case inference can proceed conditionally on
such a partition, as in model 2.

More generally, when such a prior information is not available or weak, consider the
index set {1,...,m} and assume it can be partitioned in G different ways. Let g be one of
such partitions, including t, subsets S;(g),..., S, (g). Thus, a partition g, for g =1,...,G,
reflects a clustering pattern of the sites which depends on a common level grouping of a
covariate. To ease the notation, let ¢ = t(g) be the number of groups of one partition. Let

Ly, ..., L; be the corresponding groupings of the observed levels of a covariate, say X. We



assume that,

v(i)=wvy forz; =Ly, i=1,...,n.

This model, which will be referred to as model 3, is the most general of those presented
in this paper. Note that any order of the categories of the covariate, as in the Scotland
example, is totally ignored. It might be more appropriate to choose partitions respecting
this order. One possibility would be to allow only ordered partitions consisting of subsets
Sp, h =1,...,t, containing subsequent indices out of 1,...,m. This will be our proposed
model 4, which makes just slightly stronger assumptions than model 3.

Since g is treated as unknown, we need to assign to it a prior probability, according to a
probability mass function p(g). In this paper we let p(g) be a discrete uniform distribution
on{l,...,G}.

The total number G of possible partitions will be much smaller when only ordered parti-
tions are considered. In Table 2 those numbers are compared for the situation of the Scotland

data. Here the number of groups ¢, ranges between 1 and 6.

ty | #g (unordered) | #g (ordered)
1 1 1

2 31 )

3 90 10

4 65 10

) 15 5

6 1 1

G 203 32

Table 2: Number of possible partitions in model 3 and 4.

Note, that the prior distribution for ¢,, which is implicitly modelled with the prior for g, is



not uniform. With this choice of the prior distribution for g, the number of partitions, where
two arbitrary categories are within the same group is 52 in the unordered case. Therefore, this
prior probability is approximately 0.26. Whereas, in the ordered case, the prior probability
that two adjacent categories are within the same group is exactly 0.5.

We now need to specify a prior model for the covariate effects N, = (vq,...,1). It is
possible to proceed similarly as for the spatial components, but for the covariate effects to
be identifiable, the influences have to be centered. We therefore take the v, h =1,...,t
independent a priori, with log(v,) normally distributed with mean 0 and variance 72, that
is:

vy ~LN(0,7%), h=1,...,t.
Again, we assume 72 ~ IG(c, d) with positive hyperparameters ¢ and d.

In both models 3 and 4, the dimension t of N, is variable and therefore a reversible jump
MCMC algorithm (Green, 1995) is required, allowing to sample from a varying dimension
space depending on the considered partition of the covariate. This will smooth the effects of
the covariate, as the outcome of model averaging over the class of all possible partitions.

We finally remark that the idea of a Bayesian partition model for the analysis of spatial
covariates has been introduced in Borroni and Giudici (1996), yet in the context of extending
the approach of Besag, York and Mollie (1991). For a more general discussion on Bayesian

partition models see also Consonni and Veronese (1995) and Green (1995).

4 The proposed reversible jump MCMC methodology

We first give a brief description of our reversible jump MCMC (see Green, 1995) strategy
for sampling from the posterior distribution. In each iteration of the algorithm, one of the

following nine moves is proposed. The first five concern the spatial component of the model.



The next three involve the covariate component. Finally, the last one is related to updating

all the hyperparameters of the model.

Birth: The number of spatial clusters is increased by introducing an additional cluster

center.

Death: The number of spatial clusters is decreased by deleting one of the cluster centers.
Shift: One of the spatial cluster centers is moved.

Switch: The positions of two cluster centers in 7, are switched.

Spatial Height: The parameters 6,7 = 1,..., k, are changed.

Merge: The number of groups of the partition induced by the covariate is decreased,

by merging two groups which were previously disjoint.

Split: The number of groups of the partition induced by the covariate is increased, by

splitting up one previous group into two new groups.
Covariate Height: The parameters v, h = 1,...,t, are changed.

Hyper: The values of the hyperparameters p, o and 72 are changed.

In our model 1, only the first five moves and the last one (without 72) are used. For a fixed
partition, as in model 2, the split and merge moves are omitted. Only in our models 3 and
4 all nine moves are included.

For details on the implementation of the first five moves see Knorr-Held and Rasser
(1999a). The same paper contains a description of the strategy for the hyperparameters

update for  and 0?. We have adopted the same treatment for 72. Concerning the additional

10



covariate height step, the proposal distribution is chosen in analogy to the spatial height
move.

The merge and split moves, which only concern the covariate part of the algorithm, and
are the main implementational novelty of our approach, will now be described in detail. For
reasons of easier explanation and illustration, the moves will be introduced in terms of the
Scotland data example as described in Section 2. We remark that it is straightforward to
apply the algorithm to any other data.

We propose to combine the categories in groups of variable sizes. The number of groups is
also variable. Therefore the minimum number of groups is 1 and the maximum is 6. First we
will focus on the general case of model 3, ignoring the order of the categories. The necessary
changes leading to model 4 will be introduced later.

The current grouping is represented in a partition g. For example, let there be a partition
with ¢ = 3 groups g = (51, Se, S3) = ({1,4,5},{2},{3,6}). Each group is supposed to have
a certain effect, given in the corresponding vector Ny = (11, v, 3).

Consider now a merge step attempting to combine two existing groups. Here two groups

are chosen randomly, so we have (;) possibilities for this choice, each with equal probability

1) If we have chosen to merge the groups Ss and Sj, this will lead to a new partition

g {1,4,5},{2,3,6}). Simultaneously, the number of groups is decreased from ¢t = 3 to

(
2. Now all categories in the new group Sy = {2,3,6} are assumed to have the same

~
I

effect. Therefore, the old values v, and v3 are replaced with a new value 75, drawn randomly

from a gamma distribution
2
172~G<y+77—2,e+%> ;
K K
where

n=exp(0.57%) and k*=exp(r?)(exp(r?) — 1)

11



denote the mean and the variance of the lognormal prior distribution for the covariate-specific

risks and

y = Z Y = Z Y; and e= Z ei - 0(1).

i:(i)=i je{2,3,6} i:(i) =0

The number of observed cases of all categories belonging to the new subset can simply be
taken from Table 1, while for calculating e the expected cases for each region belonging to
the new group S, are needed.

This proposal is built in analogy to those used in Knorr-Held and Rasser (1999a) for
the birth and death moves. It approximates the fixed dimension full conditional of 75 so
the corresponding acceptance rates become rather high and any tuning of the algorithm
becomes unnecessary. Note that (i) is the current height of the spatial cluster region i
is assigned to and, therefore, our covariate proposal depends on the current values of the
spatial component. Correspondingly, the values v(i) enter in the proposal of the birth, death
and spatial height move.

The reverse move would be to split up one group into two of variable size. To continue
with the example, performing the exact reverse transition to the merge move just described,
let § = (S1,55) = ({1,4,5},{2,3,6}) and £ = 2. First of all only those groups with a size
larger than 1 are considered to avoid empty groups. Depending on the current partition g,
there are k(g) groups with more than one category in it, here k(g) = 2. A random variable
uniformly distributed on {1,...,k(g)} determines the group which will be split up, say
Sy = {2,3,6} of size s = 3. Depending on the size s there is a total number r of possible ways
to split up this group as given in Table 3. One of them is drawn randomly with probability
%. The sizes of the two new groups are just a side effect in this implementation. One part
of the categories is kept in the new group Sy, say So = {2}, and the other categories are
placed in a new group Sz, = S3 = {3,6}. Now, the new partition ¢ = ({1,4,5}, {2}, {3,6})

has t = 3 groups. For both new groups S; and S; new values v, and v3 are proposed, again

12



s | r (unordered) | r (ordered)
2 1 1
3 3 2
4 7 3
5 15 4
6 31 )

Table 3: Number of possible ways 7 to split up a group of size s.

from a gamma distribution as in the merge move with y and e changed correspondingly.

To complete details of our implementation, we need to calculate the acceptance proba-
bilities of the two changing-dimension moves concerning the covariate effects. Let £ indicate
the likelihood-ratio, P the proposal-ratio and A the prior-ratio. The acceptance probabilities
for both moves are

a=min{l, £-A-P}.

Let p denote the density of the lognormal prior distribution for the effects and ¢ the density
of the gamma proposal distribution as introduced above.
According to the model described in Section 3, the prior ratio for the split move, the

transition from ¢ = ¢ — 1 to ¢ turns out to be

and the proposal ratio is
) 2k@) ¢
q(re)q(vs) t(t—1)

For a merge move, decreasing the number of groups form ¢ to £ = ¢ — 1, all terms have to be

inverted.
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The concept of both moves can be easily transmitted to our model 4. To take into
account the order of the categories of the covariate, just two small changes are necessary.
First, in a merge move, two adjacent groups have to be selected. Therefore, we now have
t — 1 possibilities for this choice. In the reverse split move the number r of possible splits
changes according to Table 3. Also, in a split move, it is no longer possible to add one new
group Sz, ;, but both new groups have to be neighbors, so that, possibly, some indices have
to be changed. In our example, this is not necessary, as the groups S; and S3 = S;,, are
indeed next to each other. The acceptance probabilities just slightly change with the same

prior ratio as above and the proposal ratio

for the split move and P~! for the reverse merge move. These changes insure that the order
of the categories is maintained, as long as the initial state of the Markov chain is chosen
correctly. We use an initial partition ¢© = ({1}, {2}, {3}, {4}, {5}, {6}), so that (O = 6,
which is suitable both for model 3 and 4.

Finally, we remark, that for the extreme case t = 1 a merge move is not possible, as well
as a split move for £ = m. Therefore, a further factor, omitted here for easier presentation,

may appear in the proposal ratios, depending on the implementation of those moves.

5 Application

In this section we re-analyse the Scotland lip cancer dataset, using the different model
formulations described in Section 3. All results are based on 20, 000, 000 iterations, following
a burn-in period of 1, 000, 000 iterations. In order to calculate posterior quantities of interest,
we have stored every 2000th iteration which gives a total of 10,000 samples. The prior

hyperparameters for the spatial component are held fixed at « = 1 and b = 0.01. The
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corresponding values for the covariate component are chosen slightly more informative with
values ¢ = 5 and d = 0.5.

We shall produce two main inferences: the first one is a structural one, and concerns
the detection of the number of clusters in the data, both at the spatial and at the covariate
level. The second inference is more specific and concerns the Bayesian estimate of the spatial
variation of the disease risk, possibly adjusted for the effect of the covariate. As a Bayesian
estimator of disease incidence we shall compare the posterior median of the relative risks A
in the different model formulations.

We first present, as a diagnostic on the performance of the MCMC method, the cumula-
tive occupancy fractions for both the number of spatial clusters and the number of covariate
groups from model 4. From Figure 2, note the good stability of the output, especially for the
covariate part, which is indeed simpler for the application considered. The corresponding
plots for the other models look very similar.

Consider now structural learning. Figure 3 gives the posterior probability of the param-
eter k for the four models. In model 1, there is a mode around k& = 15 cluster centers. The
inclusion of the covariate seems to generally increase the uncertainty about k. The posterior
distribution is shifted towards smaller values in model 2 and 4, with a mode around 10.

Figure 4 gives the histogram describing the prior and posterior probability of the number
of groups induced by the covariate. It shows support for a number of groups between 2 and
4 both in the ordered and unordered case. Note that for model 4 the posterior variance is
clearly smaller than the prior variance, while in model 3 the uncertainty about the number
of groups has slightly increased.

Figure 5a) gives the posterior median estimates pattern for the purely spatial model 1. A
look at the map identifies a large cluster of eleven districts in the north with estimated relative

risk in the range of 3.0 to 3.5. As a side comment we remark here that the estimates for these
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eleven districts, reported in Breslow and Clayton (1993) with a conditional autoregressive
prior for the log relative risks, are in the range of 2.6 to 4.5, hence show considerably more
variation. For a more thorough comparison of our piecewise constant model formulation
with the more traditional Markov random field autoregressive prior see the application in
Knorr-Held and Rasser (1999a).

Seven districts have estimates below 0.4. Six of them form a cluster around the Glasgow
district, one is the Dundee district. There is strong evidence that the latter forms a cluster by
itself, as the corresponding posterior probability is 0.96, compared to a prior probability of
0.35. The prior probability has been calculated by simulations as in Knorr-Held and Rasser
(1999b). All other regions have much lower posterior probabilities of being alone in a cluster
with a median value of 0.06.

We turn now to the extended analyses, in which the estimated relative risks are calibrated
for the effect of the covariate agr. Some care must be taken in general in interpreting the
results, as the effect of the covariate might be estimated overly conservative. The reason
is that location might act as a confounder in our model formulation, because we assume
that the residual variation has spatial structure. For a thorough discussion of this issue see
Clayton, Bernardinelli and Montomoli (1993).

Figure 5b), ¢) and d) display the estimated spatial residual component, adjusted for the
effect of the covariate from model 2, 3 and 4, respectively, while Figure 6 compares the
corresponding estimates of the covariate components v,, h = 1,...,6. Consider first model
2, the one with a separate covariate effect for each category. The estimates of the spatial
component are now in the range of 0.5 to 3.0 and have less variation than in model 1. This
is to be expected, as, ideally, the residual variation should vanish, if all relevant factors enter
properly in the model. In practice, however, this is not to be expected, but the maps of

spatial residual variation in Figure 5b) may provide clues pointing to further risk factors. In
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particular, in the south-west of Scotland, the inclusion of the covariate seems to explain a
lot of the spatial variation. Also, the Dundee district is now less distinct with an adjusted
relative risk of 0.89 and a posterior probability of 0.23 for forming a cluster on its own.
However, in the north and east of Scotland, the inclusion of the covariate does only partially
explain the spatial variation from Figure 5a). The estimated effects of the covariate levels
in Figure 6 show the expected shrinkage effect towards one, in comparison with the SMR’s
from Table 1.

We now turn to model 3, in which we allow the effects of different categories to be
identical, ignoring the order in the category levels. Consider first Table 4, which gives the
estimated posterior probabilities that two categories are within the same group, regardless
of the the underlying partition. Recall from Section 3 that the corresponding prior proba-
bility is 52/203 & 0.26. All posterior probabilities are larger with values between 0.34 and
0.79. Correspondingly, the estimated covariate effects in Figure 5 are close to one, and the
estimated spatial pattern (Figure 5¢)) has much similarity with the purely spatial analysis
from model 1. Note however, that Table 4 indicates some structure with lower probabilities
between any combination of the categories 1 or 2, with one of the remaining categories 3,4,5
or 6.

In model 4, we now try to fix the obvious deficiencies of model 3 by allowing only for
partitions which maintain the order of the category levels. In Figure 5d), the estimated
spatial pattern from model 4 can be seen to be rather similar to the one obtained from
model 2. The covariate model identifies a change point between categories 2 and 3 with
posterior probability of 0.92. In contrast, for all other adjacent categories, the corresponding
probabilities are below 0.3. Among the different partitions, partition {1,2},{3,4,5,6} has
the highest posterior probability and, interestingly, all 10 subsequent partitions, ranked in

the order of posterior probability, do also separate the category levels 2 and 3, see Table 5.
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Category level 1 2 3 4 5 6
1]11.0 0.75 0.50 0.51 0.49 0.46
2 1.0 0.41 0.39 0.37 0.34
3 1.0 0.78 0.78 0.74
4 1.0 0.79 0.76
5 1.0 0.75
6 1.0

Table 4: The posterior probability for two covariate categories to be within the same group, model

3.

Correspondingly, the estimated effects are smooth versions of those obtained from model 2,
retaining the change point between categories 2 and 3, see Figure 6. This suggests that the
usual assumption of a log linear model for the effect of the covariate is not fully supported
by the data.

Finally, Figure 7 compares the median estimates of the fitted log relative risks log(\).
The fit is generally rather similar, and this can also be observed from a look at the mean
posterior deviance (Spiegelhalter et al., 1998), which has only for model 1 a slightly lower
value. Among the covariate models, some differences can be seen in model 2, where districts

belonging to the highest category levels have larger fitted values.

6 Discussion

We have proposed a novel methodology to include information on categorical covariates into
the analysis of spatially correlated disease data. Such methodology is based on the notion of

partial exchangeable patterns of covariate effects, depending on the observed levels of such
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Partition Posterior Probability

{1,2},{3,4,5,6} 0.28
{1,2},{3,4,5}, {6} 0.15
{1,2},{3},{4,5,6} 0.10
{1},{2},4{3,4,5,6} 0.10
{1,2},{3,4},{5,6} 0.08

{1,2},{3},{4,5}, {6} 0.05
{1,2},{3,4}, {5}, {6} 0.05
{1,2},{3},{4,5,6} 0.04
{1},{2},1{3,4},{5,6} 0.04
{1}:{2},{3,4,5}, {6} 0.02
{1},{2}, {3}, {4,5,6} 0.02
{1,2,3},{4,5,6} 0.02

Table 5: The twelve most likely partitions in model 4.

covariate. Our methodology is Bayesian, and has been implemented by means of a reversible
jump MCMC algorithm, which has been described in detail.

Our model can be extended in different ways. However, given the complexity of the
computations, a great deal of care is needed in checking the correctness of the code, and the
convergence of the algorithms. For example, one could consider continuous covariates. This
would imply resorting to a linear model formulation for the covariate effect. For instance, if
the covariate effect can be assumed to be linear on the log relative risk, an alternative model
for v may be:

v(i) = exp(a + z;0)

with « and 3 distributed as a flat prior. However, this would introduce some idiosyncrasy
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between the spatial and the covariate effect; one may need to adopt, instead of the spatial
clustering approach adopted here, a linear smoothing formulation, as in Besag, York and
Mollié (1991).

Several assumptions underlying our application are critical from an epidemiological point
of view. For example, the fact that agr is only a error-prone proxy for sunlight exposure
somewhat conflicts with the assumption that the covariate agr is assumed to be measured
without any measurement error. Measurement error models for continuous covariates in
disease mapping have been proposed in Bernardinelli et al. (1997) and might be useful here
as well. Due to the categorical scale of the covariate, a misclassification model might also be

considered.
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Figure 1: A map of the SMR’s and a map showing the assignment of the regions to the categories

of the covariate.
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Figure 2: Cumulative occupancy fractions of number of clusters and number of groups.
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Figure 3: Posterior distributions of the number of clusters for the spatial component.
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Figure 4: Prior and posterior distributions for the number of groups for the covariate component.
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Figure 5: Posterior median estimates of the spatial component.

26



v
(9\]
—  smr
""""""" model 2
o
N || Tt model 3
> ———- model 4
) O
= —
©
9 — —
o | e
—
v
o

category

Figure 6: Comparison of the estimated effects of the covariate and the SMR’s within the categories.
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Figure 7: Comparison of the posterior median estimates of the log relative risks.
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