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Abstract

We consider the problem of mapping the risk from a disease using a series of re�

gional counts of observed and expected cases� and information on potential risk factors�

To analyse this problem from a Bayesian viewpoint we propose a methodology� which

extends a spatial partition model by including categorical covariate information� Such

an extension allows to detect clusters in the residual variation� re�ecting further� pos�

sibly unobserved� covariates� The methodology is implemented by means of reversible

jump Markov chain Monte Carlo sampling� An application is presented� in order to

illustrate and compare our proposed extensions with a purely spatial partition model�

Here we analyse a well�known dataset on lip cancer incidence in Scotland�

� Introduction

Statistical methods for analysing the geographical variation of disease rates have received

increasing interest in the recent literature� Bayesian approaches to this problem typically

introduce parameters� which may or may not have a spatial structure a priori� and can be

seen as surrogates for unobserved or latent covariates� The inclusion of observed covariates in

such analyses has been recognized as very crucial� see e�g� Clayton and Bernardinelli �������

Indeed� the ultimate goal of statistical disease mapping would be to include all relevant causal

factors and� thus� remove the need for covariate surrogates �Knorr�Held and Besag� ���	��

However� in practice� this is not possible� Furthermore� if available� often such information is

either incomplete or very imprecise so it becomes very important to insert such information

properly into the statistical model�

The aim of the present paper is to present 
exible methodologies suited to incorporate

information on categorical covariates into Bayesian analysis of disease maps� We propose

to combine the data not only into spatial clusters� but also into clusters according to the
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observed levels of each potential explanatory factor� Three di�erent models are introduced�

taking into account the order of the covariate categories in more or less restrictive ways�

Our speci�cation is a natural generalization of an approach proposed in Knorr�Held and

Rasser �����a� to model spatial variation in disease maps� Basically their model assumes

that the area considered can be partitioned into several clusters� that is� sets of contiguous

regions� where each cluster has constant relative risk� Our aim is to adjust the spatial risk

surface for categorical covariates� We compare the risk estimates with and without inclusion

of such covariates�

The plan of the paper is as follows� Section � introduces the Scotland lip cancer dataset

with emphasis on the relevant details for our application� Section  speci�es the proposed

model� Section � gives some details on the implementation� Section � describes results from

several analyses of the Scotland dataset with and without a relevant covariate� We close

with some comments and possible extensions in Section ��

� The dataset

The Scotland lip cancer example is well�known in the literature and has been analysed

several times� since Clayton and Kaldor ���	�� introduced it� However� a short summary of

the data will be given in this section� as the implementation of our models will be described

with reference to this dataset�

In Scotland there are n � �� regions� For each region the number of observed and

expected cases is given� These numbers are not presented here� but can be found� for instance�

in Clayton and Bernardinelli ������ Figure � shows a map of the standard mortality ratios

�SMR�� calculated for each region by simply dividing the number of observed cases by the

number of expected cases� Note that the SMR�s vary between � and �����





Besides this basic information� for each region the percentage of population employed

in agriculture� �shing and forestry is given� This covariate �agr for brevity� has m � �

categories with levels Ll� l � �� � � � � m� In Table � for each category such percentage �Ll� is

shown� along with the SMR�s calculated by summing up the observed �Yl� and expected �El�

cases of all regions within each category l� The number of regions in one category� referred

to as the size of the category� is also presented�

Category Ll Yl El SMR Size

� � �	 �

�
	 ���� 


 � 	 ��� ��� ��

� � �
� ����� ���	 ��

� �� �
� ���	� ��� �


 �� �
� ����� ���� ��

� 
� 
	 ����
 
�
 �

Table �� Categories for the Scotland lip cancer data�

From Table �� note that the categories are not homogeneous with respect to the expected

cases El nor to the size and� furthermore� the regions within the categories are not geographi�

cally contiguous� as can be seen from Figure �� which also displays the geographical variation

of the SMR�s�

The covariate agr is suspected to be related to sunlight exposure� a known risk factor for

lip cancer� so with higher values of Ll� that is higher category l in our notation� the relative

risk of lip cancer is also supposed to be higher� The crude SMR�s within the six categories

in Table � do in fact support this� Incidentally� the values Ll seem to be not the exact values

of agr for each district� but are chosen as approximate centers of underlying intervals � ����

���� ���� ���� 	��� 	��� ����� ����� ��� � ��� see Figure �a� in Clayton� Bernardinelli and
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Montomoli ������

In former analyses of this dataset �see e�g� Breslow and Clayton� ���� Clayton� Bernar�

dinelli and Montomoli� ���� Breslow� Leroux and Platt� ���	�� the in
uence of Ll is supposed

to be linear on the log relative risk� This so�called exponential relative risk model is stan�

dard in epidemiology and has certain advantages in interpretation� However� it might also

be interesting to allow for deviations from linearity� In our models we therefore refrain from

this assumption and propose several less restrictive formulations�

� The proposed model

Let yi and ei represent� respectively� the observed and the expected number of events �e�g�

deaths or illnesses� in a certain region i� for i � �� � � � � n� The target of our investigation is the

unknown relative risk �i in region i� Observations yi are assumed to be realizations from a

Poisson distribution with mean ei�i� Conditional independence of responses y � �y�� � � � � yn��

given � � ���� � � � � �n�� leads to the likelihood function

L�yj�� �
nY

i��

�ei�i�
yi

yi�
exp��ei�i��

To include covariate information in the model� we propose a multiplicative decomposition

of the relative risk �i as follows�

�i � ��i�� ��i�� i � �� � � � � n�

The above equation factorizes the relative risk into two components� which will be assumed

to be independent� a spatial component ��i�� and a covariate component ��i��

Following the Bayesian paradigm� we shall now describe the prior distribution for both

components� Regarding the spatial component we apply the method of Knorr�Held and

Rasser �����a�� which will be recalled brie
y� The main assumption is that ��i� is constant
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over a set of one or more contiguous regions� This de�nes clusters Cj� j � �� � � � � k� a partition

of regions with constant relative risk �j� More formally�

��i� � �j� for i � Cj�

The number of clusters k is treated as unknown with k � f�� � � � � ng� The clusters

are de�ned by marking k randomly drawn regions as so�called cluster centers z�� � � � � zk�

Assigning each of the remaining regions to the �nearest� cluster center leads to a unique

cluster con�guration� given Zk � �z�� � � � � zk�� Here� the distance between two regions is

de�ned as the minimal number of boundaries that have to be crossed to move from one to

the other�

We now specify the prior distributions for the unknown parameters� For the number

of clusters k we apply a uniform distribution on f�� � � � � ng in this paper� Other choices

may also be appropriate� for example a geometric distribution� as thoroughly discussed in

Knorr�Held and Rasser �����b�� For a given k� we assume that each vector of cluster centers

Zk has equal probability Pr�Zkjk� �
�n�k��

n�
� Components of �k � ���� � � � � �k� are treated

independently a priori� with log��j� normally distributed with mean 	 and variance 
�� that

is�

�j � LN�	� 
���

Both hyperparameters are also random� For 	� we take an uniform prior on the whole

real line and for 
� a highly dispersed� but proper� inverse gamma distribution� that is�


� � IG�a� b� with suitable values for the hyperparameters a and b�

Without including any covariate this will be our model �� giving in some sense a reference

for comparing the estimates of the relative risks ��

We now introduce our proposed prior model for the covariate component� We assume to

consider the e�ects of one categorical covariate� which is observed in m distinct levels� This
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assumption is only convenient� and does not imply any loss of generality� as� if more than

one covariate is available� we can simply consider the observed joint levels�

Let L�� � � � � Lm be the observed levels in m categories of the covariate� Each level corre�

sponds to a certain covariate e�ect� In a �rst step� we estimate the in
uences ��� � � � � �m of

all categories separately� In this model� which will be referred to as model �� the dimension

of Nm � ���� � � � � �m� is �xed and no further restrictions on Nm are imposed� Therefore this

model allows the estimated in
uences of two or more categories to be nearly equal� If so� it

might be interesting to test whether the e�ects of all m categories are really di�erent� Gen�

eralizing this model� we allow to combine two or more �similar� categories into one group�

in which the contained categories have the same e�ect� This will be done in two di�erent

ways� which will now be described in more detail�

First� we consider a collection of partial exchangeability structures on Nm� each corre�

sponding to a partition of the regions� as induced by the observed levels of the covariate�

Obviously� the partition with most groups will be that with exactly m groups� and the sim�

plest will be that with only one group� corresponding to complete exchangeability� In the

latter case� the covariate will clearly have no e�ect� It may be the case that only one of such

partitions is to be considered� This occurs when strong prior opinion on how the covariate

may a�ect the disease pattern is known� In this case inference can proceed conditionally on

such a partition� as in model ��

More generally� when such a prior information is not available or weak� consider the

index set f�� � � � � mg and assume it can be partitioned in G di�erent ways� Let g be one of

such partitions� including tg subsets S��g�� � � � � Stg�g�� Thus� a partition g� for g � �� � � � � G�

re
ects a clustering pattern of the sites which depends on a common level grouping of a

covariate� To ease the notation� let t � t�g� be the number of groups of one partition� Let

L�� � � � � Lt be the corresponding groupings of the observed levels of a covariate� say X� We
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assume that�

��i� � �h for xi � Lh� i � �� � � � � n�

This model� which will be referred to as model � is the most general of those presented

in this paper� Note that any order of the categories of the covariate� as in the Scotland

example� is totally ignored� It might be more appropriate to choose partitions respecting

this order� One possibility would be to allow only ordered partitions consisting of subsets

Sh� h � �� � � � � t� containing subsequent indices out of �� � � � � m� This will be our proposed

model �� which makes just slightly stronger assumptions than model �

Since g is treated as unknown� we need to assign to it a prior probability� according to a

probability mass function p�g�� In this paper we let p�g� be a discrete uniform distribution

on f�� � � � � Gg�

The total number G of possible partitions will be much smaller when only ordered parti�

tions are considered� In Table � those numbers are compared for the situation of the Scotland

data� Here the number of groups tg ranges between � and ��

tg �g �unordered� �g �ordered�

� � �


 �� 

� �� ��

� � ��

 � 

� � �

G 
�� �


Table �� Number of possible partitions in model � and ��

Note� that the prior distribution for tg� which is implicitly modelled with the prior for g� is

	



not uniform� With this choice of the prior distribution for g� the number of partitions� where

two arbitrary categories are within the same group is �� in the unordered case� Therefore� this

prior probability is approximately ����� Whereas� in the ordered case� the prior probability

that two adjacent categories are within the same group is exactly ����

We now need to specify a prior model for the covariate e�ects Nt � ���� � � � � �t�� It is

possible to proceed similarly as for the spatial components� but for the covariate e�ects to

be identi�able� the in
uences have to be centered� We therefore take the �h� h � �� � � � � t

independent a priori� with log��h� normally distributed with mean � and variance � �� that

is�

�h � LN��� � ��� h � �� � � � � t�

Again� we assume � � � IG�c� d� with positive hyperparameters c and d�

In both models  and �� the dimension t of Nt is variable and therefore a reversible jump

MCMC algorithm �Green� ����� is required� allowing to sample from a varying dimension

space depending on the considered partition of the covariate� This will smooth the e�ects of

the covariate� as the outcome of model averaging over the class of all possible partitions�

We �nally remark that the idea of a Bayesian partition model for the analysis of spatial

covariates has been introduced in Borroni and Giudici ������� yet in the context of extending

the approach of Besag� York and Mollie ������� For a more general discussion on Bayesian

partition models see also Consonni and Veronese ������ and Green �������

� The proposed reversible jump MCMC methodology

We �rst give a brief description of our reversible jump MCMC �see Green� ����� strategy

for sampling from the posterior distribution� In each iteration of the algorithm� one of the

following nine moves is proposed� The �rst �ve concern the spatial component of the model�
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The next three involve the covariate component� Finally� the last one is related to updating

all the hyperparameters of the model�

Birth� The number of spatial clusters is increased by introducing an additional cluster

center�

Death� The number of spatial clusters is decreased by deleting one of the cluster centers�

Shift� One of the spatial cluster centers is moved�

Switch� The positions of two cluster centers in Zk are switched�

Spatial Height� The parameters �j� j � �� � � � � k� are changed�

Merge� The number of groups of the partition induced by the covariate is decreased�

by merging two groups which were previously disjoint�

Split� The number of groups of the partition induced by the covariate is increased� by

splitting up one previous group into two new groups�

Covariate Height� The parameters �h� h � �� � � � � t� are changed�

Hyper� The values of the hyperparameters 	� 
� and � � are changed�

In our model �� only the �rst �ve moves and the last one �without � �� are used� For a �xed

partition� as in model �� the split and merge moves are omitted� Only in our models  and

� all nine moves are included�

For details on the implementation of the �rst �ve moves see Knorr�Held and Rasser

�����a�� The same paper contains a description of the strategy for the hyperparameters

update for 	 and 
�� We have adopted the same treatment for � �� Concerning the additional
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covariate height step� the proposal distribution is chosen in analogy to the spatial height

move�

The merge and split moves� which only concern the covariate part of the algorithm� and

are the main implementational novelty of our approach� will now be described in detail� For

reasons of easier explanation and illustration� the moves will be introduced in terms of the

Scotland data example as described in Section �� We remark that it is straightforward to

apply the algorithm to any other data�

We propose to combine the categories in groups of variable sizes� The number of groups is

also variable� Therefore the minimum number of groups is � and the maximum is �� First we

will focus on the general case of model � ignoring the order of the categories� The necessary

changes leading to model � will be introduced later�

The current grouping is represented in a partition g� For example� let there be a partition

with t �  groups g � �S�� S�� S�� � �f�� �� �g� f�g� f� �g�� Each group is supposed to have

a certain e�ect� given in the corresponding vector Nt � ���� ��� ����

Consider now a merge step attempting to combine two existing groups� Here two groups

are chosen randomly� so we have
�
t

�

�
possibilities for this choice� each with equal probability

�
t�t���

� If we have chosen to merge the groups S� and S�� this will lead to a new partition

�g � �f�� �� �g� f�� � �g�� Simultaneously� the number of groups is decreased from t �  to

�t � �� Now all categories in the new group �S� � f�� � �g are assumed to have the same

e�ect� Therefore� the old values �� and �� are replaced with a new value ���� drawn randomly

from a gamma distribution

��� � G

�
y �

��

�
� e�

�

�

�
�

where

� � exp����� �� and � � exp�� ���exp�� ��� ��
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denote the mean and the variance of the lognormal prior distribution for the covariate�speci�c

risks and

y �
X

i�	��i��	��

yi �
X

j�f����
g

Yj and e �
X

i�	��i��	��

ei � ��i��

The number of observed cases of all categories belonging to the new subset can simply be

taken from Table �� while for calculating e the expected cases for each region belonging to

the new group �S� are needed�

This proposal is built in analogy to those used in Knorr�Held and Rasser �����a� for

the birth and death moves� It approximates the �xed dimension full conditional of ��� so

the corresponding acceptance rates become rather high and any tuning of the algorithm

becomes unnecessary� Note that ��i� is the current height of the spatial cluster region i

is assigned to and� therefore� our covariate proposal depends on the current values of the

spatial component� Correspondingly� the values ��i� enter in the proposal of the birth� death

and spatial height move�

The reverse move would be to split up one group into two of variable size� To continue

with the example� performing the exact reverse transition to the merge move just described�

let �g � � �S�� �S�� � �f�� �� �g� f�� � �g� and �t � �� First of all only those groups with a size

larger than � are considered to avoid empty groups� Depending on the current partition �g�

there are k��g� groups with more than one category in it� here k��g� � �� A random variable

uniformly distributed on f�� � � � � k��g�g determines the group which will be split up� say

�S� � f�� � �g of size s � � Depending on the size s there is a total number r of possible ways

to split up this group as given in Table � One of them is drawn randomly with probability

�
r
� The sizes of the two new groups are just a side e�ect in this implementation� One part

of the categories is kept in the new group S�� say S� � f�g� and the other categories are

placed in a new group S	t�� � S� � f� �g� Now� the new partition g � �f�� �� �g� f�g� f� �g�

has t �  groups� For both new groups S� and S� new values �� and �� are proposed� again
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s r �unordered� r �ordered�


 � �

� � 


� � �

 � �

� �� 

Table � Number of possible ways r to split up a group of size s�

from a gamma distribution as in the merge move with y and e changed correspondingly�

To complete details of our implementation� we need to calculate the acceptance proba�

bilities of the two changing�dimension moves concerning the covariate e�ects� Let L indicate

the likelihood�ratio� P the proposal�ratio and A the prior�ratio� The acceptance probabilities

for both moves are

� � minf�� L � A � Pg�

Let p denote the density of the lognormal prior distribution for the e�ects and q the density

of the gamma proposal distribution as introduced above�

According to the model described in Section � the prior ratio for the split move� the

transition from �t � t� � to t turns out to be

A �
p����p����

p�����

and the proposal ratio is

P �
q�����

q����q����
�
� k��g� r

t �t� ��
�

For a merge move� decreasing the number of groups form t to �t � t� �� all terms have to be

inverted�
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The concept of both moves can be easily transmitted to our model �� To take into

account the order of the categories of the covariate� just two small changes are necessary�

First� in a merge move� two adjacent groups have to be selected� Therefore� we now have

t � � possibilities for this choice� In the reverse split move the number r of possible splits

changes according to Table � Also� in a split move� it is no longer possible to add one new

group S	t��� but both new groups have to be neighbors� so that� possibly� some indices have

to be changed� In our example� this is not necessary� as the groups S� and S� � S	t�� are

indeed next to each other� The acceptance probabilities just slightly change with the same

prior ratio as above and the proposal ratio

P �
q�����

q����q����
�
k��g� r

t� �
�

for the split move and P�� for the reverse merge move� These changes insure that the order

of the categories is maintained� as long as the initial state of the Markov chain is chosen

correctly� We use an initial partition g��� � �f�g� f�g� fg� f�g� f�g� f�g�� so that t��� � ��

which is suitable both for model  and ��

Finally� we remark� that for the extreme case t � � a merge move is not possible� as well

as a split move for t � m� Therefore� a further factor� omitted here for easier presentation�

may appear in the proposal ratios� depending on the implementation of those moves�

� Application

In this section we re�analyse the Scotland lip cancer dataset� using the di�erent model

formulations described in Section � All results are based on ��� ���� ��� iterations� following

a burn�in period of �� ���� ��� iterations� In order to calculate posterior quantities of interest�

we have stored every ����th iteration which gives a total of ��� ��� samples� The prior

hyperparameters for the spatial component are held �xed at a � � and b � ����� The
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corresponding values for the covariate component are chosen slightly more informative with

values c � � and d � ����

We shall produce two main inferences� the �rst one is a structural one� and concerns

the detection of the number of clusters in the data� both at the spatial and at the covariate

level� The second inference is more speci�c and concerns the Bayesian estimate of the spatial

variation of the disease risk� possibly adjusted for the e�ect of the covariate� As a Bayesian

estimator of disease incidence we shall compare the posterior median of the relative risks �

in the di�erent model formulations�

We �rst present� as a diagnostic on the performance of the MCMC method� the cumula�

tive occupancy fractions for both the number of spatial clusters and the number of covariate

groups from model �� From Figure �� note the good stability of the output� especially for the

covariate part� which is indeed simpler for the application considered� The corresponding

plots for the other models look very similar�

Consider now structural learning� Figure  gives the posterior probability of the param�

eter k for the four models� In model �� there is a mode around k � �� cluster centers� The

inclusion of the covariate seems to generally increase the uncertainty about k� The posterior

distribution is shifted towards smaller values in model � and �� with a mode around ���

Figure � gives the histogram describing the prior and posterior probability of the number

of groups induced by the covariate� It shows support for a number of groups between � and

� both in the ordered and unordered case� Note that for model � the posterior variance is

clearly smaller than the prior variance� while in model  the uncertainty about the number

of groups has slightly increased�

Figure �a� gives the posterior median estimates pattern for the purely spatial model �� A

look at the map identi�es a large cluster of eleven districts in the north with estimated relative

risk in the range of �� to ��� As a side comment we remark here that the estimates for these
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eleven districts� reported in Breslow and Clayton ����� with a conditional autoregressive

prior for the log relative risks� are in the range of ��� to ���� hence show considerably more

variation� For a more thorough comparison of our piecewise constant model formulation

with the more traditional Markov random �eld autoregressive prior see the application in

Knorr�Held and Rasser �����a��

Seven districts have estimates below ���� Six of them form a cluster around the Glasgow

district� one is the Dundee district� There is strong evidence that the latter forms a cluster by

itself� as the corresponding posterior probability is ����� compared to a prior probability of

���� The prior probability has been calculated by simulations as in Knorr�Held and Rasser

�����b�� All other regions have much lower posterior probabilities of being alone in a cluster

with a median value of �����

We turn now to the extended analyses� in which the estimated relative risks are calibrated

for the e�ect of the covariate agr� Some care must be taken in general in interpreting the

results� as the e�ect of the covariate might be estimated overly conservative� The reason

is that location might act as a confounder in our model formulation� because we assume

that the residual variation has spatial structure� For a thorough discussion of this issue see

Clayton� Bernardinelli and Montomoli ������

Figure �b�� c� and d� display the estimated spatial residual component� adjusted for the

e�ect of the covariate from model ��  and �� respectively� while Figure � compares the

corresponding estimates of the covariate components �h� h � �� � � � � �� Consider �rst model

�� the one with a separate covariate e�ect for each category� The estimates of the spatial

component are now in the range of ��� to �� and have less variation than in model �� This

is to be expected� as� ideally� the residual variation should vanish� if all relevant factors enter

properly in the model� In practice� however� this is not to be expected� but the maps of

spatial residual variation in Figure �b� may provide clues pointing to further risk factors� In
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particular� in the south�west of Scotland� the inclusion of the covariate seems to explain a

lot of the spatial variation� Also� the Dundee district is now less distinct with an adjusted

relative risk of ��	� and a posterior probability of ��� for forming a cluster on its own�

However� in the north and east of Scotland� the inclusion of the covariate does only partially

explain the spatial variation from Figure �a�� The estimated e�ects of the covariate levels

in Figure � show the expected shrinkage e�ect towards one� in comparison with the SMR�s

from Table ��

We now turn to model � in which we allow the e�ects of di�erent categories to be

identical� ignoring the order in the category levels� Consider �rst Table �� which gives the

estimated posterior probabilities that two categories are within the same group� regardless

of the the underlying partition� Recall from Section  that the corresponding prior proba�

bility is ����� � ����� All posterior probabilities are larger with values between ��� and

����� Correspondingly� the estimated covariate e�ects in Figure � are close to one� and the

estimated spatial pattern �Figure �c�� has much similarity with the purely spatial analysis

from model �� Note however� that Table � indicates some structure with lower probabilities

between any combination of the categories � or �� with one of the remaining categories ����

or ��

In model �� we now try to �x the obvious de�ciencies of model  by allowing only for

partitions which maintain the order of the category levels� In Figure �d�� the estimated

spatial pattern from model � can be seen to be rather similar to the one obtained from

model �� The covariate model identi�es a change point between categories � and  with

posterior probability of ����� In contrast� for all other adjacent categories� the corresponding

probabilities are below ��� Among the di�erent partitions� partition f�� �g� f� �� �� �g has

the highest posterior probability and� interestingly� all �� subsequent partitions� ranked in

the order of posterior probability� do also separate the category levels � and � see Table ��

��



Category level � �  � � �

� ��� ���� ���� ���� ���� ����

� ��� ���� ��� ��� ���

 ��� ���	 ���	 ����

� ��� ���� ����

� ��� ����

� ���

Table �� The posterior probability for two covariate categories to be within the same group� model

��

Correspondingly� the estimated e�ects are smooth versions of those obtained from model ��

retaining the change point between categories � and � see Figure �� This suggests that the

usual assumption of a log linear model for the e�ect of the covariate is not fully supported

by the data�

Finally� Figure � compares the median estimates of the �tted log relative risks log����

The �t is generally rather similar� and this can also be observed from a look at the mean

posterior deviance �Spiegelhalter et al�� ���	�� which has only for model � a slightly lower

value� Among the covariate models� some di�erences can be seen in model �� where districts

belonging to the highest category levels have larger �tted values�

� Discussion

We have proposed a novel methodology to include information on categorical covariates into

the analysis of spatially correlated disease data� Such methodology is based on the notion of

partial exchangeable patterns of covariate e�ects� depending on the observed levels of such

�	



Partition Posterior Probability

f�� �g� f� �� �� �g ���	

f�� �g� f� �� �g� f�g ����

f�� �g� fg� f�� �� �g ����

f�g� f�g� f� �� �� �g ����

f�� �g� f� �g� f�� �g ���	

f�� �g� fg� f�� �g� f�g ����

f�� �g� f� �g� f�g� f�g ����

f�� �g� fg� f�� �� �g ����

f�g� f�g� f� �g� f�� �g ����

f�g� f�g� f� �� �g� f�g ����

f�g� f�g� fg� f�� �� �g ����

f�� �� g� f�� �� �g ����

Table �� The twelve most likely partitions in model ��

covariate� Our methodology is Bayesian� and has been implemented by means of a reversible

jump MCMC algorithm� which has been described in detail�

Our model can be extended in di�erent ways� However� given the complexity of the

computations� a great deal of care is needed in checking the correctness of the code� and the

convergence of the algorithms� For example� one could consider continuous covariates� This

would imply resorting to a linear model formulation for the covariate e�ect� For instance� if

the covariate e�ect can be assumed to be linear on the log relative risk� an alternative model

for � may be�

��i� � exp�� � xi��

with � and � distributed as a 
at prior� However� this would introduce some idiosyncrasy

��



between the spatial and the covariate e�ect� one may need to adopt� instead of the spatial

clustering approach adopted here� a linear smoothing formulation� as in Besag� York and

Molli�e �������

Several assumptions underlying our application are critical from an epidemiological point

of view� For example� the fact that agr is only a error�prone proxy for sunlight exposure

somewhat con
icts with the assumption that the covariate agr is assumed to be measured

without any measurement error� Measurement error models for continuous covariates in

disease mapping have been proposed in Bernardinelli et al� ������ and might be useful here

as well� Due to the categorical scale of the covariate� a misclassi�cation model might also be

considered�
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Figure �� Posterior median estimates of the spatial component�
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