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Factorization of the
Cumulative Distribution Function

in Case of Conditional Independence

By Angelika Caputo
University of Munich, Institute of Statistics,
Ludwigstr. 33, D-80539 Munich, Germany

ABSTRACT

A decomposition of complex estimation problems is often obtained by using factorization
formulae for the underlying likelihood or density function. This is, for instance, the case
in so—called decomposable graphical models where under the restrictions of conditional
independences induced by the graph the estimation in the original model may be
decomposed into estimation problems corresponding to subgraphs. Such a decomposition
is based on the property of conditional independence and on the factorization of the
assumed underlying density function. In this paper, analogous factorization formulae for

the cdf are introduced which can be useful in situations where the density is not tractable.

Key words: Conditional independence, graphical models, decomposition of ML estima-

tion.

1 Introduction and notations

Highdimensional estimation problems can often be simplified using a factorization of the
underlying likelihood function which is based on a corresponding factorization of the dens-
ity function. The simplification can be obtained if the resulting factors are distinct with
respect to the underlying parameter vector. In special cases these factors can be assigned
to submodels of the original model. This is, for instance, of concern in the framework of
graphical models where a graphical representation is used showing conditional independ-
encies between subvectors (cf. Lauritzen and Wermuth, 1989, Wermuth and Lauritzen,
1990, Lauritzen, 1996). Typically, the underlying multivariate distribution is assumed to
be the multivariate normal or the so—called Conditional-Gaussian distribution. Both are
members of the exponential family which implies that the multiplicative structure of the
density can be exploited. Therefore, they are advantageous with regard to the desired fac-

torization. In addition, a special structure of the graph due to conditional independence
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possibly results in a decomposition of the maximum likelihood (ML) estimation of the
parameters involved. The possibility of using the graphical representation of the model
in the described way is one important benefit of graphical models. If other multivariate
distributions are considered, especially if the density cannot be treated analytically, the
decomposition is lost either because the density cannot be factorized or because it is im-
possible to show that the factorization holds although the needed structure of the graph
is given. In some cases, however, the cumulative distribution function (cdf) is easy to
handle although the density function is not — but up to now no factorization formulae for
cdf’s are known to the best knowledge of the author.

This paper focusses on a factorization for the cdf which is well-known for the density
function itself. The factorization formula for the density function as well as the one
for the cdf hold in the case of conditional independence which is typically considered in
graphical models.

Because of its prominent role first the concept of conditional independence is introduced
followed by some basic notations and definitions from the theory of graphical models. In
that what follows, two factorization formulae for the density function are recalled. In
Section 2, the main results are presented with focus on dual factorization theorems for
the cdf. Section 3 shows the application of these formulae to the estimation problem in
graphical models where a multivariate distribution is assumed with intractable density but
tractable cdf. In comparison to the more natural way via density or likelihood functions,
it is described in detail how the general concept of a cut (Barndorff-Nielsen, 1978) can
be used in a modified way for cdf’s. The final section deals with a concrete family of
multivariate distributions where in fact the density function in contrast to the cdf is not

feasible.

Let X = (X)iev = (X1,..., X,)" denote a vector of random variables with related index
set V= {1,...,p} and Px or briefly P the distribution of X, i.e. the joint distribution
of Xi,...,X,. The corresponding cdf is given by Fy(z) = F(z) = F(x1,...,1,) =
P(X; < zy,...,X, < z,). Let us further assume that the density exists and reads as
fv(z) = f(z) = f(x1,...,2,). For a subset A of V' and the corresponding subvector
X4 = (Xj)jea let fa(za) and Fy(z4) denote the density and the cdf of the marginal
distribution of X 4, respectively. For disjoint subsets A and B of V' the conditional density

function of X4 given Xz = xp is defined as

faus(za,zB) fu(zg) >0

0 otherwise



and the cdf of the conditional distribution of X4 given Xp = xp can be calculated as

zA

Fup(taly) = / Fais(ulzg)du. (1.2)

—0oQ0

As mentioned above, the concept of conditional independence plays an important role for
the persued factorization. In the following, this property is defined similarly to Dawid
(1979) by means of a factorization formula for the joint density and for the joint cdf.
A more theoretical definition via versions of conditional expectations (Dawid, 1980) is
possible but not necessary in this context. Here, the definition close to density functions
and cdf’s makes the connection to the factorization of these functions obvious. For disjoint
subsets A, B, and C of V' X4 and Xp are said to be

(i) conditionally independent given X = z¢ if the conditional density or the cdf of
(XT, XIT)T given X = x¢ is a product of the marginal conditional densities or cdf’s.
To be more precise, X4 and Xp are conditionally independent given Xo = x¢ if it
holds for all z4 € Rl and all z5 € R/P!

fauBic(a,vlre) = fac(walze)faic(rslze) (1.3)

or  Faupc(ra,vplre) = Faclzalve)Fpe(zslze), (1.4)

(ii) conditionally independent given X¢ if X4 and Xp are conditionally independent
given X¢ = z¢ for all z¢ € IRI®l. Then we write X, L Xp | X¢ or briefly
Al B|C.

The notation A L B | C was introduced by Dawid (1979, 1980). He discusses basic
properties, applications, and possible interpretations of the concept of conditional inde-
pendence in detail. His ideas are not only of theoretical interest. They are, for instance,
recovered in the theory of graphical models. For convenience, let us recall the basic ideas
of this important class of multivariate models which will be used later to illustrate the
practical relevance of the results derived in this paper. A graph G = (V, E) is given
by a set of vertices V' representing the variables and a set of edges £ C V x V with
(1,1) ¢ E for all i € V reflecting associations among the variables. The set of vertices
is identified with the index set of the vector Xy,. Here, only so—called undirected graphs
where (i,j) € E implies (j, i) € E are considered. For A C V' a subgraph G, is defined
as G4 = (A, EN (A x A)). A path from i to j is given by a sequence i = ig,i1,...,0, = j
with (i, ime1) € E for m = 0,...,n — 1. For disjoint subsets A, B,C of V we say C
separates A and B if each path from a vertex i € A to j € B includes at least one vertex
kedC.



In the theory of graphical models, so—called Markov properties connect the concept of
conditional independence with graph theory. The distribution of X is called Markov with
respect to G = (V, E) if A L B | C holds for all disjoint subsets A, B, C of V whenever A
and B are separated by the set C in the corresponding graph.

For a partition A, B, and C' of V with A L B | C the general factorization of the density

f(x) = fausuc(@a, 25, 2¢) = favc(®a, zc) fBlavc(@p|Ta, zc) (1.5)
may be written as

f(@) = fave(za, zc) foic(zplre) = fauc(@a,20)fpue(zs, Te) (1.6)
fe(ze)

for all x € IRP with fc(z¢) # 0. In the theory of graphical models, this formula is

basically needed to show a possible decomposition of the ML estimation provided the
assumption A L B | C is fulfilled. In the next section, it is shown that formulae dual to
Equations (1.5) and (1.6) hold for the cdf in the special case of conditional independence.
This result will then be used for the decomposition of the ML estimation in graphical

models in Section 3.

2 Factorization properties

In this section, fundamental properties of the cdf are discussed some of which are direct
consequences from the definition of conditional independence or well-known equations
like Bayes formula and some look at first sight trivially but only seem to be. First, two
formulae for the cdf are derived in the case of the conditional independence A L B | C
for a partition A, B, and C of V. Then, a general property of multivariate distributions
is presented which can be used to conclude from the factorization of the cdf or certain
conditional propabilities to the conditional independence of A and B given C, namely the
inversion of the first formulated statements.

Let X = Xy be a vector of random variables with cdf F(x). We consider a partition A,
B, and C of V. Let 0(X4), 0(Xp), and 0(X¢) be the o-algebras generated by X4, Xp,
and X¢, respectively. Provided X4 and Xp are independent given X (A L B | C') then
we have for all M, € 0(X4), Mp € 0(Xp), and M¢ € 0(X¢) with P(X¢ € M¢g) > 0:

P(XAGMA,XBGMB|X06Mc):P(XAEMA|Xc€M0)P(XBEMB|Xc€Mc).

In particular, this is the case for My = (—o00, x4], Mp = (—00, x|, and M¢c = (—00, x¢]
with 24 € R4l 25 € RX8! and z € IRX! arbitrary, but fixed. This yields

P(Xy <24, Xp<ap,Xeg<z0) PXyi<a4,Xe<20) P(Xp<ap Xe< o)
P(XC S .Ic) - P(XC S l‘c) P(XC S .Ic)
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and implies for all x € IRP with F(x¢) # 0 the following factorization formula for cdf’s

which is analogous to Equation (1.6)

Fauc(xa,zc)Fpuc(Tp, xc)
Fc(mc) '

In addition to the factorization of the joint cdf into marginal cdf’s, it is possible to

F(z) = Faupuc(Ta, 2, 70) = (2.7)

show that the joint cdf decomposes into a product of marginal and conditional cdf’s
analogously to the well-known result for density functions. To derive this result, the

following proposition is needed.

Proposition 2.1 Let X = Xy be a vector of random variables and assume that A 1 B |
C' holds for a partition A, B, and C of V.. Then we have for all x € IRP with Fo(xc) # 0:

{3$AFAUC($A,$C)} felze) {69:3 FBuc(xB,xc)} felze)
fAuc(JUA,JUc)FC(fEC) B fBuC(ﬂUB,JUc)FC(JUc)

= 1. (2.8)

Proof:
From A 1L B | C' it follows that (1.6) holds and with Equation (2.7) the joint density f(x)
can be written as

83
f(l“) = fAUBUC($A7$37$C) WFAUBUC($A7$B,$C)
_ o Fauc(za,zc)Fpuc(zp, zc)
aanxBaxc Fo(ze)

0
F2(:Jcc 8(1),48(1)3( ozc

Fauce( JJA,JJC)FBUC@EB,QJC)} Fo(ze)

—FAuc(ﬂE $C)FBUC($B,$C)fC($c)>

0
FQ((IIC aan:L‘B ({817()

+F uc(za,zc) {

Fauce( l“A,!L“c)} Fpuc(zp,zc)Feo(zc)

0

%FBuc(ﬂﬂB,ch)} Fe(zce)

—Fauc(za,zc)Fpuc(zs, xc)fc(l“c))

1 0 0 0
= F —F F,
F2(ec) o ({axc AUC(iUAafEC)} {axB Buc(fEB,xc)} c(zc)

+Fauc(za,zc) fuc(zp, zc)Fo(ze)

—Fauc(za,zc) { %FBUC(xBa wc)} fc(xc)>

= o <fAuc($A,$c) {%FBUC($37$0)} Fo(zc)

+ {%FAuc(ﬂﬁA, 330)} fBuc(z,zc)Fo(zc)



- {%FAUC($A7$0)} {%FBUC($37$C)} fC(ﬂﬂC))

fauc(za,zc) fBuc (B, 20)
fe(zc)
.<{3mBFBUC(fL‘BaxC)} clzc) . {3mAFAUC(anxC)}fC($C)
fBuc(zB,zc)Fo(ze) favc(za,zc)Fo(zc)

{8a:AFAUC (L‘A,xc)} FBUC :EB,(LC)} f%(m‘c)>

fauc(za, fEc)fBu (2B, xc)Fé(2c)

Using the abbreviations

{,%AFAUC(anxC)} fe(ze) 4 b {%FBUC(UCB,DCC)} fe(ze)
— an —
fave(wa,xo)Fo(ze) fouc (@B, x0)Fo(ze)
it follows that a +b — ab = 1 or that (1 — a)(1 — b) = 0 which is fulfilled for a = 1 or

b = 1. Since the two factors ¢ and b have an identical structure it can be concluded that
a=b=1. O

From Equation (2.8) it is easily seen that

fBUC(JUB,«TC) - %FBUC(JUB,JUC)

feic(zplzc) =

fc(xc) B FC(JUC)
Therefore, we have
B TB §
—FBUC(U,JUC) FBUC(JUB JUC)
Fgolrglx :/ ulz du:/a“ dy = ————=~~,
B\C( B| C) ) fB|C( | C) o FC(xC) FC(xc)

Together with Equation (2.7), this result leads immediatly to a factorization formula
which is dual to Equation (1.5) for the case that A L B | C holds:

F(l‘) = FAUC(xAwa)FB\C($B|$C)- (29)

In the following, it is shown that the factorization of certain conditional probabilities is
sufficient for conditional independence. The benefit of this statement is twofold. On the
one hand, in some cases it is simpler to prove the factorization for some probabilities
than for the joint density or cdf. On the other hand, this is the missing argument for the
inversion of the above results, i.e. the conclusion from the factorization of the cdf given
by Equations (2.7) and (2.9) to the conditional independence of A and B given C.

Proposition 2.2 Let U = (X1, YT, Z1)T be a vector of random variables. The vectors
X and Y are conditionally independent given Z if for all z € IR1Z! with P(Z < z) >0 the
following holds

P(X<a,Y<y|Z<2)=P(X<a|Z<a)PY <y|Z<2).  (210)



Proof:
The conclusion from conditional independence to the above factorization of the conditional
probability is directly obtained from the definition of the conditional independence of
X and Y given Z. Here, the inversion is to be shown which is the more interesting
part, i.e. that the independence of X and Y given Z follows from (2.10). Note that the
conditioning is a set, namely the set {Z < z} and not the point Z = z. As defined, X
and Y are conditionally independent given Z if for all z € IRI”l with f(z) > 0 it holds
that

Fxyiz(x,y|z) = Fxz(2]2) Fy 1z (yl2). (2.11)

The cdf of the conditional distribution of X given Z = z is defined as

Fxiz(z|z) = }lli{‘r(l]P(ng|z—h<Z§z)

_ limP(Xga:,z—h<Z§z)
AN\0 Pz—h<Z<2)
limpno 7 P(X < 2,2 —h < Z < 2)

limy o %P(z —h<Z<2)
2o fx.z(t, 2)dt

f2(2) '

Note that Fy|; and Fy,y|z can be written analogously. Let F(z,y,z) denote the cdf
of U= (XT,YT, Z")T| Fx z(,z2), Fyz(y,z), and Fz(z) the cdf’s of the corresponding
marginal distributions of (X7, Z7)" (YT, Z")" and Z. In the following Equation (2.10)

is used rewritten as

F(x,y,2)Fz(2) = Fx z(z,2)Fy z(y, 2). (2.12)

With these notations and since all involved limits exist we get from Equation (2.10)

limP(XSw|z—h<Z§z)}%i\r{r{1}P(Y§y|z—h<Z§z)

ANO
= lmPX<z,Y<yl|lz—h<Z<2)
BNO
o limpng + P(X < 2,2 —h < Z < 2) limpng + P(Y <y, 2 —h < Z < 2)
limpng 3+ P(z —h < Z < 2) limyng 3 P(z —h < Z < 2)

limy,\ o %P(X <z,Y<yz—h<Z<z)
limp £ P(z —h < Z < 2)

1 1
im — < — < im — < — <
& }ILI{‘I%)hP(X_$’Z h<Z_z)%1{l%hP(Y_y,z h<Z <z)
1 1
= lim - < <y, z— < 2) lim ~P(z — <
}ILI{‘%hP(X_x’Y_y’Z h<Z_z)}111{‘%hP(z h<Z<z)
& Ai{‘r(l){P(X§x,z—h<Z§z)P(YSy,z—h<Z§z)
—P(X<z,Y<yz—-—h<Z<z)Pz—h<Z<2z)}



The right—hand side can be written as

%i\rr‘r(l){P(X§x,z—h<Z§z)P(Y§y,z—h<Z§z)

—PX<zY<yz-h<Z<z)P(z—h<Z<z)}

= Jn{(P(X S 0,2 <2) - PX S22 52— WP S3.252) — PY S, 2 S 2 —y)
—{P(X <2, Y <y, Z2<2)-P(X<2Y <y Z<z—h)

[P(Z2 <2)-P(Z<z-h)}}

= %i\r‘%{[Fx,Z(% z) = Fxz(z,2 — h)|[Fy,z(y,z) — Fy.z(y, 2 — y)]
—{[F(z,y,2) — F(z,y,2 = h)][Fz(2) — Fz(z — h)]}}

= A%{FX,Z(QU,Z)FY,Z(%Z) — Fxz(2,2)Fy,z(y, 2 — h)
—Fx z(x,2—h)Fy z(y,2) + Fx z(z,2 — h)Fy z(y,z — h)
—F(z,y,2)Fz(2) + F(z,y,2)Fz(z — h)
+F(z,y,z — h)Fz(z) — F(z,y,z —h)Fz(z — h)}

= }%i\f‘%{F(%yaz)FZ(z) — Fx z(z,2)Fy,z(y, 2 — h)
—Fxz(x,z2—h)Fyz(y,2) + F(z,y,2 — h)Fz(z — h)
—F(x,y,2)Fz(2) + F(z,y,2)Fz(z — h)
+F(z,y,z — h)Fz(z) — F(z,y,z —h)Fz(z — h)}

= }%i\r‘%{—nyz(w,z)Fyyz(y, z—h)—Fx z(z,z — h)Fy z(y, 2)
+F(z,y,2)Fz(z — h) + F(z,y,2 — h)Fz(2)},

where in the fourth step Equation (2.12) is applied to the first and the fourth factor.
Finally, this leads to

%i{r(l) {—Fxz(z,2)Fyz(y,z —h) — Fx z(z,2 — h)Fy z(y, 2)
+ F(z,y,2)Fz(z — h) + F(z,y,2 — h)Fz(2)}
= —Fxz(z,2)Fyz(y,2) — Fx z(z,2)Fy z(y,z) + F(z,y,2)Fz(z) + F(z,y,2)Fz(2)
= —2F(z,y,2)Fz(2) +2F (z,y,2)Fz(2) = 0,

where again Equation (2.12) is used. O

In the next section, it is demonstrated how the above results can be used in the framework
of ML estimation in graphical models. This is for example necessary for the family of
KS distributions which is introduced in the discussion. Especially, the argument given by

proposition 2.2 is very helpful when working with this distributions.



3 An application: decomposition of ML estimation

in graphical models

As mentioned in the introduction, a graphical model has the property that independence
statements can be read off the graph. Another benefit of the graphical representation of
the association structure among the variables concerns the possible simplification of the
ML estimation. For special cases it has been shown that an appropriate decomposition
of the graph results in a decomposition of the estimation problem into smaller ones each
having a reduced number of parameters to be estimated and belonging to graphical models
based on subgraphs of the original graph. A detailed discussion of these problems in case
of Conditional-Gaussian distribution can be found in Frydenberg and Lauritzen (1989)
and Frydenberg (1990).

The decomposition of the ML estimation is possible whenever the likelihood function
factorizes into functions that are distinct with respect to the unknown parameter vector,
say w. Thus, the maximization reduces to the separate maximization of each factor. This
procedure is justified by a general concept proposed by Barndorff-Nielsen (1978). The
idea is to show that the investigated family of distributions P can be written as a product
space Pr x PT for a statistic T = T'(X), where Pr denotes the set of distributions of T
and PT the set of conditional distributions of X given 7". This implies on the one hand

that any density p € P factorizes into the product
p(asw) = pr(T(x);w1) p' (2w T(X) = T () (3.13)

for p; € Pr and p? € PT. On the other hand, it holds that any product (3.13) for arbit-
rary elements pr € Pr and p’ € PT is an element of P. This defines the statistic T as a
cut in P (Barndorff-Nielsen, 1978, p. 50). This argument is applied to a general graphical
model M(G), i.e. M(G) is the set of all distributions P of a family of distributions P
fulfilling the Markov property of a given graph G = (V, E). In the following, we identify
elements P € M(G) with their density and their cdf, respectively, i.e., f(-) € M(G) and
F(-) € M(G) refer to the same element of M(G).

For a graph G = (V, E) and A C V we define the set of marginal distributions as M(G)4 =
{faC) | f() € M(G)} and the set of conditional distributions of M(G) given X, as
M(G)* = {finaja(-]-) | f(-) € M(G)}. These notations are also used to denote sets like

(M(G)suc)” = {faic(]) | F() € M(G)puc)
for disjoint subsets B, C of V. Note that this differs from

M(Gpue) = {fpic]-) | F(:) € M(Gpuc)}



insofar as M(Gpuc) denotes a graphical model corresponding to the graph Gpc whereas
M(G)puc is the family of marginal distributions of a graphical model corresponding to
the graph G. This difference is essential for the following argumentation. Within the
scope of graphical models, the idea of a cut is used in a slightly modified way. For a
partition A, B, and C of V' the statistic T'(z) = xayc is said to be a cut in M(G) if the

following three conditions hold:
(i) M(G)ave = M(Gauc),
(i) M(G)2C = M(Gpue)©,
(iii) M(G) = M(Gauc) x M(Gpuc)C.

This definition of a cut is more restrictive than the one of Barndorff—Nielsen described
above as two closure properties are called for besides the factorization criterion which
shows up again in condition (iii). These additional properties (i) and (ii) guarantee
that the factors of the product space are related to graphical models corresponding to
subgraphs. For instance, condition (i) equals the so—called collapsibility of graphical
models onto the set AU C (cf. Frydenberg and Lauritzen, 1989) and describes that the
family of marginal distributions M (G)auc of a graphical model M(G) coincides with the
graphical model M(G4u¢) related with the subgraph Ga,c of G.

In the present context, we are mainly interested in condition (iii). Therefore, we assume
that (i) and (ii) hold and we discuss additional conditions for (iii) to be valid. Under the
assumption A L B | C, the inclusion M(G) C M(Gauc) x M(Gpuc)© follows directly
from the factorization of the joint density (1.5) combined with (i) and (ii):

M(G) € M(G)ave x M(G)'C = M(Gaue) x M(Gpuc)©.
The opposite direction, i.e.

M(Gaue) X M(Gpue)® € M(G). (3.14)

is in general more difficult to prove. For this purpose, we show that for arbit-
rary density functions gauc(-) € M(Gaue) and hpe(-) € M(Gpue)© the product
gavc(xa, zc)hpc(vplre) is in M(G). In contrast to the above inclusion, this crucially
depends on the properties of the underlying multivariate distribution especially on its
factorization properties with respect to the parameter vector. That means, it must be
checked whether the density of the assumed distribution fulfills the stated Condition (3.14)
or not. In the following, it is shown that there is an equivalent condition for the cdf. We

first need some further notations. Let G 4,c(+) denote the cdf of gauc(-) and for

hBUC(fEB; JUC)

hpc(zBlre) = he(zc)

10



with hpuc(:) € M(Gpuc) and marginal density he(-) € M(Gpuc)c, let Hpuo(-) and
Hc(-) denote the corresponding cdf’s. The general idea is to show that

Gauc(ra, vc)Hpuo(tp, 7c)
Hc(mc)
is the cdf of gauc (x4, xc)hpjc(xB|Tc), ie. that f(-) € M(G) is equivalent to F'(-) € M(G).
Therefore, define H*(z) as

= Gauc(ra, z0)Hpic(xplre) = F(x)

H*(z) = Hpuc(rsuc) - 1_£Fz(f’3z)

with corresponding density function A*(-). Then it trivially holds that H*(:) € M(G).
Since A L B | C is assumed to hold for all elements of M(G), Lemma 2.1 yields

o {%HEUC($B,$C)}hE(fEC) B {%HBuc(ﬂ?B,wc)}hC(l‘C)

h%uc(fBJC)Hé(xC) B hBUC(xBaxc)HC(xc)

In analogy to the proof of Lemma 2.1, the density f(-) of F'(-) can be derived as

0 B o Gavc(ra, vc)Hpuo(vs, 2c)
—F(z) =
ox 835A8x36xc Hc(l‘c)
_ gavc(za, ze)hpuc(Tp, o)
hc(l‘c)
<{%HBUC(1'B; xc)} he(zc) N {%GAUC@AJC)} ho(zc)
hBuc(flfB;ﬂUc)Hc(fEc) gAuc(JUA,JCC)HC(fEC)
{%HBUC(JUB, JUC)} hc(ﬁvc) {%GAUC(«TAa JUC)} hc@c))
hBuc(flfB;ﬂUc)Hc(fEc) gAuc(JUA,JCC)HC(JUc)
) h b
= gAUC(mA xc) BUC(xB xc) = gAUC(l'A;fEC)hB|C(«TB|~TC) = f(ﬂf)
hc(l‘c)

This implies that the condition f(z) = gauc(-)hpic(-|-) € M(G) is equivalent to F(-) =
Gauc(-)Hpc(-|-) € M(G) which is expressed in the following corollary.

Corollary 3.1 Let X = Xy be a vector of random variables and A, B, and C' a partition
of V with A L B| C. Using the above definitions it holds that

f() = gauc()hpic(-])) € M(G) & F() = Gaue () Hpie(+)) € M(G).

Summarizing, it can be concluded that the factorization formulae for the cdf of Section
2 allow to switch over from a condition for the density function to a condition for the cdf
which may simplify the calculations in special cases. In the following section, a situation is
described where the problem occurs that it is impossible to check condition f(-) € M(G)

whereas the discussion of condition F'(-) € M(G) is successful.
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4 Discussion

As already mentioned, the above results may be of importance when distributions other
than the Conditional-Gaussian distribution are assumed as joint distribution for Xy
in graphical models. For instance, Koehler and Symanowski (1995) introduce a class
of multivariate distribution families which allows to model on the one hand complex
associations among arbitrary subsets of the variable set and on the other hand pairwise
independences in the margins. In addition, this distribution family fulfills the equivalence
of the different Markov properties which is a minimal requirement for a model distribution
as far as graphical models are concerned. All these properties together state that this
distribution family is worth being discussed in the framework of graphical models.
With V = {1,...,p} and V being the powerset of V, let X = Xy = (Xj,...,X,)T denote
a vector of random variables with marginal cdf’s F;(-), i € V. The joint distribution of
X is assumed to be given by the following cdf

F(z1,...,2p) = [[ Fi(z:) I] er(z)~. (4.15)

eV I€T

Forallsets I € Z={I € V with |I| >2}1let R> a; > 0andforalli e Viet IR> a; >0
with oy = Yreyierar < o0o. Forall I € T the factors ¢;(x) in Equation (4.15) are defined
as

cr(@) = > {1 wi(@j)} — (1] = 1) [T wi(zs)
i€l et iel

with w;(z;) = Fz(xz)ﬁ for all ¢ € V. Here, the structure of the cdf is fairly easy. It
factorizes into the product of the marginal cdf’s and a product of association terms. These
distributions can be constructed for almost any given univariate marginal distributions
by adding interaction terms and can be viewed as a generalization of the generalized
Burr—Pareto—logistic distributions.

If we assume that marginal density functions f;(-) exist for all i € V' it can easily be shown
that the joint density function also exists (Koehler and Symanowski, 1995). However, in
contrast to the cdf the functional representation of the density function is rather complic-
ated. Besides the product of the marginal densities there are more complex factors with
additive components due to the derivation. This leads to a formula which is not easy to
handle and therefore, an analysis of factorization properties already fails in the simplest
situations. In this case, the indirect argument via cdf’s using the factorization formula
(2.9) and Proposition 2.2 allows to discuss the problem described above and leads to the
conditions which are needed to obtain a decomposition and therefore a simplification of
the ML estimation.

Another possible application is the construction of the joint multivariate distribution from

given conditional and marginal distributions in situations where the joint density does not
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exist or is not of primary interest. Given a certain association structure among the in-
volved variables, i.e. certain conditional independences, the joint multivariate distribution
can be derived making use of Equation (2.9) in analogy to Bayes formula. A more de-
tailed examination of this idea and related problems could be a rewarding field for further

research.
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