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ON A SMALL SAMPLE ADJUSTMENT FOR THE PROFILE

SCORE FUNCTION IN SEMIPARAMETRIC SMOOTHING

MODELS

Goran Kauermann *

Abstract

We consider the profile score function in models with smooth and parametric components.
If local respectively weighted likelihood estimation is used for fitting the smooth component,
the resulting profile likelihood estimate for the parametric component is asymptotically effi-
cient as shown in Severini & Wong (1992). However, as in solely parametric models the profile
score function is not unbiased. We propose a small sample bias adjustment which results by
extending the correction suggested in McCullagh & Tibshirani (1990) to the framework of

semiparametric models.

KEYWORDS: Local Likelihood, Profile Likelihood, Semiparametric Models, Smoothing.

1 Introduction

We consider semiparametric models having two types of parameters, a finite dimensional com-
ponent 6 and a nonparametric smooth component ¢(-). With (y,z) we denote a random vector
where y is considered as response variable having = as vector of explanatory quantities. Given x
we assume y to be distributed according to y|lx ~ f{y|z;0,¢(u)} where 6 is a finite dimensional
parameter and ¢(-) is a smooth possibly multivariate function in u, with u being some metrically

scaled covariate contained in z. A typical example is the semiparametric regression model where
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the expectation of the response variable y is modeled as E(y|z) = u{z0 + ¢(u)} with u(:) as a
known response function (or inverse link function) and z being some factorial covariate contained
in z. The predictor z6 + ¢(u) here consists of the unknown regression parameter €, which serves as
parameter of interest, accompanied by the unknown smooth function ¢(-) taken as nonparametric
nuisance component. Models of this type are discussed by several authors, see e.g. Heckman (1986),
Speckman (1988), Severini & Wong (1992), Severini & Staniswalis (1994) or Hunsberger (1995).
Let (y;,2;), ¢ = 1,...,n, denote a random sample with [;(0,¢;) = log f(y;|z:;0,¢:) as log

likelihood contribution where ¢; = @(u;). We denote with ¢; a smooth estimate of ¢; yielding
70) = ) L6, %) (1)

as profile log likelihood function for #. As in a solely parametric setting, this profile likelihood
does not fulfill the usual likelihood properties. In particular the expectation of the resulting profile
score function [F () = 0IF(0)/90 is not zero. We show that the resulting bias has order O(h~F)
where h is the smoothing parameter or bandwidth used for smoothing ¢(-) and p is the dimension
u. Hence for h — 0 the bias of the profile score function is increasing. This is in contrast to
solely parametric models where the bias of the profile score function typically has order O(1). Our
objective is to derive an approximation bg(f) for the dominating part of the bias such that the

adjusted profile score function
7(0) = 15 (0) = by(6) (2)

is unbiased up to the second considered asymptotic order.

In a solely parametric setting various methods for adjusting profile likelihood functions have
been suggested in the literature, see e.g. McCullagh (1987), Cox & Reid (1987), Davison (1988),
McCullagh & Nelder (1989, ch. 7), Barndorff-Nielsen (1991) or Reid (1995). Corrections can be
constructed by approximating the distribution of the estimated component in the profile likelihood
function and then either marginalizing over or conditioning on the estimated parameters. McCul-
lagh & Tibshirani (1990) suggest an additive adjustment based on an expansion of the profile score
function. This concept is extended by DiCiccio, Martin, Stern & Young (1996) or Stern (1997) to
generally adjust the bias of the second order derivative. Severini (1998) suggests an approximation

of the profile likelihood function for multivariate but finite dimensional nuisance parameters. A ma-



jor prerequisite of the adjustments above is that the nuisance parameter is estimated by the usual
parametric 4/n convergence. This rate of convergence can however not be achieved if the nuisance
parameter is a smooth function. Here, the typical rate of convergence is O, (h?) +O,(n~1/2h=7/2),
The approach of McCullagh & Tibshirani (1990) however can be extended to the semiparametric

framework, as demonstrated below.

2 Bias of the Profile Score Function

For estimation we use local likelihood for the smooth component ¢(-) and profile likelihood estima-
tion for the parametric component 6 (see also Severini & Wong, 1992). Let w;; denote some kernel
weights w;; = K{(u; —u;)/h}/K(0), where K (-) is a multivariate positive, unimodal and symmet-
rical kernel function (see e.g. Staniswalis, 1989) and h as bandwidth. The weights are normed to
have range [0, 1] with maximal value 1 for u; = u;. For fixed # the estimate for ¢; = ¢(u;) is now

obtained by maximizing the local likelihood function

>_wisli(0,¢3) (3)

with respect to ¢;. The resulting estimates ¢;, ¢ = 1,...n, thereby typically depends on 6, which
is suppressed in the notation. Inserting the estimates ¢; in the likelihood function yields (1) as
profile log likelihood function for 6.

The smoothing parameter h in (3) steers the amount of smoothing. It is assumed that h fulfills
the standard conditions h — 0 and nh? — oo, where p is the dimension of u. We postulate p < 3 to
ensure +/n convergence for the parametric component. Moreover for technical reasons we require
that nh*t? — 0, which means that ¢(-) is undersmoothed. This point is discussed in more detail
later in the paper.

Let the components of 6 be indexed by a,b,.., i.e. § = (02,6°,...), while the letters 7,s,t,...
are used to index the components of ¢; = (o], ¢, ¢!, ...), i =1,...,n. With subscripts we denote
derivatives, e.g. l;;r(0,9:) = 0Li(0, ¢;)/0¢F or li.o(0,¢;) = 0l;(0,¢;)/00%. If the derivatives are
evaluated at the true parameter value we drop the corresponding arguments, e.g. we write /;,, for
li:r (8, ;). Similarly we write lAm for ;- (6, ;) when 0 is the true parameter. Finally we denote the

cumulants of the likelihood by kips = —E(lirs) = E(lisplizs) OF Kipst = E(liyrslize), for instance.



Employing this notation allows to derive the profile score function as

age = la 0) = D 1isa(0, 01) + iolin (0, 41) (4)

(3

where ¢}, = 0¢} /08, and Einstein’s summation convention implies that we sum over repeated sub-
and superscripts. The second component in (4) vanishes in a solely parametric framework or if the
estimates ¢; do not depend on 6. In general however the profile score function in semiparametric
models has two components.

For the calculation of the bias b,(#) we expand (4) to

lap(e) = Z lia + Z liar (87 — ) + Z ‘%;a{li;r +lirs (@5 — i)+ (5)

Moreover, expansions for (¢} —¢7) and ¢;, are required to calculate the bias of (5). An expansion
for (@I — ¢F) is found from the local estimating equation
0 = sz‘jlj;rw,@) = Zwijlj;r(aaQOi) + Zwijlj;rs(ea i) (@] — i)+ ... (6)
J J j

J

Solving (6) for (@] — ¢l) provides an asymptotic expansion for (@] — ¢f). One should however

i =

note that the likelihood contributions in (6) are not unbiased, i.e. E(l;;-(6,;)) # 0, since ¢; and

p; can differ. We therefore decompose the likelihood contributions to

lj;r(e’ 90") = Uj;r + 5j,i;r
lj;rs(e, 901) = —Kirst Uj;rs + 5.7;2';7‘5

and so on. Components denoted by U are now standard likelihood terms with zero mean, i.e.
Uj.r = ljsr O Ujips = ljirs + Kiyr 5. Smoothing bias terms are collected in 6, e.g. 6;i.r = Ljirs(pf —
©3) + Lirst(9F — 93)(9F — ¢%)/2 + ... Moreover we denote with n; = 3~ w;; the “local sample

size” and we use the bar notation to define locally weighted means, e.g.

Ui =07 Y wigUpr s Siw =170 wigbjir s Rirs =150 Y Wijkyirs.
J J J
Asymptotic consideration of the components above require some regularity conditions. First, we
assume that the observed values of u; become infinitely dense for growing sample size on some
bounded support U, say. This ensures, for instance, that n; = O(nh?) and in turn U, =
Op(nzl/z) = O,(n='/2h=P/?). Moreover, the information about ¢(-) is supposed to grow suffi-

ciently fast with increasing sample size such that %, s = O(1) and &;"° = O(1), where &;® is the



matrix inverse of k;;r 5. The same rate of convergence is also assumed for all higher order cumulants.
Finally, the functional form of ¢(-) is assumed to be sufficiently smooth, i.e. at least two times con-
tinuously differentiable, which controls the asymptotic order of the smoothing bias terms. In par-
ticular this yields that § components are dominated by O(h2), e.g. E(8;.,) = O(h2){1+0,(n; */*)}.
The asymptotic orders mentioned above hold only if u; is an inner point of i/, and boundary points
typically show weaker convergence. The fraction of boundary points however is of asymptotically

negligible order and therefore we generally neglect boundary effects in what follows.

The provided notation can now be used to invert (6) which gives

PF =) = Ry (Ui +0i0) + 5" Ry (Uigst + 8ist) Ui + 0s) @)
+ RPN (Uis + 8iss) (Uit + 61t)

+O(1) 4 Op(n; *1*) + Oy (' h2) + Op(n; */?)

i

zns,t — R:’“ RSV gl

7Y K" Riwww- The correction terms in (7) are found by simple calculations,

where &
see the appendix for further details. Note that formula (7) is conspicuously similar to expansions
for standard likelihood functions, as for instance found in McCullagh (1987, p. 209).

For the calculation of the bias of (5) we also need the expansion of ¢} ,. This can be obtained

by differentiating (6) with respect to 6, which gives

Gra = 1" lias (8)

a

where Z_ms = n;l Zj wijljas(6,$;) and Z_z” is the matrix inverse of I, =
n;l Ej wijljrs (0, 9i). Applying simple expansions to the observed Fisher matrices leads to

li;as = _Rz’;a,s + Ui;as + 5@';(15 + Ri;ast(@i - SD];) + ... ) (9)
_l_irs = R;’s + R?u R?’t {Ui;tu + Si;tu + Kistuv (‘15;) - ‘P;})} +.. (10)

which in turn finally allows to calculate the bias of the profile score function (4). As shown in the

appendix, making use of (7) and inserting (9) and (10) in (5) gives the overall bias

Z E{li;a(ea @l)} = Z{_ci R?S(Ri;a,rs - Ri;a,t Rﬁju Rz’;rs,u) (11)
1 1
—T,8/(— — —t,u —
—Ci B (Ria,rs — Kzt K Kigrs,u)

+O(h*) + O(n;'h?) + O(n;*)}



where ¢; = (2n; —m;)/(2n}) and m; = 3-; w;;. The leading components in (11) are now defined
as bias b,(6) so that the adjusted profile score function [2F(0) = 1(8) — b,(6) results. The bias
formula also holds if ¢}, in (4) is replaced by its expectation, i.e. if local (estimated) Fisher

matrices are used instead of observed Fisher matrices.

Remark 1: The leading component b, (f) has order 3, O(n;') = O(h™P) and hence tends to infinity
for h — 0. This is in contrast to parametric models where the profile score functions typically
is biased up to order O(1). The asymptotic correction terms given in (11) are negligible if a)
SO /WP =nh**P - 0,b) 3, 0(n;'h?)/h P =h* - 0and c) > O(n;?)/h P =n"thP
0. While conditions b) and c¢) follow by the usual bias-variance trade-off, condition a) is not
standard and requires undersmoothing of ¢(-). The component a) consists of squared smoothing
bias terms, e.g. ZZ Ii,';mrﬁ?s’tgiﬁgi’t is a representative. If the order of the smoothing bias is reduced
one gets b, (0) as asymptotically dominating term. In practice however, undersmoothing can be a
burden since standard data driven bandwidth selection routines optimize the bias-variance trade-
off. One should however keep in mind that a bias adjustment by b,(f) can still have a positive
effect, even if ¢(-) is not undersmoothed. This holds since the smoothing bias frequently is small,
not in an asymptotic sense but in a practical sense. In a simulation study given in the next section

we demonstrate this point.

Remark 2: The structure of formula (11) shows similarities to McCullagh & Tibshirani (1990).
In fact if the component ¢(-) = ¢ is constant one might transform local likelihood to standard
likelihood by setting the smoothing parameter h — oo. This leads to weights w;; = 1 and standard
likelihood estimates for ¢ result. The components involved in (11) are then standard likelihood
cumulants and n; = m; = n such that ¢; = 1/(2n). Hence, in this case (11) coincides with the

correction given in McCullagh and Tibshirani.

Remark 3: If only the first component of the profile score function (4) is considered, the resulting
bias of the profile score function is disturbed by an additional bias component resulting from
smoothing, i.e. one has E{}",l;a(0,$:)} = O(h™?) + O(nh?) + ... where the O(nh*) component

equals — Y, Kia,r Ry 5,-;5, see the appendix for details. This implies that the first order smoothing



bias is automatically corrected if 6 is estimated from the entire profile score function (4). For
normally distributed response in a semiparametric regression model this bias reducing effect of the

second component in (4) was first demonstrated by Speckman (1988).

3 Semiparametric Regression Models

We demonstrate the use of the bias correction in the semiparametric regression model E(y|z) =
u{z10+z20(u)} with z = (21, 2z2) where z; and z, are vectors of functionally independent covariates.
To ensure identifiability we include the intercept in zo. We assume that y|z ~ exp{dy—r(9)+g(y)}
follows an exponential family distribution and for simplicity we take p(-) as natural link, i.e. 9 =
210 + zo¢(u). The components of z; are indexed by (zq, 2, .. .) and we use (2, 2, ...) for z5. This
allows to write the model as E(y|z) = u{z,0% + z-¢" (v)} and one gets —li.qr = Kia,r = ZisaZirkis2
and —li.ps = Kirs = ZiwZizskiz where k0 = 02k(9)/(09)2. The adjusted profile score function is
then obtained by

2P0 = Y [Zuafyi — h(z0 + $0)} — bisa(6)] (12)

i

= 15(9) - Z bi;a(e)

1 N. —_— . — 77‘78 - .. - . - ]
with Zia = 250 — K;7 Zisr D WijZj;a255sK5;2 and bias

bia) = —ciRy*{) (wijzjazizjiskijs) N
7

= (Wijzjazjakje) Ry Y (Wi Zjwzjszjukie) /0] )

J J
In applications the component ¢(-) is frequently univariate, i.e. the model has the form E(y|z) =
1{za0" + ¢(u)}. In this case Z;, simplifies t0 Z;a = 250 — D2 WijKjs2 Zjsa/ D Wijkj;2 and the bias
equals bi:a () = —¢i(22; wijkj3 Zisa -

nikiZisa 25 Wijkjis)/ Yo Wik

Simulation Study: We investigate the benefit of the bias correction by the following simulation
study. We consider the semiparametric logistic regression model with y as binary response having
expectation E(y|z) = logit™" {20-+p(u)}. We set § = 1/2 and simulate from p(u) = —1+4(u—1/2)?
. The explanatory quantity u is univariate and takes 15 and 25 equidistant points in [0, 1] while

z is taken as binary factor. At each point of u we simulate two outcomes of y with different



sample GAP 6r
size design | bias | m.s.e. | bias | m.s.e. %((0;:))
30 (a) 011 | 0539 | 0.18 | 0.74 0.79
30 (b) 0.06 | 0.533 | 0.12 | 0.65 0.81
50 (a) 001 | 046 | 0.03 | 0.52 0.88
50 (b) 001 | 034 | 0.02| 0.38 0.89

Table 1: Bias and mean squared error (m.s.e.) of profile and adjusted profile estimates.

h | ms.e.(64F) | ms.e.(67) %(g:))
0.1 0.54 0.76 0.71
0.2 0.55 0.65 0.84
0.3 0.54 0.63 0.85
0.4 0.54 0.60 0.9

Table 2: Mean squared error of profile and adjusted profile estimates for n = 40.

design for z, namely (a) z has a balanced design, and (b) we draw z randomly with P(z = 1)
logit_l(—1.5 + 3u). The total sample size is therefore 30, 50 respectively. In each setting we
draw 200 simulations to assess the properties of the adjusted estimates. Moreover in each of this

simulations we choose the bandwidth h by the Akaike criteria
max [7(67) — Zni_l.
i

The penalty term ), n;l is frequently called the degree of freedom for a smooth model (see e.g.
Hastie & Tibshirani, 1990). The results are reported in Table 1. The adjusted estimate clearly
shows a reduced bias. Moreover the mean squared error is reduced due to the adjustment. This
effects shows for fixed design as well as for random design.

We run a second simulation study with n = 40 and fixed design to investigate the effect of
the bandwidth separately. The selection routine chosen above is not optimal in the sense that
©(+) is not undersmoothed, see Remark 1 above. Table 2 shows the mean squared error of the

estimators for various fixed bandwidths. It appears that the adjusted estimate possesses a rather



stable mean squared error while the mean squared error of 6F decreases for large bandwidth. A

similar behavior was observed for other simulations which are not reported here.

4 Discussion

We showed above that the bias of the profile score function in semiparametric models is of order
O(h~P) with h as bandwidth. The bias can be adjusted using techniques similar to those used
in parametric models. In simulations we demonstrated that the adjustment of the bias can also
improve the mean squared error. As can be seen from the appendix, the expansions required for
the calculation of the bias are more complicated compared to those found in a solely parametric
framework. This has two reasons, first the profile score function (4) consists of two components,
while the second component in (4) is zero in parametric models. Second, smooth estimates are
biased and therefore do not possess a y/n convergence. Though it would in principal be possible to
also adjust the information bias by extending the expansions above to the second order derivative,
the complicated structure of the formulae in the semiparametric framework makes it rather awk-
ward to correct the information bias analytically. Instead, one can pursue a numerical approach
as proposed by McCullagh & Tibshirani (1990) for parametric models. We give a short sketch of

the procedure in the appendix.

A Technical Details
We first show that smoothing bias components denoted by § have order O(h?){1 + Op(n-_l/2)}.

(3

One easily finds

dir = i D wiglins(9] = 05) 0 Y S wislisra (] — ) (p(ws)' = ) + ..
J J
= =0 "D wikrs (5 — 0 11> wiUjes (0(wi)® = 93) + .. (13)
J J
To see that the first component in (13) is O(h?) let Ky s = —E.{E(li;rs)|u} denote the mean
cumulant where the inner expectation is taken with respect to density f(y|z;6, ¢(u)) and the outer

expectation uses the design density f(z|u). This allows by standard kernel smoothing arguments

to obtain

— s s — U — U\ _ s s
0t S wnaet =)~ [ K (M) Rl - ) S
J



= Fural [ K (“" - “) (0% — " () f(w)du + ...

= O(h?)

In the same fashion one finds that the the second component in (13) has order Op(n; Y ’h?) and
hence can generally be neglected.

Series inversions (see e.g. Barndorff-Nielsen & Cox, 1989) directly allows to solve (6) about
@F — @l which gives (7). To gain more insight in the structure of asymptotic correction terms listed

in (7) we give a representative for each of the terms:

Oh%) = a8, 814054 + ...
Op(n; PhY) = b5, 185U + ...
Op(n; ' h2) = &5, Uil + ..

0,(n*?) = T UiTi + ..

with a™st, brste st and d"$t are some arrays with elements of order O(1).

Let us now consider the first component in (4). Expansion yields
~ . . 1 R R
zi: lia = z@: liza(6,0:) = z@: {li;a + lizar (P — i) + §li;ars (@; — i) (@7 — ‘Pf)} +.... (14)

and inserting (7) gives

. o ~ o 1
Z li;a = Z [lim + li?‘”{ﬁys(Ui?S + 5i§5) + ’i;’s H?u Ui;st Ui;u + 5”? 28 i;t}
i i
1 —_rt —s,u y7 =
+2lzars"'3 k" Uiy Uz’;u] +....
where &}’ ot — =R "R Faﬁ’w Riuow- Taking expectation leads to

~ —T,8 —1 tu
§ E{la;i(eﬂoi)} = E n; {z Kizar,s — Ty Hzar"@ § wz]f'@]stu (15)
i
1 —7,8,t
_577‘1 Ktar’i wzJK/]St
1 _rt_su 5
+2TLZ Hzarsh: wz]h:]tu /‘Czar/i iss
J

+O(h) + O(n; %) + O(n;Q)}.
To clarify the structure of the asymptotic correction terms we again list a representative for each

10



of the components:

Z O(h4) = Z a;s(gi;r(gi;s + ...
YoM = D ni b+
ZO(nﬁ) = Zn;zci—i—...

with al®, b] and ¢; denoting arrays of order O(1) here.

Formula (15) can be simplified by reflecting that symmetrical kernels fulfill

-1 2 -1 2 _ 2
m Y Wik = om0t wijkjpw+ O(h?) = Figu+ O(R?)
J J
with m; = Zj wfj. Moreover, Bartlett’s third order identity Kiqrs = —Kijar,s — Kisas,r — Kisars —

Kisa,r,s allows to get from (15)

o m; _ _ _
S B89} = 3 { = 5o B isars = Kt B Riurs)

Mg _rs _tu
T on2 By (Kiars — Kiat Ky Rigrys,u)
[
(ni _mi) _r,s _r.s
+ n2 K;” Kiar,s — Kisa,r Ky 51’;5
[

+O(h*) + O(n; 'h?) + O(n;2)}.

In the next step we consider the second component in (4). Expansion allows to write

Gralise(0,00) = Y @l lise + Liwt (@ — )
7 7

1

[

where ¢, = —fgsli;as can be expanded by making use of

o~

li;as = _Rz’;a,s + Ui;as + Si;as + Rz’;ast(@g - SDI;) + ...

_l_;'s = Fﬁi”g + R;’u R?’t {Uz';tu + Si;tu + Ri;tuv (‘15;) - (P;))}
Inserting these terms and expansion (7) in (17) gives
Z @;ali;r(ev @l)
i

—_7r,8 — —tu /77 N —t,u—v,w
= § _/‘5," Kisa,s [lz';r + li;rt{/‘%" (Uz,u + 5z,u) + ’il" Hl" Uz;uvUi;w +
i

+§ li;rtu((ﬁg - ‘P:)(@g - 907)} ...

(16)

(18)

(19)



1 U Z U W 7
+ 212 rtuﬁt U Ui;w]

+ R;’S(Ui;as + Rz’;ast R?u Uz )(lz o+ lz rv’i wUz';w)

—7ru—s,t

— kiR (Ui;tu + Ri;tuvR;’in;w)Ri;a,s(li;r + li;rw’?@?’in;y) t...
Taking expectation then permits

_ —1 —r,s —t,u —
g E r; z‘pz a - E n; { — Ky K Rigrtu Kija,s (20)
1

AR it e (B RO Fiwww + = = B R
Uz 2
_ﬁfifvs Rtju K. K.
211,' i i i;rtuviia,s
t, = M _rs _tu

_r,s _rs _tu _ _
+K;” Kias,r + Ry Ky Kipu Rijast — s R, Ky Kirgt (Hi;as,u + Hi;asu)
i

r,u —8,t — —r,8,t

—R;" R} Kirtu Kisa,s — K Kisrt Kisa,s
m; R RS _t,w _ _ _
+ s K, K Kirt Kia,s (Ki;uv,w + Ki;uvw)
i

+R;’S R?u Hi;r,t’%i;a,s Si;u + O(h4) + O(ﬂ;th) + O(”;2)}
In order to simplify the formula above we can use approximations of the type >, &;"*Ki;p 1Risa,s =
Zi R;’Sﬁi;r,tki;a,s, i.e. the distinction between k;,; and R;,,; is not required when summing over

To see this we employ the notation Ry,.rt = —E.{E(l;.rt)|u;} from above to denote the mean

second order derivative where the expectation is taken with respect to f(y|z; 6, (u;) and the design

density f(x|u;). This notation allows to write

Z R;’Sﬁi;r,tki;a,s XN / RZ’S(/ Rausr tf(m|u)dm)/‘5u a, Sf Z "5 /‘52 HS tﬁz ;a,s.
i

Making use of such approximations allows to simplify (20) and one gets

g — My _prs _tau — _ _
E E i r‘Pz o) = E : n2 Ri" Ry Risa,s (Risetu + Rirtu) (21)
i [

Ny — My _rs

_ _r,s <
- n2 Ky’ (’%ars‘*‘f@zars*"%ars)+Hi;aﬂ" Ky’ 51'?5'

K3
Adding (16) and (21) finally gives (11). If the observed Fisher matrices (18) and (19) are replaced

by estimated versions we have to calculate the expectation of E(— ll r/ﬁ,”?@i;sa). The derivation is

similar, except that (18) and (19) turn into

f%i;as = _Ri;a,s + (Ri;ast + Ri;as,t)(‘;ag - @f)
R = =R — R RY (Ritu + Rituw) (8 — 0))-

12



Calculation in the above fashion again proves the validity of (11)

Sketch of information bias adjustment

Assume for simplicity that 6 is univariate. Calculation of I4 () for a grid of points easlily allows
to obtain the second order derivative /AP () by numerical differentiation. Moreover one can use
bootstrapping to estimate E{IAF(0)IA7(0)}. Let therefore y} be drawn from f(y|z;,0,$(u;))
for i = 1,...n, and let ¢ be the smooth fit obtained from (3) by replacing y; with yF. This
yields l;AP (0) as bootstrapped profile score function. Drawing now B bootstrap samples allows to
calculate w,(0) = lfaP(G)/{Z{il l;’;AP (O)Z;AP (8)/B} where the sum is taken over the B bootstrap
samples l;’;AP (8). Defining now IAP () = w, (A)IAF () then provides E(IAP (0)) ~ E(IAPIAP),
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