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Abstract

This paper presents a fully Bayesian approach via Gibbs sampling for
MIMIC models with ordered categorical outcomes. The method is of par-
ticular interest for moderate or medium sample size data situations as in
the study to be presented. Compared to frequentist methods that are
based on large sample theory, estimates and standard errors of parameters
are more reliable. Experience from simulations and the application to the
particular study on changes of styles of marital conflict resolution suggest
that the approach provides a useful supplementary tool in combination

with traditional methods.
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1 Introduction

The methodological innovation presented in this paper has been developed in
the context of a study on changes in moral understanding conducted at the Max-
Planck-Institute for Psychological Research in Munich (see, e.g. Nunner-Winkler,
1999). One aspect concerns early socialization experiences in the family system.
A specific aim in this study was to investigate the impact of educational levels
and age cohorts on the attitude of parents in conflict situations and their be-
haviour in solving them. These styles of conflict resolution of father and mother
are considered as latent variables or constructs which cannot be directly mea-
sured. Instead, subjects are asked a variety of questions on indicator variables
or response items which are supposed to characterize these latent constructs.
Since the focus is a description of behaviour from an observer’s perspective, not
a positively biased self-presentation, the items were not presented to the parents
themselves. Instead, a sample of 245 subjects, coming from three different age co-
horts (young, medium and old generation), answered to questions about possible
parental conflict resolution strategies. Answers are typically given in five ordered
categories like ” This behaviour is/was very typical for my mother (or father)” to
"t is/was very untypical.” We will make use of 15 most important items selected
from a larger list of items developed by Débert and Nunner-Winkler (1983). The
substantive question - effect of observables on latent constructs - and the data
situation - a large number of ordered categorical outcomes and a medium sample
size - are not uncommon for many studies in psychological or social science stud-
ies. Generally, structural equation models with latent variables (see, e.g. Bollen,
1989) are adequate approaches for confirmatory data analysis. For the case study
at hand, a specific MIMIC (multiple indicators, multiple causes) model will be
applied, which relates a large number of ordered multicategorical responses to a
small number of latent variables by a factor analytic model, and models the effect

of covariates on the latent variables by a multivariate linear model.



LISCOMP (Muthen, 1988) and MECOSA3 (Arminger, Wittenberg and Schepers,
1996) are well known programs for fitting such models. Parameter estimation is
based on the likelihood principle, but due to the complicated structure of the
full likelihood approximate or pseudo ML estimation, respectively weighted or
unweighted least square methods, are used in the estimation steps, see, e.g.,
Browne and Arminger (1995). A possible drawback is that inference relies on
large sample theory, so that interpretation of results for small or medium sample
size in combination with many variables and parameters - as in our study - may

become questionable.

For MIMIC models with mixed binary and continuous outcomes, Sammel, Ryan
and Legler (1997) recently proposed an empirical Bayes approach involving the
EM algorithm. However, the computational burden can become quite heavy due

to numerical integrations necessary for E-steps.

Here, we propose a fully Bayesian approach using the Gibbs sampler to simulate
from posterior distributions of parameters and latent variables. Bayesian infer-
ence via the Gibbs sampler or more general Markov chain Monte Carlo (MCMCO)
techniques seems to be particularly useful for latent variable models. They do
not rely on large sample theory and are therefore well suited even for models with
many parameters compared to sample size. Also, as a by-product of the estima-
tion procedure, realizations of the latent variables itself can be estimated along

with structural parameters, which may be of substantive interest in its own.

Scheines, Hoijtink and Boomsma (1999) use the Gibbs sampler for a Bayesian
estimation approach of structural equation models given covariance data. For
nonlinear latent variable models with Gaussian outcomes, a Bayesian approach
relying on the Gibbs sampler and the Metropolis-Hastings algorithm has been re-
cently developed by Arminger and Muthen (1998). Bayesian inference for models
with mixed binary and continuous responses is also suggested in an unpublished

paper by Muthen and Arminger (1995).
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In this paper we focus on latent variable probit models for multivariate responses
with ordered categories, suitable for analysis of the case study we are considering.
Extensions to more general settings, like mixed multicategorical and continuous
responses are mentioned, with details given in Nikele (1999). The approach is
based on a threshold model linking multicategorical responses to a latent linear
Gaussian factor analytic model, together with diffuse or informative Gaussian
priors for parameters, see Section 2. Posterior estimation via the Gibbs sampler
is described in Section 3, and Section 4 contains the application to the empirical

study sketched at the beginning.

2 A latent variable probit model for multivari-

ate ordered categorical responses

Let y; = (i1, -+, Yip)' be a vector of responses, observed for each individual i of a
cross section of size n, together with a vector z; = (&}, w})’ of covariates. We focus
on the case of ordered categorical responses Y;; € {1,2,---,K;},j = 1,---,p.
Extensions to more general settings, such as mixed continuous and categorical

outcomes, are outlined further below.

Responses are related to observed covariates and unobservable latent variables or

parameters in several stages through a Bayesian hierarchical model.

The first stage of this hierarchy links ordered categorical responses y;; to latent

continuous variables y7; via the threshold mechanism

Yij = k < Tje1 <y < Tik, (1)
jg=1--p, k =1,...,K;, with 750 = —00,7jx;, = o0 and a vector 7; =
(Tj1,+ -+, Tj,k;_,)" of thresholds. The second stage assumes a linear factor analytic
model for the vector y; = (yji,---,¥;,)'; conditionally upon a m x 1 (m < p)



vector 7, of latent factors:

Here A is a p x 1 intercept vector, A a p X m matrix of factor loadings and A a
matrix of fixed effects of observable covariates w;. The introduction of these fixed
effects is a slight extension of usual factor analytic models, proposed by Sammel
and Ryan (1996) for the case of observable yi’s. Latent factors n; and errors
€; are independent. Conditional upon the latent factor n,;, (1) and (2) define a

multivariate probit model.

In the third stage, latent factors m, are connected to observed covariates x;

through a linear regression model:

;=% + Tz +&, &~ N(0,v). (3)

Without further restrictions on the unknown parameters, the model (1)-(3) is not
identifiable. First, 7; and the corresponding components Ap; and ; in Ag and
v, are identifiable only up to additive constants. One option to circumvent this,
is to set

Ao =Y, =0. (4)

For cross-sectional data as in our application it is natural to assume that Cov(e;) =
0 is diagonal. Conditional upon n;, (1) and (2) define probit models for y;;, j =
1,---,p, but 7; and the components of row A; of A are identifiable only up to
a constant factor in these conditional models. As common in standard probit

models, we therefore make the assumption

Cov(e;) =0 =1. (5)

Following the classical model of factor analysis we also assume

Cov(§;) = =1, (6)



implying that latent factors are independent and normalized.

For simplicity, we also omit fixed effects Aw; in (2), and thus focus on the
following basic model: Conditional upon the latent variables y;;, responses y;; are

multinomially distributed:

vislyyy ~ MQ, iy = (T, k=1, -+, Kj)), (7)
Tk = Pr(Tjp—1 < ?J;kj < Tjr)
Conditional upon the vector n; of latent factors, y; = (yj;,- -, y;,)" is multivariate
normal:
Yi|n; ~ N(An;, I). (8)

Given observed covariates x;, latent factors are independent and normalized:
n;lz; ~ N(Tx;, I). 9)
From (8) and (9) we obtain the marginal model
yi|e; ~ N(ATz;, AN +I) (10)

for yi, given the covariates and parameters. Thus, in the basic model (7)-(9),

correlation between responses is induced by common latent factors alone.

For a fully Bayesian analysis, the models have to be supplemented with priors for
unknown parameters in an additional stage of the hierarchy. For the basic model

(7)-(9) we choose the following priors:
p(r;) diffuse, j=1,---,p (11)

with thresholds obeying order restrictions, normal priors for factor loadings A =
vec(A),
A~ N(LL), (12)

and normal or diffuse G~ — 0 priors for v = vec(T),
v~ N(g.G). (13)
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Hyperparameters I, L and g, G can be obtained, for example, from preliminary
analysis via MECOSA or LISCOMP. Whereas a diffuse prior for « is generally
uncritical, diffuse priors for A can cause problems. This can be explained as
follows: A diffuse prior for A can correspond to a diffuse prior for the "random
effect” An,;. As Hobert and Casella (1996) have shown for linear mixed models,

this can lead to improper posteriors and a breakdown of the Gibbs sampler.

For the general model (1)-(3), diffuse or normal priors are a natural choice for
parameters Ag, vy, and A, see Nikele (1999) for details. Priors for non-diagonal
covariance matrices ¥ or @ will involve inverse Wishart distributions as, for ex-
ample, in Arminger and Muthen (1998), or correlation matrix priors as in Chib
and Greenberg (1998). However, here we do not pursue this issue further. The
whole approach can be extended to the case of mixed continuous and ordered cat-
egorical responses. Then a part of the components of y; is directly observable,
and the threshold mechanism (1) is simply dropped for these components. As a
consequence, corresponding elements in the diagonal of 8 are not set to 1, but
have to be estimated along with remaining parameters. This can be accomplished
by imposing inverse Gamma priors on them, see Nikele (1999) for details. Other
types of nonnormal responses could be considered as well, for example censored
dependent variables that map latent variables to observed responses, see Browne

und Arminger (1995).

Another extension would be the following: In the factor analytic model (2) and
the regression model (3), the effect of covariates w; and x; are assumed to be lin-
ear. This may be appropriate for appropriately coded categorical covariates, but
can be doubtful for metrical covariates with possibly nonlinear effects A(w;) and
I'(x;). Nonlinear parametric forms for A and T' can be included, see Arminger
and Mutheén (1998) for the case of continuous responses. Another, more flexible
possibility, would be a nonparametric Bayesian approach for modeling covariate

effects as in Fahrmeir and Lang (1999).



3 Posterior Analysis

Let p(1¥) summarize our prior information about 9 = vec{I', A, 7} with 7 =

(T1,...,7;)". Then the posterior density of ¥ is given by

p(Fy, x) o p(I) - p(y|Y, x).

This form of the posterior density is not particularly useful for Bayesian estima-
tion because the evaluation of the likelihood function is computationally intensive
or even intractable. For example, in the case, where all response variables are

binary the probability of a certain observed vector y;, = (i1, ..., Vi)’ is given by

Pyl @) = (14)
+o0 oo * * *
/_OO /_OO / / Sp(Y 105, 9) b (03[9, )y, - . Ay . . .

In (14) ¢,(y;|n,;, ) is the N(An,, I) pdf, ¢, (n;|9, x;) is the N(T'z;, I) pdf and
¢;j denotes the integration domain for y;; if the jth y variable takes on the value
yij. For example, in the binary case the integration domain is either (—oo, 7;1] or

(le, +OO)

In contrast, our approach is based on the work by Albert (1992). The main idea

is to focus on the joint posterior distribution of the parameter vector 9 and the

* / /

= (y;:y;) and"] = ("71;---7"7n)-

the posterior density can then be found as follows:

unobservables y From Bayes’ theorem

where p(y*, n|9, ) denotes the joint distribution of y* and i given 1 and x. This

distribution is implied by the model; for an observation i it takes the following

¥ Al'x; AN + 1T A
Yilaw : rer : (16)
n; sz AI Im><m



Considering the threshold mechanism (1) the third term in (15) is

p Kj
p(yilyi,m, 9, i) = p(y;ly;, T) H Z I(Tj,kfl < y:j < Tjk)](yij = k)
: k=1

where I(M) is the indicator function for an event M. Finally, since the sample

is i.i.d., the posterior density function is

p(y*,n, 9y, x) x

n P Kj
p(9) I1 |p(yi, mi]?, xi) x (H > Imjk1 < yjy < i) (yij = k))] :
j=1k=1

1=1

Obviously, it is not easy to draw samples from this distribution. Therefore we
use the Gibbs sampler and draw samples from the following five conditional dis-

tributions that are described in detail in the subsequent sections:
p(y*n,9,y,x)
2. p(nly*. 9,y x)
3. p(Cly*,m, I\{T'}, y, z)
4. p(Aly",m, N\{A},y. o)

5. p(tly*,n,I\{7},y,x)

3.1 The fully conditional distribution of y*

First of all we note that it is sufficient to consider the fully conditional distribution
of y! for each observation i because we assume an i.i.d. sample. Furthermore,
since V' (€;) = I is diagonal, the multivariate problem reduces to a univariate for
each component y;. Given y;;, x;, ¥ and n, the distribution of y;; is restricted
to an intervall defined by the observed value y;;. This distribution can easily
be derived from equations (1) and (8) that contain the entire information about

y;;- The fully conditional distribution of y;; is therefore a truncated univariate



normal distribution (for sampling from a truncated normal see Geweke, 1991):

m Kj
YiiImi O\{T},yij ~ N (Z Ajinits 1) H7je-1 < yi; <) (yig = k).
=1

= k=1
3.2 The fully conditional distribution of n,

Due to independence of observations we can focus on the fully conditional dis-
tribution for m;. This distribution results from the joint distribution of y;
and m; given x; and ¥ in (16). The conditional density p(n;|y;, ¢, y,, ;) =

p(m;lyr, 9, x;) is the density of a multivariate normal distribution with mean
E(n;lyi,9,x;) = Tx; + A'(AN + 1) '(yf — ATz;)
and covariance matrix
V(nily;, 9, ) = Lnwm — A'(AN + 1) 1A

It is noteworthy that conditioning on y, is vacuous because y, cannot provide

any further information; if y! is known, y, is also known by (1) .

3.3 The fully conditional distribution of regression pa-

rameters

Ascertaining the fully conditional distribution of the regression parameters vy we

note that conditioning on all quantities except & and m is vacuous:

p(vly",n,I\{7v}, v, z) = p(v|n, ).

Therefore it is sufficient to consider (9) which is a usual linear model. Since &;
is multivariate normal assuming an informative prior distribution N(g, G), -y is
(e. g. Arminger und Muthén, 1998) multivariate normal with mean
n -1 n
Brin.e) = (67 + X XIX) (6 g+ Y Xin,)
i=1 i=1
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and covariance matrix
n -1
Viime) = (64 L XIX)
i=1
For each observation i the (m x mgq) regression matrix X; is defined as X; =

I m® .

3.4 The fully conditional distribution of the factor ana-

lytic model parameters

The fully conditional distribution of the parameters in the factor analytic model
is derived the same way as has been shown for the regression parameters. It is
sufficient to consider equation (8). Assuming an informative prior distribution
N(l, L), the fully conditional distribution p(A|y*,n,9\{A},y,x) = p(Aly*,n)
has the density of a p - m-dimensional normal distribution with mean
n -1 n
By ) = (274 0w (270 0t
i=1 i=1
and covariance matrix
n -1
V(Aly*,n) = <L1 +2 UQUZ) .
i=1

The (p x pm) matrix U, is defined as U; = I,x, @ 1.

3.5 The fully conditional distribution for the threshold

parameters

The fully conditional distribution of 7, (1 <j <p,1 <k < K; —1) given y, y*
and 9\{7j;} is given up to a proportionality constant by
T (Tjp—1 < vy < T (yi; = k) + L(mjne < 435 < Tisr) L (yi; = b+ 1))

=1

11



Therefore the fully conditional distribution of 7 is a uniform distribution on the

intervall

[max{max{y;} CYig =k} Tk}, min{min{y;‘j 2y =k 4+ 1}, 7 ke }]

mit max()) = —oo und min(()) = co. On the one hand, this intervall results from
the restriction 7j, 1 < Tjr < Tj4+1. On the other hand, for all Y;; with y;; = k
7jx has to follow the condition 7, < y;; and for all y;; with y;; = k+ 1 7 has to

follow the condition 7, < y;; (e.g. Albert & Chib, 1993; Knorr-Held, 1995).

3.6 Performance of the Gibbs sampler

Implementing the Gibbs sampler is straightforward and can be done by many
programming languages. In this connection, important questions concern the
burn in period and the number of samples needed for a given target accuracy.
Strategies for handling these questions are debated in the literature (see e.g.

Cowles and Carlin, 1996, for an overview).

In simulation studies the performance of the Gibbs sampler in the MIMIC model
was explored. With regard to the priors for the parameters diffuse priors for
A are found to be critical. Especially for high loadings the mixing of the time
series can be very slow and bad. This is due to the fact that the marginal
variance of an unobservable latent variable y7; (given 9 and x;) depends on the
loading via (10) and has no upper bound (for details see Nikele, 1999). A similar
problem is observed in linear mixed models (Hobert & Casella, 1996): Diffuse
priors for variance components lead to improper posteriors, implying possible
nonconvergence of the Gibbs sampler. In our situation, A determines variance
components through the covariance matrix AA’ + I of the marginal Gaussian

distribution of y}|x; in (10).

This problem of slow and bad mixing can be avoided by using informative priors
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for high loadings. The prior does not have to be very informative. For the simple
situation, when there are no exogenous variables and only one latent factor,
simulation studies showed that it is sufficient if the prior information amounts to
about 1% in relation to the data information. Some further discussion on this

issue is also given in the application section 4.

In additional simulation studies we compared the Bayesian analysis with the fre-
quentist approach that is widely used in computer programs such as LISCOMP
or MECOSA. Estimation strategies involve several stages. At last, the estimator
is found as the one which minimizes a quadratic form containing the differences
of first and second order population and sample moments. There are two ver-
sions of the estimator we focus on. In the first case, the differences of population
and sample moments are weighted by the estimated asymptotic covariance ma-
trix of the moments. The corresponding estimator is the WLS (weighted least
squares) estimator. This estimator is consistent and asymptotically normal, but
its asymptotic behaviour is questionable for small and medium sample sizes (see,
e.g. Muthén & Satorra, 1995). Therefore, an alternative estimator is available
where the weight matrix is set to I (ULS = unweighted least squares). This
estimator is consistent, but not asymptotic efficient. Therefore, in programs like
LISCOMP no asymptotic standard errors are available, for example. In small
simulation studies we compared the ULS and WLS estimation strategies with
our Bayesian approach using diffuse or slightly informative priors. The following

results were found:

1. For small sample sizes (in relation to the number of variables) the estimates
are sometimes biased. However, as a rule, the bias is less large for the ULS

method and the Bayesian approach than for the WLS method.

2. For small and medium sample sizes the estimated WLS standard errors

are often too low whereas the Bayesian standard deviations are estimated

13



correctly. For the ULS method no standard deviations were available.

3. The Bayes estimator is superior to the WLS estimator as far as the efficiency

is concerned. The Bayesian root mean squared error is always much smaller

than the WLS one.

4. For large sample sizes the three point estimators approach each other.

Besides estimating simulated data sets we also analyzed the empirical data set of

the study sketched at the beginning.

4 Application

To examine the question whether the parental conflict resolution styles differ
across the three age cohorts and the three educational levels we formulated a
MIMIC model. Explorative analyses of the factor structure on the basis of the
polychoric correlations showed that three latent factors were sufficient to sum-

marize the common information of the 15 items (see table 1).

Given this data structure, for our confirmatory analysis the following factor an-
alytic model was derived that includes these three latent factors characterizing

different parental styles in handling conflicts:
Yy; = An; + €. (17)

For identification some parameters in A are fixed to 0. The 15 x 1 vector y;
contains the answers to the 15 items presented. These items contain possible
reactions of parents in conflicts. Each item is to be rated on a scale with five
possible categories ranging from ”The behaviour is (was) very untypical for my
mother/father.” (category 1) to ”The behaviour is (was) very typical for my

mother/father.” (category 5). For example, the following items were presented:
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factor loadings j\jT

1st factor  2nd factor  3rd factor
Yj (r=1) (r=2) (r=3)
mother
y1: soothes father .020 .038 753
y2: tries to talk it over calmly -.070 .210 587
y3: gives in and comes around -.013 -.024 .851
y4: keeps harping on it 425 .326 -.467
ys: does not let father get a word in edgewise .544 .390 -.553
ye: tries to get the children to her side 613 .105 -.222
y7: makes sarcastic remarks .648 .166 -.432
father
yg: soothes mother -.031 .689 .056
yg: tries to talk it over calmly -.131 720 175
y10: gives in and comes around -.098 .807 -.094
y11: keeps harping on it .600 -.406 .208
y12: does not let mother get a word in edgewise 679 -.399 .070
y13: takes out his anger on the children 713 -.350 170
y14: makes sarcastic remarks .646 -.192 .015
mother and father
y15: mother and father yell at each other 762 .049 -.271

Table 1: Results of an explorative ULS analysis of the factor analytic model with
LISCOMP using the polychoric correlations.

e My mother/father waits till both have calmed down and then tries to talk

it over calmly.
e My mother/father gives in and comes around.
e My mother/father cannot yield and keeps harping on it.

Since the answers come from an ordinal scale for every item we formulated a
threshold mechanism with four thresholds to estimate. The 3 x 1 vector m;
contains the three latent factors and the 15 x 1 vector €; contains the uncorrelated

and standardized error terms with V(e;) = I.

The three latent factors were supposed to be influenced by two exogenous vari-

ables: age cohort and educational level. Each exogenous variable can take on one
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of three values and is coded as a dummy variable:

(A) 1, if person i belongs to age cohort a (a = 1 (young), 2 (middle))
Tig™ =
0 else
(B) 1, if person i has educational level b (b =1 (low), 2 (middle))
Lip ™ =

0 else.
Therefore a person who belongs to the oldest age cohort and has a high educa-

tional level belongs to the reference category.

Combining these considerations the structural model has the following form:

(4)

L1
Ti1 Yir Y12 713 Y4 (4) &in
Tz | = [ Y2r 722 723 724 JUZ'; 1 & |- (18)
Ti3 Va1 V32 Y33 Y34 JC;;) &i3
Li2
The MIMIC model constituted by equations (17) and (18) together with the
threshold mechanism is analyzed from a Bayesian point of view. Besides from
estimating the model we wanted to compare the estimation results using different
priors. First of all we used diffuse priors containing no prior information about
the parameters. We ran the Gibbs sampler for 15000 iterations and then for
each single marginal component we considered the resulting time series of the
samples. For all parameters the time series showed very high autocorrelations
for a lag of 1 ranging from 0.43 to 0.95. Especially those elements in A with
high estimates in the explorative analysis show strong interdependencies in the
samples. Parameters A3z and Ajpo with the highest absolute loadings of more

than 0.80 in the explorative analysis show even autocorrelations higher than 0.40

for a lag of 100.

To explore the Gibbs sampler’s behaviour in more detail we performed a very
long Gibbs sampler run with 506000 iterations with only every 100th iteration

results stored. For nearly all parameters the autocorrelations disappeared already
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Diffuse priori distribution

18 20 22 24 26

12 14 16

10

23

i v wl_11.2
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

100 500 900 1300 1700 2100 2500 2300 3300 3700 4100 4500 4900
lteration t*100

<

-2

Figure 1: Time series for A3z, Ai12 and 73 of a Gibbs sampler run with 506000

iterations using diffuse priori distributions where only every 100th iteration

results were stored.

for a lag of 1 or 2. For some parameters, however, considerable correlations were
found. Especially for the high loading A33 the autocorrelations are very high and
the mixing of the chain is very poor, indeed (see figure 1). The parameter takes

on values that are higher than 20.

As already discussed in section 3.6, this serious problem can be avoided by using
a slightly informative normal prior N(I,L). For the critical loading sz the
corresponding mean in [ was fixed to the ULS solution and the variance in L was
set to the value 1/2.45. This means that for A33 the prior information is about
1% relative to the data information (Nikele, 1999). For all other parameters that
caused no problems with a diffuse prior the corresponding mean was set to 0 and

the variance to 10000. Additionally, the parameters were assumed to be a priori
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Informative priori distribution
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Figure 2: Time series for As3, Ai12 and 73 of a Gibbs sampler run with 506000

iterations using a slightly informative priori distributions for A33 where only

every 100th iteration results were stored.

independent. The Gibbs sampler was run for 506000 iterations and the chain
was thinned by storing only every 100th iteration. The result was remarkable:
Some time series did contain high auto correlations, especially A33, but the mixing

improved considerably (see figure 2).

Besides comparing diffuse and informative priors we also wanted to contrast our
Bayesian analysis with a frequentist one. Tables 2 and 3 contain the Bayesian
results for the parameters in A and I' in the standardized solution where the vari-
ance of each y; is standardized to 1 to make the Bayesian and frequentist results
comparable (the 60 threshold estimates are not listed). We computed the poste-
rior means and standard deviations using the Gibbs sampler results of the long

run for a model with a slightly informative normal prior. We discarded the first

18



6000 iterations. Also, table 2 and table 3 contain the ULS and WLS estimations
together with the estimated WLS standard errors. On average the WLS estimates
deviate most strongly from the other two approaches, while the Bayesian and the
ULS estimates are very similar. Especially the WLS I' parameters show great
deviations from the corresponding Bayesian and ULS estimates. For example,
V34 is estimated for the Bayesian approach at 0.524 (0.183) (respectively at 0.466
for the ULS method) whereas for the WLS method the corresponding estimate
is nearly twice as high with 1.072 (0.128).

Furthermore, the WLS standard errors are in all cases lower than the Bayesian
standard deviations. Since the simulation studies also showed that the WLS
standard errors are underestimated and the Bayesian standard deviations are

estimated correctly, the latter are obviously more reliable.

Although from a quantitative point of view there are differences with respect to
the estimation results, these deviations are not that large that for the three meth-
ods the interpretation of the results differs widely. For example, in a qualitative
sense the latent factor structure is the same for the three different approaches.
Factor 1 is characterized by variables that show an irrational conflict resolution
pattern where both parents are scoffing, do not give each other a hearing, draw
the children into their quarreling and shout at each other (items y, bis y7, yi;
bis y15). The second factor has high loadings on variables that concern the be-
haviour of the father who is prepared to compromise and looks for more tranquile
discourse (items yg bis y10). The third factor is characterized by the mother’s

behaviour who shows affective self-control, gives in and comes around (items g,

bis yg)

The results of the structural part of the MIMIC model give indications that the
parental styles of conflict resolution changed across generations. Estimates i,
and v9; show an influence of the age cohort on the first factor. That means

that in the young and middle age cohort parents act in more irrational ways
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and are less prepared to make compromises than those in the elder age cohort.
Parents of the younger cohorts show less affective self-control. An explanation
of this finding may be the growing instability of marriage and family, which is
caused by changed economic conditions and by the changes in the understanding

of partnership.

A second effect concerns the style in handling conflicts by the mother (vy34). On
average, persons who have a medium educational level represent their mothers
as more rational and more prepared to make compromises than subjects with a
low or high educational level, who report that their mothers have less affective

self-control and are more uncompromising.
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1st factor (r = 1) 2nd factor (r = 2) 3rd factor (r = 3)

Yj Bayes WLS ULS | Bayes WLS ULS | Bayes WLS ULS

Mother

Y .067 .029 -.012 .000 .000  .000 778 780  .719
(.082) (.045) (.039) (.026)

Yo .000 .000  .000 .199 314159 537 531 565

(.068) (.039) (.056) (.033)

Y3 .038 .051  .000 .000 .000  .000 .895 847 926
(.086) (.045) (.030) (.023)

Y4 AT8 429 377 312 317 315 -442  -.447  -.465
(.069) (.034) (.074) (.038) (.068) (.034)

Ys .608 .605  .486 .368 397 .360 -474  -606 -.544
(.071)  (.044) (.079) (.047) (.077) (.038)

Ye .630 .609  .647 .050 164 .058 -.200 -.270 -.236
(.058)  (.033) (.086) (.052) (.082) (.044)

Y7 .680 .645 625 .102 .198 .150 -441 -450 -.475
(.059) (.028) (.084) (.048) (.076) (.038)

Father

Ys .082 114 .053 .689 .619  .645 .000 .000  .000
(.066)  (.036) (.049) (.027)

Yo -.021 -.144  -.021 718 .695 707 .182 .202 .180
(.066)  (.031) (.050) (.029) (.062) (.033)

Y10 .000 .000  .000 .834 811 .863 .000 .000  .000

(.038) (.028)

Y11 .038 041 029 -479  -492  -474 153 .202 167
(.063)  (.040) (.070) (.037) (.075) (.043)

Y12 .650 .647 525 -444  -549 -.418 .066 034 .061
(.060)  (.033) (.078) (.036) (.082) (.037)

Y13 .692 713 .616 -.398  -515  -.420 121 .031 .095
(.066)  (.041) (.087) (.040) (.087) (.040)

Y14 .626 .612 814 -.246 -.362 -.304 .000 .000  .000
(.057)  (.030) (.083) (.041)

Mother and Father

Y15 771 772 .670 -.022 -.110 .006 -.242 -273 -.256
(.048)  (.029) (.088) (.048) (.084) (.043)

Table 2: Standardized point estimations of the loadings Aj;.. The estimated
Bayesian standard deviations respectively WLS standard errors are given in

brackets.
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1. factor, r =1 2. factor, r = 2 3. factor, r =3

Bayes MDE ULS | Bayes MDE ULS | Bayes MDE ULS

Yri 804 1.148 993 | -.348 033 -322 | -329 -453 -.237
(.200) (.151) (.189) (.140) (.195) (.157)

Yr2 707 846 943 | -.268 138 -.232 | -.115  -.235 -.037
(.199) (.156) (.191) (.140) (.193) (.153)

Yr3 -.038 .08 .004 | -.217 -.018 -.200 .238 .082  .189
(.175) (.131) (.167) (.112) (.165) (.120)

Yra .096 032 114 092  -.147 104 524 1.072 466
(.183) (.140) (.180) (.129) (.183) (.128)

Table 3: Point estimations of the regressions coefficients in I'. The estimated
Bayesian standard deviations respectively WLS standard errors are given in
brackets.

5 Conclusion

Simulation results and the real data application in Section 4 suggest that fully
Bayesian methods via Gibbs sampling or other MCMC techniques provide a useful
supplementary approach for inference in MIMIC or more general latent variable
models. Since they do not rely on large sample theory, they provide more reliable
point estimates and standard errors of parameters also in medium sample size
data situations compared to more traditional frequentist methods. However,
preliminary analysis with the latter methods helps to formulate informative priors
for high factor loadings, thus avoiding slow mixing of the Gibbs sampler when

only diffuse or rather vague priors are imposed.

Due to the modular structure, another advantage of the hierarchical Bayesian
modeling approach is its flexibility concerning modifications or generalizations.
Interesting extensions for future work are: Incorporation of nondiagonal covari-
ance matrices @ and v in (1) and (2), based on reparametrization suggestions
in Chen and Dey (1999), or inclusion of nonlinear or nonparametric effects of
covariates or latent factors, following ideas in Arminger and Muthén (1998) and

Fahrmeir and Lang (1999), respectively.
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