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Abstract

This paper starts with a short overview of basic concepts in disease mapping such as
relative risk and age-standardization. Then two recent methods for advanced statistical
analysis of areal summary measures of health outcomes are reviewed which overcome
difficulties in traditional mapping methods. Both methods account for spatial correla-
tion in an hierarchical Bayesian framework and use computer-intensive Markov chain
Monte Carlo methods for statistical inference. The methods are compared through

analyses of cancer mortality data from Germany, 1986-1990.

1 Introduction

Recently the interest in spatial epidemiology has moved from large to small scale variation of
health statistics. This process has been caused by the increasing availability of geographically
referenced health and population data, advances in computing power and suitable mapping

methods, and, last but not least, public interest in effects of environmental pollution. From



a statistical perspective, this development contains a number of challenges and problems.
Statistical methods for the analysis of such data have to account for spatial dependencies in
the data, as well as for the fact that rare disease events and the corresponding small area
health statistics have inherent large variability.

This paper is concerned with the topic of disease mapping, an important subtopic in
spatial epidemiology. Here the location of the disease cases is not exactly known, only
the number of cases within areal units are given. Also no attempt is made to study the
correlation of the risk variation with ecological covariates such as deprivation, urbanization
or environmental factors. Disease mapping is carried out to summarize spatial variation in
risk. This is typically done in order to generate hypothesis, to provide a context to place
individual studies and to highlight clusters of elevated or lowered risk.

The general goal could be described as to identify the extra-sample variation due to un-
observed heterogeneity by filtering out the sample variation. For this purpose it is often
necessary to adopt models that account for spatial correlation in the data. Bayesian ap-
proaches in combination with recent advances in statistical computing have proven to be
extremely useful for this purpose. In particular the development of Markov chain Monte
Carlo (MCMC) methods in the last decade made it possible to adopt realistically complex
model formulations without strong simplifying assumptions. Improved estimates of disease
risk and of the uncertainty associated with it can now be calculated quite easily and are not
based on asymptotic assumptions.

This paper applies two competing Bayesian models to cancer mortality data from Ger-
many for the period 1986-1990. It will be argued that the resulting estimates from both
models might be superior to more common risk estimates such as standardized mortality
ratios. Differences between the two methods turn out to be more subtle but still of general

interest. In Section 2 we start reviewing the usual binomial and Poisson model setup, com-



mon to most disease mapping approaches, and discuss the process of age-standardization.
Section 3 describes the two competing Bayesian models for disease mapping, Markov random
field models and cluster models. Both methods are applied in Section 4 to German mortality
data for brain and lung cancer of males, 1986-1990. Similarities and differences between the
methods are pointed out. We also compare the results with those obtained from a simpler
empirical Bayes method which does not incorporate the spatial structure in the data. The

last section contains concluding remarks.

2 Relative risk and age-standardization

In its simplest form the data for studies of the geographical variation of disease risk consists
of pairs (y;, n;), where n; is the number of persons under risk and y; is the number of cases
in area ¢+ = 1,...,1. The usual starting point is now to assume that y; is binomial with
parameters n; and an unknown risk probability m;. Responses yi,s,...,y; are assumed
to be independent. Note that in Bayesian models, where prior distributions are placed on
7w = (my, T, ..., 7), responses are assumed to be conditionally independent, given 7. Such
a two-stage formulation is the simplest instance of an hierarchical model.

As a side comment we remark here that the binomial formulation does not require the
risk for each individual in area i to be equal 7;. In fact, m; can be seen as a weighted
average of risk probabilities defined on a finer grid (Knorr-Held and Besag, 1998). For a
detailed discussion of this issue in connection with the related problem of overdispersion see
Wakefield, Best and Waller (1999).

Under the “rare disease assumption” (n; large, m; small), the binomial model can be
approximated by the Poisson model, where y; ~ Po(n;m;). Using a reference probability

p > 0, the model can be rewritten as y; ~ Po(e;\;), where e; = n; - p is the ezpected number



of cases (if p is the probability of being a case) and \; = m;/p is the risk of being a case in
area 7, relative to the reference risk p, known as the relative risk with respect to p.

It can easily be seen that the maximum likelihood estimate of A; is the ratio of y; over e;,
known as the standard mortality ratio (SMR). However, interpretation of standard mortality
ratios is difficult, since the variance of y;/e; is equal to N\ie;/(e;)* = N\i/e; = N\i/(n; - p) and
therefore inversely proportional to the population counts n;. Hence, the most extreme SMR’s
are typically found in the areas with the smallest populations, a problem which is sometimes
called the “small number problem”. The non-appropriateness of the SMR as an estimate
of relative risk is most obvious for y; = 0 which is quite common for rare diseases. It is
therefore necessary to incorporate information (“borrow strength”) from other areas j # i
to improve the risk estimate in area ¢, see Section 3.

The usual choice for the reference probability p is the overall risk Y y;/ > n;, which
implies that > e; = > y;. This is the simplest case of a so-called internal standardization,
as p is derived internally from the data while for ezternal standardization reference rates are
taken from an external data source.

In the more general case, the data are additionally stratified by confounding factors,
usually age. Assume that the data are now given as (y;j,n;;), where the index i =1,...,1
denotes area and j =1,..., J age group. Now y;; ~ Po(n;;m;;) and under the assumption of
no interaction between age and area effects, m;; can be written as the product of a reference
probability p; for age group j times a (age group independent) relative risk \; (equal to
m;j/p; for all j) in area . Under conditional independence of responses y;;, the model can be
simplified to y; ~ Po(e;\;) where y; = > Yij and €; = 37, €5 = > nypj. The model hence
reduces to the simpler case without any stratifying factors and the comments made there
apply again to the maximum likelihood estimate y;/e; of the relative risk. In passing we note

that this collapsing over age group is a great advantage of the Poisson model and would not



be possible in the binomial model except in the uninteresting case m;; = m; (Wakefield, Best
and Waller 1999).

The use of rate probabilities, such as p1,...,py, for standardization is called the indirect
method (Mantel and Stark, 1968). For the direct method, in contrast, one usually employs
an external known standard population such as “Segi’s world population” (Segi, 1982). If no
external set of standard rates p; is available, joint maximum likelihood estimation of p; and
A; can be performed under a suitable identifiability constraint (Breslow and Day, 1987). It
is natural to either restrict the mean of the log relative risks to zero, or to set Y, y; = >, e;.

A simpler approach is to estimate the p;’s through p; = >, v;/ >; n; which automatically

ensures y ; Y = »_; €;.

3 Spatial modelling of relative risk

Estimation of relative risk by SMR’s suffers essentially from two main problems. The first,
which has already been mentioned, is the “small number problem”: the dependence of
the statistical variation of the SMR on the number of population at risk. The second is
that the SMR’s totally ignore the spatial structure of the data. Both problems can be
addressed through stochastic modelling of the relative risk parameters. We focus here on
models that introduce spatial dependencies between relative risk parameters. However, it
should be mentioned that simpler techniques can be used to account for the small number
problem alone. Such methods do not incorporate the spatial structure in the data and are
typically based on mixture models (Schlattmann and B6éhning, 1993) or on generalized linear
mixed models with exchangeable random effects (Clayton and Kaldor, 1987, Breslow and
Clayton, 1993). For comparison with the more elaborate spatial models in Section 4, we

report also results obtained from the Clayton and Kaldor method, where the relative risk in



each area ¢ is assumed to be independently gamma distributed and the parameters of that
gamma distribution are estimated iteratively through empirical Bayes techniques (Clayton

and Kaldor, pp. 672-673).

3.1 Markov random field models

Since the pioneering work of Besag, York and Mollie (1991), Markov random field models
are increasingly used in disease mapping applications. The main assumption is that the
log relative risks 7; = log(\;), @ = 1,...,1, are spatially correlated and follow a Markov
random field. However, there are numerous ways to specify such a formulation with differ-
ent notions of “spatially close” and different probabilistic assumptions for the log relative
risk parameters. The most commonly used model is a so-called Gaussian intrinsic or condi-
tional autoregression (CAR), where the joint distribution of 7, given an unknown precision

parameter k, is

p(nlr) o exp(=5 3 (i = ;)’) 1)

in~j

and the sum in the exponent goes over all pairs of adjacent areas ¢ and j. Typically those
areas are considered as adjacent, that share a common border. Such a prior is nonstationary
and improper (i.e. the integral over 7 is infinite), which can easily be seen as only differences
of log relative risk parameters enter in (1). Hence there is an implicit flat prior on the overall
level of the n’s. Model (1) originates from statistical image analysis (e.g. Geman and Geman,
1984) and has a spatial smoothing effect on the relative risk estimates where the degree of
smoothing is determined through the parameter x.

The conditional distribution of 7;, given all other parameters n;, 7 # 7, turns out to be
Gaussian with expectation equal to the mean of the 7;’s in adjacent areas of region 7 and
(conditional) precision equal to k times the number of neighbours of area i. The marginal

prior precision (given a fixed overall level, say > n; = 0) has more direct interpretation as
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the prior amount of smoothing in region 7, but can only be determined through simulation.
Results from Bernardinelli, Clayton and Montomoli (1995) suggest that there is also strong
dependence of the marginal prior precision on the number of neighbours. This is a rather
unattractive feature of model (1) as ideally the prior degree of smoothing should be the
same for all areas or should at least be not linked directly to the number of neighbours.
However, the dependence of the conditional (and hence the marginal) prior precision on the
number of neighbours is necessary for consistency of the Markov random field definition. To
overcome this problem, Cressie (1992) and Stern and Cressie (1999) have suggested to use
specific functions of the expected cases e; and e; as multiplicative weights w;; for each term
(n; — nj)? in (1), which has the advantage that the conditional variance no longer depends
on the number of neighbouring areas. However, this choice implies that the conditional
expectation is no longer the (weighted) mean of adjacent parameters but now a (weighted)
sum without any normalization, which has interpretation difficulties.

Alternatively a number of other weights have also been suggested. For example, the
weights could be based on the distance of the centroids of the districts or on the length of the
common boundary. However, comparative studies in Best et al. (1999) between adjacency
and distance-based weights suggest that different choices of weights do not have too much
influence on the final estimates.

The approach taken in Besag et al. (1991), which we present here in a slightly different
but equivalent formulation, is more elaborate but can easily be presented by introducing
another hierarchy in the above formulation. The log relative risks n;, ¢ = 1,..., I, are now
assumed to be conditionally independent Gaussian with expectation u; and precision A\. The

spatial dependence is moved from the second to a third level, assuming a Markov random



field (again with precision k) for the u;’s. More specifically, the model can be written as

p(nlu, A) o exp(—% > (0 = u;)?) and p(ulk) o exp(—g > (i = u)?). (2)
i inj

Model (2) boils down to model (1) for A = co. On the other extreme, for x = oo the

spatially structured component vanishes and the model accounts now only for unstructured

heterogeneity.

Finally hyperpriors are assigned to the precision parameters x and A. It is not possible
to use classical noninformative priors here as they are improper and the resulting posterior
distribution will also be improper. This is a property already known from mixed models
for Gaussian responses, e.g. O’'Hagan (1994, p. 272). The usual choice is therefore a highly
dispersed but proper prior from the conjugate gamma family although other choices can be
made as well. In all applications we use gamma hyperpriors with parameters 1 and 0.005,
which is close to Kelsall and Wakefield (1999), who recommend 0.5 and 0.0005 as a default
choice. See also Bernardinelli, Clayton and Montomoli (1995) for a thorough comparison of
different hyperprior specifications.

The idea behind the Besag et al. model is that, through data-driven estimation of x and
A, the formulation is able to distinguish if the observed heterogeneity is spatially structured or
unstructured. One of the main disadvantages of the Besag et al. model, however, is that both
k and A are global parameters. Hence the amount of spatially structured and unstructured
heterogeneity is assumed to be the same over the whole study region which is a rather
restrictive assumption. For the spatially structured term, this implies that the degree of
smoothing is the same over the whole map, hence the smoothing is non-adaptive.

Approximate statistical inference in model (1) can be performed within the generalized
linear mixed model framework, now with spatially correlated random effects (Breslow and

Clayton, 1993, Breslow, Leroux and Platt, 1998). In the more complex model (2), inference

can only be performed through Markov chain Monte Carlo (MCMC) techniques, e.g. Be-

8



sag et al. (1991), Clayton and Bernardinelli (1992), Knorr-Held and Besag (1998) or Best
et al. (1999). These methods are based on variants of the Metropolis-Hastings algorithm
(Hastings, 1970) and are nowadays the common choice in more complex hierarchical models.
The WinBUGS software (Spiegelhalter, Thomas and Best, 1998) has incorporated the CAR

model in its latest version together with modules for mapping the results.

3.2 Cluster models

Markov random fields models in disease mapping assume that the risks in adjacent regions
are somehow similar and that the degree of similarity is the same over the whole study region.
We now describe an alternative model, where risk parameters in adjacent areas are assumed
to be either exactly the same or independent from each other. Such a formulation has
been proposed in Knorr-Held and Rafler (2000) based on a modification of so-called Voronoi
tesselations (e.g. Green, 1995). These Voronoi tesselations are piecewise constant model
formulations and have been successfully used in various applications in continuous space,
e.g. Heikkinen and Arjas (1998, 1999). Technically the methods are based on reversible
jump MCMC (Green, 1995), an extension of the Metropolis-Hastings algorithm to simulate
from distributions of variable dimension.

The basic idea is to assume that the study region can be partitioned into k& clusters

C; Cc{1,...,1},j=1,... k, ie. sets of contiguous regions, where each cluster has constant
relative risk A;. The clusters cover the whole study region, i.e. UleCj = {1,...,1} and
do not overlop. Disease counts y;, ¢ € Cj, j = 1,...,k, are assumed to be conditionally

independent Poisson with mean e; - A; so the likelihood function can be written as

k
L(y|A) = H H eXP eilj)-
Jj=lieC;

’L‘

The number k, the shape, the size of the clusters as well as the risk within each cluster



are treated (directly or indirectly) as unknown variables. As the dimension of the prob-
lem depends on the number of clusters, reversible jump MCMC is the appropriate inference
technique. It is important to understand that the final estimates are not based on a spe-
cific cluster configuration, but are an average over a large number of cluster configurations,
weighted by the corresponding posterior probabilities, hence will incorporate all the uncer-
tainty about the number, the location and the risk level of the clusters. The formulation
can therefore be seen as nonparametric (Arjas, 1996, Heikkinen and Arjas, 1998). Typically
such a model will have a spatial smoothing effect, just as Markov random field models, but
is able to retain discontinuities in the risk surface.

To define the clusters a construction is proposed where k regions are marked as so-called
cluster centres, each of them defining a cluster. Each of the remaining regions is assigned to
the cluster which is closest in terms of the minimal number of boundaries that have to be
crossed to move from one to the other. The cluster centres are collected in a vector, say Gj.
Regions, which have the same “distance” (in terms of the the minimal number of boundaries
to be crossed) to two or more cluster centres are assigned to the center with the smallest
index position in Gx. Hence Gy is kept unordered to avoid any unjustifiable preference for
centres with smaller indices.

The model now assumes a uniform or truncated geometric prior on {1,...,I} for k and
a uniform prior for Gx|k. That means each specific choice of Gy has a prior probability
equal to (n — k)!/n! as the number of all (unordered) Gy’s is n!/(n — k)!. Finally, the log
relative risk within each cluster is assumed to be independent Gaussian with unknown mean
it and precision v. In all applications we use similar priors as in the Markov random field
approach, i.e. a gamma hyperprior for v with parameters 1 and 0.005, and a prior for p
uniform on the whole real line. The prior for £ is chosen as geometric with parameter 0.02,

i.e. Pr(k) o 0.98%.
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Due to independence of the risk parameters );, the model is able to detect spatial dis-
continuities if adjacent districts are assigned to different clusters. Note that clusters of size
one are not excluded from the model which implies that the formulation does not necessarily
smooth the risk estimates. In practice it will always do so, at least to some extent, since
there will always be some uncertainty whether a region forms a cluster by itself. However,
the sizes of the clusters, which determine the local degree of smoothing, are variable, hence
the smoothing is adaptive. This is in contrast to Markov random field models, where the
smoothing parameter x is constant and smoothing is non-adaptive. Furthermore, simulations
in Knorr-Held and Rafler (1999) have shown that the influence of the number of adjacent
regions on the average size of the cluster, to which the corresponding region is assigned to, is
minimal a priori. This indicates that, in contrast to the Markov random field models, there
is no strong dependence of the prior amount of smoothing on the number of neighbours.

Related formulations based on continuous Voronoi tesselations have recently been pro-
posed in Denison and Holmes (1999) for disease mapping. If applied to the usual areal data,
their formulation has the disadvantage that clusters will not necessarily be connected. The
discrete Knorr-Held and Rafler (2000) model fully acknowledges the discrete nature of space

and automatically ensures that all clusters are connected.

4 Application to German cancer mortality data

We now present results of two analyses of cancer mortality data from Germany, 1986-1990:
brain cancer and lung cancer, both for males. For an application to oral cavity cancer in
Germany see Knorr-Held and Rafler (2000). The raw data is given in I = 544 regions and .J =
16 age groups. The two datasets have been internally standardized by maximum likelihood

under the restriction that the sum of observed cases equals the sum of expected cases. We

11



compare two models: the Markov random field model proposed by Besag et al. (1991) and
the cluster model by Knorr-Held and Rafler (2000). The two models are abbreviated by
BYM and KHR, respectively. As a side comment we remark here that the 544 districts
show large variability with respect to the number of neighbours: 36 districts have only one

neighbour while the maximum number of neighbours is 11 (median of 5).

4.1 Brain cancer

A large number of malignant neoplasms of different histological types are classed together
as “brain tumors” (ICD category 191). We look only at males where the total number of
cases is 9,348 with a median number of 11 cases per district. The corresponding SMR’s vary
between 0 and 2.73 and are shown in Figure 1.

The estimates from the BYM model and from the KHR model are in a much smaller
range with values between 0.87 and 1.18 (BYM) and 0.90 and 1.19 (KHR), see Figure 2 and
3. For both methods, estimates above 1.0 can be found in the very south-west, in large parts
of the west and north-west, and at isolated spots in the east. The estimates show a strong
overall agreement with stronger differences only for the extreme values. In particular, the
highest risk estimate from the BYM model can be found in the city of Leipzig (y; = 84,
e; = 59.2, SMR; = 1.42), a district with just one neighbour. The median relative risk is
here 1.18 with a 97% posterior probability of an elevated risk. We are somewhat sceptical
with respect to this high risk estimate as it can be largely attributed to a high value of the
spatially correlated component u;. The relatively high estimate might be a consequence of
the dependence of the prior variance on the number of neighbours. The KHR model, where
the amount of smoothing does not depend so strongly on the number of neighbours, gives a
lower estimate of 1.06 for Leipzig with a corresponding posterior probability of 0.80.

Figure 4 displays the posterior probabilities from the KHR model that the relative risk

12



in a given district is larger than the overall risk Y- y;/ > e; = 1.0. The highest values in the
KHR model can be found in 10 districts in the very south-west with relative risk estimates
between 1.16 and 1.19 and corresponding posterior probabilities in the range of 87 to 99%.
The BYM estimates are in the range of 1.03 to 1.16 with posterior probabilities between 0.64
and 0.91. A second cluster can be isolated in the area between Frankfurt, Wiesbaden and
Giessen (Taunuskreis) with relative risk estimates between 1.10 to and 1.12 and posterior
probabilities between 90 and 99%. Finally, posterior probabilities of 95% and higher can also
be found in the very north. However, the real scientific interest lies in the point estimates
which do not have much variation. Hence, the main message of both analyses is that there
is not much geographical variation in disease risk from brain cancer for males, although a
naive inspection of the SMR’s would suggest so.

We have also applied the empirical Bayes method by Clayton and Kaldor (1986) to this
dataset. The estimates are in a similar range (0.91 to 1.14) with highest values in Leipzig
(1.14), Frankfurt (1.11) and Fulda (1.10). However, the approach ignores spatial location so

spatial clusters like the one in the very south-west are hardly to identify.

4.2 Lung cancer

Lung cancer is by far the leading cause of cancer death among males in West Germany with
a total number of 134,820 cases for the period 1986-1990 (median number of 150 cases per
district). The corresponding SMR’s vary in the range of 0.54 to 1.58 and are displayed in
Figure 5. The issue of random variation of the SMR due to the problem of small numbers is
here certainly not as crucial as for brain cancer. Indeed, the variation of the empirical Bayes
estimates with Clayton and Kaldor’s method show only slightly less variation with values
between 0.60 and 1.54 and a standard deviation of the log relative risk estimates of 0.18

(0.21 for the SMR’s). However, it is sensible to apply spatial models and search for spatial
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patterns in the geographical distribution of lung cancer risk.

Figure 6 and 7 give the risk estimates with the model of Besag et al. (1991) and Knorr-
Held and Rafler (2000) respectively. The maps closely resemble each other although the
estimates from the BYM model seem to be noisier. This is a consequence of the non-
adaptivity of the BYM model as the overall variability in the risk surface induces a variability
of the BYM estimates in the whole map. In contrast, estimates from the KHR model are
locally smoother without oversmoothing important spatial gradients and clusters.

The KHR model identifies three cluster of relative risk above 1.2, one in the west around
the Ruhr area, one a bit more south covering most of the state Saarland, and one in the
north-east in the state of Mecklenburg-West Pomerania. These findings are consistent with
known high smoking prevalence rates in these areas (Becker and Wahrendorf, 1997). Figure
8 maps the posterior probabilities (from the KHR model) that the relative risk is higher than
the overall rate which is in overall agreement with Figure 7. The small “significant” cluster
in the former East German state of Saxony can be associated with large-scale Uranium
mining projects after World War II, exposing thousands of mine workers to extremely high
levels of radon emissions. The lower values in most part of the south are interesting from a
protective point of view, as they indicate the potential for cancer prevention under similar

socioeconomic conditions.

5 Conclusions

This paper has reviewed recent advances in the geographical analysis of disease risk. Our fo-
cus has been on Bayesian models, which allow for sound statistical inference in realistically
complex models for spatial dependence without any asymptotic assumptions. This tech-

niques overcome difficulties in traditional methods of mapping disease risk. Markov random
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field models have already been applied in cancer mapping of Sardinia (Bernardinelli et al.,
1994) and France (Rezvani et al., 1997). The KHR method has not yet been applied outside
of academic research, as their work is rather new. However, there are some arguments to
prefer this method over the BYM approach, the important ones being the issue of adaptive
smoothing and the strong dependence of the BYM model on the number of neighbours. Non-
Bayesian techniques for smoothing have been applied in the recent atlas of mortality in the
United States (Pickle et al., 1996). The algorithm used is based on weighted headbanging
(Mungiole et al., 1996), a useful exploratory method.

Of course, the data for such studies are of an observational type and there is a danger
of overinterpretation of the results. Observational studies can only suggest the need for fur-
ther investigation as there is an inherent difficulty to control for confounding factors, such
as socio-economic status or deprivation. Also long latencies of many diseases, the issue of
migration, and other data anomalies constitute fundamental problems for the interpretation
of the results. However, the design, implementation and analysis of controlled studies is
often very expensive, both in terms of time and financial costs. It is certainly not an ap-
propriate attitude to ignore the large amount of available observational data, instead proper
statistical techniques should be applied to the data and dangers of misinterpretation should

be emphasized.
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Figure 2: Estimated median relative risks for brain cancer of males in Germany with the method

of Besag et al. 20



Figure 3: Estimated median relative risks for brain cancer of males in Germany with the method

of Knorr-Held and Rafler. 921
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Figure 4: Posterior probabilities of a relative risk above 1.0 for brain cancer of males with the

method of Knorr-Held and Rafler. 99



Figure 5: Standard mortality ratios for lung cancer of males in Germany.

23



Figure 6: Estimated median relative risks for lung cancer of males in Germany with the method

of Besag et al. 94



Figure 7: Estimated median relative risks for lung cancer of males in Germany with the method

of Knorr-Held and Rafler. 925
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