LUDWIG-

MAXIMILIANS- | | INSTITUT FUR STATISTIK
e AT | | SONDERFORSCHUNGSBEREICH 386

Toutenburg, Srivastava:

Efficient Estimation of Population Mean Using
Incomplete Survey Data on Study and Auxiliary
Characteristics

Sonderforschungsbereich 386, Paper 179 (2000)

Online unter: http://epub.ub.uni-muenchen.de/

Projektpartner

A

(@™ |
< TUm

MAX-FLANCK-CESELLECHAFT


http://www.stat.uni-muenchen.de/
http://www.gsf.de/
http://www.mpg.de/
http://www.tum.de/

Efficient Estimation of Population Mean Using
Incomplete Survey Data on Study and Auxiliary
Characteristics

H. Toutenburg V.K. Srivastava

January 19, 2000

Abstract

This paper considers the problem of estimating the population mean
using the ratio and product methods when some observations in the sam-
ple data are missing at random and the population mean of the auxiliary
characteristic is not known. Besides an unbiased estimator arising from
the total discard of incomplete pairs of observations, four generally biased
estimators are presented. The first two estimators arise from the partial
utilization of data while the remaining two are based on full utilization.
A comparative study of the efficiency properties of estimators is reported
and the choice of estimators is discussed.

1 Introduction

Ratio and product methods are two popular and easily comprehensible tech-
niques for the estimation of population mean in survey sampling when an auxil-
iary characteristic correlated with the study characteristic is available; see, e.g.,
Sukhatme, Sukhatme, Sukhatme and Asok (1984). These techniques provide
generally biased but more efficient estimators in comparison to the traditional
unbiased estimator, viz., the sample mean provided that the correlation between
the auxiliary characteristic and the study characteristic is sufficiently positive
in case of ratio method and negative in case of product method. Both the meth-
ods of estimation assume that the sample data contain no missing observation
and the population mean of auxiliary characteristic is known. One or both of
these specifications may not be tenable in many practical applications; see, e.g.,
Rubin (1987) for an excellent exposition.

When no observation is missing but the population mean of auxiliary character-
istic is not available, it is customary to make use of a large preliminary sample
for finding an estimate of it. If the circumstances do not permit to have the
preliminary sample due to some practical difficulties or otherwise, an alternative
estimator for the population mean of auxiliary characteristic based on the given
sample data may be utilized; see Srivastava and Bhatnagar (1981).

On the other strand, when some observations are missing but the population
mean of auxiliary characteristic is available, Tracy and Osahan (1994) have



considered two estimators arising from ratio method and have analyzed their
efficiency properties.

There appears to be no effort reported in the literature when both the as-
sumptions are violated simultaneously, i.e., some observations are missing in
the survey data and the population mean of the auxiliary characteristic is not
available. Considering the missingness of few observations on both the charac-
teristics, Toutenburg and Srivastava (1998) have discussed the estimation of the
ratio of population means. Their estimators can be used immediately to formu-
late estimators for the population mean of study characteristic provided that
the population mean of the auxiliary characteristic is known. In the absence of
such knowledge, straightforward application is not possible. This is the main
concern of present investigations.

The plan of paper is as follows. In Section 2, we consider the estimation of the
population mean of study characteristic using sample data when some observa-
tions on both the study and auxiliary characteristics are missing. One unbiased
and four biased estimators arising from the ratio and product methods of es-
timation are presented. Their bias properties are analyzed in Section 3 while
their mean squared errors are compared in Section 4. Finally, some summa-
rizing remarks are offered in Section 5 and derivation of results is presented in
Appendix.

2 Estimators for Population Mean

Let there be a finite population consisting of IV distinct units with values
Y1,Y5, ..., YN for the study characteristic and values X7, Xs,... , Xy for the
auxiliary characteristic. It is proposed to estimate the population mean Y us-
ing the auxiliary information on the basis of a random sample of size n drawn
according to the procedure of simple random sampling without replacement.

When all the observations are available and the population mean X of the
auxiliary characteristic is known, the ratio and product methods of estimation
provides the following estimators of Y:

~ _nX

Ve = 2 (2.1)
In

5 _ni'n

Vp = yX (2.2)

where 7, and Z, are the means of sample observations on the study character-
istic and auxiliary characteristic respectively.

Unlike the unbiased estimator g,, both the estimators (2.1) and (2.2) are gen-
erally biased. Comparing the estimators with respect to the criterion of mean

squared error using large sample theory, Y g is better than g, for p greater than



(0/2) while Y p is better than Un for p less than (—6/2) where

SV - X)(Y; - V)

p = B R (2.3)
(=N - X2 V-
(0 [2VE - 22
- <X> SNy - 1) 24

Notice that p is the correlation coefficient between the auxiliary and study
characteristics in the population and 6 is the ratio of coefficients of variation of
the auxiliary and study characteristics.

The ratio estimator Y i and the product estimator ¥ p cannot be used in prac-
tice when there are some missing observations in the sample data. Assuming
X to be known, Tracy and Osahan (1994) have presented two ratio estimators
and have compared their efficiency properties. Some more ratio estimators can
be formulated from the investigations conducted by Toutenburg and Srivastava
(1998) who have considered the problem of estimating the ratio of two popu-
lation means. All these estimators loose their practical utility when X is not
known.

Let us consider the situation where X is not available and the sample contains
some missing observations. In particular we assume that only (n —p — ¢ —
k) observations (z1,%1), (%2,Y2), .- ,(Tn—p—q—k,Yn—p—q—k) in the sample are
complete. On p sampling units, observations z7,z3,... ,z, are available while
the corresponding observations on study characteristic are missing. Similarly,
on ¢ sampling units, we have only the observations yi*,y3*, ... ,y;* on the study
characteristic without any corresponding value of the auxiliary characteristic.
Further, there are k sampling units on which observations on both the study
and auxiliary characteristics are not available. The numbers p, ¢ and k are
assumed to be random.

In the presence of missing observations in the data set, a popular strategy is to
discard all the (p + ¢ + k) incomplete pairs of observations and to use only the
(n—p—q—k) complete pairs. Accordingly, an unbiased estimator of population
mean is

7= o Lt (2.5

On the other hand, if we utilize incomplete observations too and use the ratio
and product methods of estimators, the following four estimators of Y in view



of (2.1) and (2.2) can be formulated:

s _[n-p—q-k
T y{ (n—q— } (2.6)
y . (n—q—k)
Y= y{ } (2.7)
(n—p—q—km+p
. _ m=p-a-kg+eg”]l(n —p—q- K7+ pz] 29
P n—p-F)(n—q-hz -
s [n-p-—q-kyg+aq™] (n—q—k)\ _
Yy = {(H—P—q—k)ﬂf+1)m*]<n—p—k>x (2.9)
where
_*—1 * —**_1 * ok - 1 .
T —Ezwi; Y —azyz’; x—mz.rz. (2.10)

It may be observed that these four estimators utilize all the available observa-
tions on the auxiliary characteristic. So far as the use of q observations on the

study characterlstlc is concerned the estimators Y1 and Y5 ignore them while
the estimators Y3 and Y4 incorporate them.

Thus the estimator § can be regarded as representing the strategy of total
discard of incomplete observations. Similarly, the strategy of partial discard

and partial utilization of incomplete observations leads to the estimators Y
and Y, while the strategy of full utilization of available observations provides
the estimator Y5 and Y.

3 Comparison of Biases:

In addition to (2.3) and (2.4), let us introduce the following notation:

N o
C = vy (i-Y)? 51)
foo= B(is) - %

where the expectation operator E; in fs refers to averaging over all possible
values of the non-negative integer valued random variable s.

Further, we observe that

fovrark > fotk (3.2)
>

fp+q+k fq+k

It is easy to see that ¢ is an unbiased estimator of Y while the estimators

A

Y1,Y5, Y3 and Y, are generally biased. The large sample approximations for
their relative biases are derived in Appendix and are presented below.



Theorem 1 The large sample approximations for the relative biases of the es-
timators Y1,Y2,Y3 and Y4 are given by

RB(YY,) = E<Y1__Y> (3.4)

Y
= CO0 — p)(fo+q+k — fo+k)

RB(Y,) = E<Y2_Y> (3.5)

Y
= COp(fotrq+k — fo+r)

RB(Y3) = E<Y3;Y> (3.6)

= Cf° (fo+a+k = fat+k)

= ?4—?
RB(Y,) = E< = ) (3.7)

= 0.

It is interesting to observe that the estimator Y4 is nearly unbiased in the sense

that its bias to order O(n~!) vanishes. Similarly, the estimator Y is also nearly
unbiased provided that § = p. When 6§ and p are not equal, the relative bias of

Y1 is negative for 8 less than p and positive for 6 greater than p. In case of Y2,
the relative bias has the same sign as the correlation coefficient p. Interestingly

enough, the relative bias of ?3 is invariably positive and does not depend upon
the correlation coefficient, at least to the order of our approximation.

Comparing the estimators with respect to the magnitude of bias to the given
order of approximation, we observe that Y'; is better than Y, for p larger than

(8/2). The opposite is true, i.e., ?2 is better than Y; when p is negative. This
result remains true for positive values of p provided that p is less than (6/2).

Similarly, the estimator Y| has smaller magnitude of bias in comparison to Y3
when

0<p<26 (3.8)

which is always satisfied if exceeds 0.5. When the correlation coefﬁc1ent is

negative, the reverse is true, i.e. Y1 has larger magnitude of bias than Y3 This
continues to remain true when

p > 20 (3.9)
provided that 6 is less than 0.5.

If we compare Y5 and ?3, it is observed from (3.5) and (3.6) that Y5 has smaller

magnitude of bias than ?3 as long as 6 exceeds 1. This result holds true for 6
not exceeding 1 when

p* < 62 (3.10)



On the other hand, the opposite is true, i.e., f/g has larger magnitude of bias
than Y3 when

p? > 60? (3.11)

provided that 6 is less than 1.
4 Comparison of Mean Squared Errors
The relative variance of the unbiased estimator g is

o\ 2

g—Y
E <L> (4.1)
Y

= Clprgtk

RV(y)

For the remaining four biased estimators, we consider the relative mean squared
errors and derive their large sample approximations in Appendix.

Theorem 2 The large sample approzimations for the relative mean squared
errors of the estimators Y1,Ys,Y s and Y, are given by

RMSE(Y,) = E (ile_ Y>2 (4.2)
= Clfprg+r + 000 = 20)(forqtr — forr)]

RMSE(Y,) = E (1}2?— Y) 2 (4.3)
= Clfptg+k + 000+ 20) (fotrqtr — fori)]

RMSE(Y;) = E (1?3; ?> 2 (4.4)
= Clfpir + 0 (Forarr = forn)]

RMSE(Y,) = E (1}4?— ry (4.5)

= C[fp—‘,—k + 92(fp+q+k - fq+k)]'

From (4.1), (4.2) and (4.3), we find that the estimator Y1 is more efficient than
1 when

9
p>5i 6<2 (4.6)

while ?2 is more efficient than § when

(=p)>=; O<2. (4.7



Notice that (4.6) is a well known condition for the superiority of ratio estimator
over the sample mean when there are no missing observations in the data and
X is known. Similarly, (4.7) is the condition under which product estimator is
better than the sample mean provided that no observation is missing and X is
known.

It is interesting to observe from (4.4) and (4.5) that the mean squared errors of

the estimators Y3 and Y4 do not depend upon the correlation coefficient p, at
least to the order of our approximation. Thus, for all values of p, the estimators

Y5 and Y, are more efficient than § when

2 fp+q+k — fp+k
i <fp+q+k_fq+k> ' (“8)

When the conditions (4.6), (4.7) and (4.8) hold with a reversed inequality sign,
the estimator § remains unbeaten.

Next, let us compare the biased estimators.

It is seen from (4.2) and (4.3) that f/l is better than ?2 for p greater than

0.25 while the opposite is true, i.e., Y5 is better than Y for p less than 0.25
which always hold true for negative correlation between the study and auxiliary
characteristics.

Similarly, if we compare Y; with Y5 and Y4, we observe that the estimator Y
is better than the estimators Y5 and Y4 when

o> (forqrk — fprk) <fp+‘1+k — fp+k> < 26. (4.9)

2‘9(fp+q+k - fq+k)’ fp+q+k - fq+k

The opposite is true, i.e., both the estimators Y3 and Y, are better than Y
when

(fp+q+k — fp+k)
29(fp+q+lc - fq+k) (4.10)

which is clearly satisfied so long as

<M> > 29, (4.11)

fp+q+k - fq+lc

p <

In a similar manner, comparing }Q’Q with )2/3 and ?4, we find that f/g is better
than Y3 and Y4 when

(=p) > (forqrk — fprk) | <fp+q+k — fp+k> <20 (4.12)

29(fp+q+k - fq+k)7 fp+q+k - fq+k

which requires correlation to be negative.

On the other hand, both the estimators ?3 and ?4 are better than ffg when

(fp+q+k — fp+k) (4_13)

(_p) < 2‘9(fp+q+k - fq+k)



which is always satisfied as long as p is positive. For negative correlation coeffi-
cient, again the condition (4.13) is satisfied provided that the inequality (4.11)
holds good.

Finally, it is evident from (4.4) and (4.5) that ?3 and ?4 are equally efficient,
at least to the given order of approximation.

5 Some Remarks

We have considered the problem of estimating the mean of a population of size
N on the basis of a random sample of size n drawn according to the proce-
dure of simple random sampling without replacement. It is assumed that some
observations in the sample are missing randomly. In particular, there are only
(n — p — q — k) pairs of complete observations; the remaining (p + g + k) pairs
are incomplete. Out of these, p observations on the study characteristic and ¢
observations on the auxiliary characteristic are missing. There are k sampling
units on which observations on both the characteristic are missing. Further, X
is assumed to be unknown.

In all, four estimators f/l, Y. 2, ?3 and ?4 of population mean Y arising from
the ratio and product methods of estimation are formulated. The estimators

Y1 and YZ can be regarded as based on the strategy of partial discard and
partial utilization of available information in the sense that they do not use
the g observations on the study characteristic. The strategy of full utilization

of available information provides the estimators Y5 and Y,. For the sake of
comparison, we have also considered the estimator § as representative of the
strategy of outright discard of incomplete information.

Using the large sample theory, our investigations have revealed that 7 is an ex-
actly unbiased estimator of ¥ while Y is nearly unbiased. The other estimator

Y 3 representing the strategy of full utilization of available observations is always
biased in the positive direction. However, the direction of relative bias in case of

the estimator Y; depends upon the magnitude as well as the sign of correlation
coefficient p and value of 6, the ratio of the coefficients of variation while the

relative bias of Y5 has the same sign as the correlation coefficient p.

Comparlng with respect to the criterion of magnitude of bias, it is found that
Y5 is superior to Y1 for all negative values of p such that p > 26. Similarly,
the estimator Y3 is superior to Y, when the absolute value of p exceeds 6.
If we compare the estimators }271 and 12/2 arising from the strategy of partial
utilization, it is seen that V', has smaller (larger) amount of bias in comparison

to the estimator Y» when 6 is smaller (larger) than 2p.

When we compare the performance of estimators with respect to the criterion of
mean squared error to the given order of approximation, our investigations have
brought out that no strategy is uniformly superior to the other. For instance, the
strategy of outright discard of incomplete pairs of observations may outperform
the strategies of partial and full utilization of the available observations.



It is interesting to observe that the estimators Y5 and Y, have identical mean
sAquared errors, at least to the order of our approximatjon. Thus the estimator
Y, may be preferable in comparison to the estimator Y3 by its virtue of being
nearly unbiased.

Another interesting observatlon relates to comparison of y with Y1 and Yg
The biased estimators Y1 and YZ are found to be superior than the unbiased
estimator g precisely under the same conditions which are required for the ratio
and product estimator to be better than the sample mean when no observation
is missing and X is known.

Finally, it may be remarked that an appropriate choice of estimator can be made
on the basis of our analysis in any given situation. This requires the knowledge
of p and 6 which are generally unknown. However, one may often have some
prior information about these parameters and may use it in making a choice of
estimator as pointed out by Toutenburg and Srivastava (1998).

APPENDIX

If we write
wo= (%) , n o= ("—P—q—(lil)Eii?));P(z*—)i) ,
vo= (%) , € = ("—P—q—(kgg—j;));;q(ﬂ**—y)7

E(u) = E(v)=E(n) =E(e) =0

E(UQ) = CGpr+q+k

E(U2) = Clptqtk

E(®) = C6fe

E(EQ) = Cfptr

E(w) = COpfprgrr

E(un) = C6fe

E(ue) = COpfptr

E(mv) = COpferr

E(Uﬁ) = Cepprrk

when n is large.



Now we can express

()

~

"<I>
=0
=~
N——— N——— N———
Il

"<I>

9 —

Y

"<\>
|
=~

(
[
[

~

[(v+n—u)+on)(1l+u)?t
(v +n—u)+ [ = (v+n—uu] + Op(n"?)
[(v—n+u) +uv](l+n)~"
(v—n+u) + [uv — (v —n+u)n] + Op(n"?)
[(e+m —u) +en)(1+u)~!
(e +n —u)+[en— (e+n—u)u] + Op(n~%)

[(e—n+u)+eu)(l+n) "

(€ —n+u) + [eu— (e = +u)y] + Op(n~3).

Thus the relative biases to order O(n~!) are given by

A

RB(Y,) =

A

RB(YV,) =

RB(Ys) =

RB(Y) =

E(v+n—u) + E(vn — uv — un + u?)
CO0 — p)(fp+ark — forr)

E(v —n+ u) + E(uv —vn + 5> — un)
COp(fo+rq+k — fotr)

E(e +1 —u) + E(en — eu — un + u?)
C02(fp+q+k - fq+k)

E(e — 1+ u) + E(eu — en + 1% — un)
0

which provide the results stated in Theorem 1.

In a similar manner, the large sample approximations for the mean squared

€Irors are

RMSE(Y;) = E(v+7— u)?

= Clfp+atr + (fotark — forr)(0 — 2p)0]
RMSE(Y:) = E(v-—n+u)?

= Clfp+atr + (fotark — forr)(0 + 2p)0]
RMSE(Y3) = E(v+n—u)?

- C[fp+k + (fp+q+k - fq+lc)92]
RMSE(Y.) = E(c—7+u)?

[

= C fp+k + (fp+q+k - fq+k)92]

which lead to Theorem 2.
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