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Abstract

The study of spatial variations in disease rates is a common epidemiological ap-
proach used to describe geographical clustering of disease and to generate hypotheses
about the possible ‘causes’ which could explain apparent differences in risk. Recent
statistical and computational developments have led to the use of realistically complex
models to account for overdispersion and spatial correlation. However, these develop-
ments have focused almost exclusively on spatial modelling of a single disease. Many
diseases share common risk factors (smoking being an obvious example) and if similar
patterns of geographical variation of related diseases can be identified, this may provide
more convincing evidence of real clustering in the underlying risk surface. In this paper,
we propose shared component models for the joint spatial analysis of two diseases. The
key idea is to identify shared and disease-specific spatially-varying latent risk factors
by appropriate partitioning of the underlying risk surface for each disease. The various

components of this partition are modelled simulataneously using nonparametric cluster



models implemented via reversible jump Markov chain Monte Carlo methods. We il-
lustrate the methodology through an analysis of oral and oesophageal cancer mortality

in the 544 districts of Germany, 1986-1990.

Keywords: cluster models; joint disease mapping; latent variables; reversible jump

Markov chain Monte Carlo; shared component models.

1 Introduction

The study of spatial variations in disease rates (disease mapping) is a classic epi-
demiological technique, where location is used as a surrogate for the mix of lifestyle,
environmental and possibly genetic factors that may underly geographical differences
in risk (Elliott and Best, 1998). The purpose is both to describe such variations and
to generate hypotheses about the possible ‘causes’ which could explain them. The
last decade has seen rapid development in the statistical and computational methods
available to carry out such analyses, including the use of realistically complex models
to account for overdispersion and spatial correlation, as well as to study the associ-
ation between disease incidence and spatially varying covariates, such as deprivation,
urbanization or environmental pollution (Besag et al., 1991; Clayton and Bernardinelli,
1992; Cressie, 1993; Best et al., 1998; Lawson and Clark, 1999; Langford et al., 1999;
Knorr-Held and Rafler, 2000). These developments have focused almost exclusively on
spatial modelling of a single disease. However, many diseases share common risk fac-
tors (smoking being an obvious example); if similar patterns of geographical variation
of related diseases can be identified in a joint analysis, this may provide more convinc-
ing evidence of real clustering in the underlying risk surface than would be available
from the analysis of a single disease. Some authors have suggested using incidence rates

from other diseases as surrogate exposure measures, possibly allowing for measurement



error, in a non-symmetric regression fashion (see, for example, Clayton et al., 1993;
Bernardinelli et al., 1997). However a joint formulation which simultaneously models
spatial variations in the risk of two or more related diseases seems a more natural and
powerful design for detecting geographical patterns in the underlying risk surface.

In this paper, we propose so-called shared component models for the joint spatial
analysis of two or more diseases. The key idea of the formulation is to separate the
underlying risk surface for each disease into a shared component, common to both
diseases, and a disease-specific component. Identifiability of the different components
is achieved through spatial cluster models for each of them, similar to the ones proposed
in Knorr-Held and Rafier (2000) for the spatial analysis of a single disease. The shared
component can be interpreted as a surrogate for unobserved covariates that display
spatial structure and are common to both diseases. Similarly, each disease-specific
component represents only those spatially-varying risk factors which are specific to the
respective disease.

This paper is organized as follows. Section2 gives a short review of the spatial
cluster model proposed by Knorr-Held and Rafler (2000), which forms the basis of the
shared component models that are introduced in Section 3. The methodology will be
illustrated in Section 4 through a joint analysis of oral and oesophageal cancer mortality

in the 544 districts of Germany, 1986-1990. Section5 contains a discussion.

2 Cluster models for disease mapping

We now review a model described in detail by Knorr-Held and Rafler (2000) for the
detection of clusters and discontinuities in disease maps. The approach taken differs
from the Markov random fields which are widely used to model spatial correlation
in disease maps (Besag et al., 1991) in that the underlying risk surface is modelled

nonparametrically using a spatial mixture distribution with an unknown number of



components. Technically our method is based on reversible jump MCMC (Green,
1995), an extension of the Metropolis-Hastings algorithm to simulate from distributions
of variable dimension.

Let n be the number of districts in the study region and y; and e;, « = 1,... ,n,
denote the observed and expected number of cases respectively. The basic idea is
to assume that the study region can be partitioned into %k clusters C; C {1,... ,n},
j=1,...,k, i.e. sets of contiguous regions, where each cluster has constant relative
risk A\j. The clusters cover the whole study region, i.e. UleCj ={1,...,n}, and do
not overlap. Disease counts y;, 1 € Cj, j = 1,... ,k, are assumed to be conditionally
independent Poisson random variables with mean e; - A; so the likelihood function can
be written as

k )
L) =TT T “292 exp(-einy).
j=lieC; Yir

For a detailed discussion of the assumptions and properties underlying the Poisson
model see Wakefield et al. (2000). We note that an alternative way of formalizing the
partitioning of the study region into clusters is through a function C, which maps each
region ¢ into the relevant cluster j if and only if ¢+ € Cj. The formulation can now
simply be written as conditional independent Poisson responses with mean e; - Ac(;).
With a slight misuse of notation we will sometimes denote Ag(;) simply by A;. A similar
notation will be used in Section 3.

The number k, and shape and size of the clusters, as well as the risk of disease
within each cluster are now treated as unknown variables. As the dimension of the
problem depends on the number of clusters, reversible jump MCMC is the appropriate
inference technique. It is important to understand that the final risk estimates are
not based on a specific cluster configuration but are an average over a large number
of cluster configurations, weighted by the corresponding posterior probabilities. These

estimates thus incorporate all the uncertainty about the number, location and level
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of risk of the clusters. The formulation can therefore be considered as nonparametric
(Arjas, 1996; Heikkinen and Arjas, 1998).

To define the clusters, Knorr-Held and Rafler propose a construction where k regions
are marked as so-called cluster centres, each of them defining a separate cluster. Each of
the remaining regions is assigned to the cluster which is closest in terms of the minimal
number of boundaries that have to be crossed to move from that region to the cluster
centre. The cluster centres are collected in a vector, say Gj. Regions, which have the
same “distance” (in terms of the minimal number of boundaries to be crossed) to two
or more cluster centres are assigned to the center with the smallest index position in
G. Hence Gy, is kept unordered to avoid any unjustifiable preference for centers with
smaller indices.

The model now assumes a truncated geometric prior on {1,... ,n} for k, i.e. Pr(k) o
(1—c)*, k=1,... ,n, where ¢ € [0, 1) is a suitably chosen constant. Conditional on the
number of clusters, a uniform prior is specified for the (n — k)!/n! possible choices for
the (unordered) vector of cluster centres G|k. Finally, the logarithms of the relative
risk parameters log A;, j = 1,... ,k, are assumed to be independent realizations from
a normal distribution with unknown mean ; and variance 0. A flat prior is chosen for
14, i.e. uniform on the whole real line; an inverse gamma prior with fixed parameters a
and b is adopted for o2. Hence the prior mode for o? is at b/(a + 1).

Due to independence of the risk parameters );, the model is able to detect spatial
discontinuities if adjacent districts are assigned to different clusters. In particular,
clusters of size one are not excluded from the model, which implies that the formulation
does not necessarily smooth the data. In practice, some smoothing is inevitable, since
there will always be some uncertainty about whether or not a region forms a cluster by
itself. However, the sizes of the clusters, which determine the local degree of smoothing,
are variable, hence the smoothing is adaptive. This is in contrast to Markov random

field models, where the smoothing parameter is constant across the study region and



so smoothing is non-adaptive.

3 Shared component models

We now consider joint modelling of two diseases with disease counts y1; and y9;, © =
1,... ,n, for diseases 1 and 2 respectively. Similarly, expected counts are denoted by
e1; and ey;. We assume that the overall relative risk Y. yq4i/ >, eqi, d = 1,2, is the
same for both diseases. We first outline our proposed model formulation and then

present some motivating arguments.

3.1 Model notation and formulation

For each disease, the relative risk in district ¢ is modelled as the product of a shared
component \; and a disease-specific component ¢4;, d = 1,2. Responses y1; and yo; are

thus assumed to be conditionally independent Poisson random variables
5 1/6
y1i ~ Po(eyi - A - ¢1;)  and  yo; ~ Poleg; - A;'" - b2;). (1)

The contribution of the shared component to the overall relative risk is weighted by
the scaling parameter § to allow a different “risk gradient” (on the log scale) to be
associated with this component for each disease. The three components A;, ¢1; and ¢o;
are assumed to be independent, with each one following a cluster model as described
in Section 2.

In the limiting case of a shared component without any spatial structure, that is
A; = constant for all ¢, y1; and yo; will be independent Poisson with the spatial
variation in relative risk determined only through the specific components ¢1 and ¢,
respectively. On the other hand, if both specific components are constant, both diseases
will have a common relative risk pattern determined through the shared component .

The overall relative risk level will be the same for both diseases but the magnitude of



the area-specific relative risks may differ — hence the need for the scaling parameteter
0. In practice, it may sometimes be the case that one or two of the components A, ¢;
and ¢9 dominate the risk surfaces of the two diseases, but which one will not usually
be known in advance. The general formulation (1) is a flexible modelling framework
which includes the whole range between those extreme cases and lets the data decide
about the strength of each component.

Note that the number of different levels in the risk surface of each disease, deter-
mined through two overlaid cluster models, is much larger than the number of clusters
in each model. We therefore penalize large values of the number of components ky, kg,
and kg, heavily a priori and take larger values for cy, ¢y, and cy, than in an analysis
of a single disease.

As in Section 2, a flat prior will be used for the parameter py of the lognormal prior
on A. However, for identifiability reasons, we fix the means of the log relative risk
parameters of the two specific components to zero. Inverse gamma priors are assumed
for the variances on the three sets of log relative risks as before. Finally, we assume
that the logarithm of the scaling parameter § has a normal prior with mean zero and
variance 72. Since the prior for § is symmetric around zero on a log-scale, any value d

is as “equally likely” as the reciprocal value 1/dy a priori. More precisely,
P(él < 5§5u) :P(l/(su < 1/5 < 1/5l)

for any positive values §; < d,,. Consequently, the formulation (1), where both ¢ and
the reciprocal value 1/0 enter, has an attractive invariance feature: if we switch the
indices of the two diseases, we will get exactly the same posterior distribution for the
joint and specific components and the posterior for § will change to the reciprocal
distribution. Therefore, the posterior distribution of the relative risk for each disease

will be exactly the same.



3.2 Some motivation for shared component models

We now provide both formal and heuristic arguments for our model. Consider first the
(unrealistic) case where there is only one “true” but unobserved (continuous) covariate
Z;, common to both diseases, and assume that the relationship to the relative risk is
of the usual log-linear type. Then the true log relative risks 7;; and 79; for diseases 1

and 2 are given by

mi = a1+pP1-Z; (2)

N = oo+ P2 Z;, (3)

where ) and (3 are the different risk gradients associated with the covariate for the
two diseases. (Note that, for technical reasons, we assume that 5, and f2 have the

same sign.) Now suppose we specify the following model for the log relative risk

n; = logA;-d (4)

N2 = 10g>\i/(5. (5)

where the log A; follow a cluster model as described above, with marginal mean and
variance denoted by p) and 0/2\ respectively. This is simply a special case of our shared
component model (1) without the disease-specific components ¢; and ¢9. If we now

assume that the distribution of the true covariate Z; across the study region has some

2

arbitrary (possibly spatially correlated) form with marginal mean p, and variance o7,

then it is straightforward (Wakefield et al., 2000) to show that

(log \i —pr) -6 = B1-(Zi — pz) (6)
(log Ai —pp)/0 = B2+ (Zi — ). (7)
Dividing Eqn. (6) by Eqn. (7) gives 2 = 8;/Bs, i.e. the squared scaling parameter can

be interpreted as the ratio of the two risk gradients. Similar arguments lead to the

identities u%\ = (a1 + B1pz) - (g + Papz) and og\ =B P02
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The above equations have been derived under the assumption of only one true
covariate, common to both diseases, whose between-area distribution exhibits spatial
variation that may be modelled by the nonparametric cluster model described in Sec-

tion2. In a more general scenario, the “true” model might look like

mi = a1+p1-Zi+m-V;

N2 = as+fBo-Zi+y-W;,

where Z; is a shared risk factor as before, and V; and W; are disease-specific risk factors
relevant to one or other of the diseases only. The idea of our general formulation
Eqn. (1) is that the distributions of the true exposures Z, V and W will each display
different patterns of spatial variation across the study region, so that the cluster model
for the shared component A will capture the spatial distribution of the Z;’s (possibly
shifted and on a different scale), while the cluster models for ¢; and ¢, will account
for the underlying distributions of the V;’s and W;’s respectively. Of course, there is
an apparent lack of identifiability in the model since the spatial risk surface of one
disease can, in principle, be represented by either the joint or the specific component.
However, in all applications we have tried so far, the estimated spatial patterns of the
three of components are rather distinct and there was no sign of severe confounding,
as long as we penalize larger values of k), ks, and ks a priori. Values of k) are
typically much larger than those of k4, and kg, in the posterior. Hence it seems that
the shared component captures finer differences in the risk surface with larger number
of components k), probably because both datasets contribute directly to the likelihood.
The disease-specific components have a coarser resolution with much smaller number

of components kg, and kg,, as there is less direct information in the likelihood.



3.3 Implementation

The method has been implemented with reversible jump MCMC moves similar to
those used in Knorr-Held and Rafler (2000) and Giudici et al. (2000) for each spatial
component. Proposals for each accept-reject step have been constructed in order to
achieve high acceptance rates and to avoid the need for tuning parameters. The only
additional parameter is the scaling parameter § for which a simple Metropolis update

step has been used.

4 Application to German cancer mortality data

We now describe an application of our shared component models to the joint analysis of
both oral cavity and oesophageal cancer mortality among males in Germany. These two
cancer sites are closely related anatomically and are often studied as a single diagnostic
group (e.g. Kjaerheim et al. (1998); Gronbaek et al. (1998)). Tobacco smoking and
alcohol abuse are the two most important established risk factors for both diseases
(Blot et al., 1994; Schottenfeld and Fraumeni, 1996). However, there may also be
differences in the pathogenesis of oral cavity and oesophageal cancers and some have
argued that it is misleading to treat these and other cancers of the upper digestive
tract as a single group (Fitzgerald and Caygill, 1999). The shared component models
proposed here allow us to exploit the aetiologicial similarities between the two diseases,
yet still identify any differences in their respective patterns of risk.

Our analysis considers mortality from oral cavity and oesophageal cancer in males
in the 544 districts in Germany, 1986-1990. The two datasets have been internally
standardized by maximum likelihood under the restriction that the sum of observed
cases equals the sum of expected cases for each of the diseases. Fig.1 displays the

standard mortality ratios (SMR; = y;/e;) for each cancer site, while Fig. 2 shows the
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relative risk estimates obtained from separate applications of the Knorr-Held and Rafler
cluster model (with @ = 1, b = 0.01 and ¢ = 0.02) to each dataset. The spatial structure
of the estimates resemble each other quite closely with high values in the north-east
and in large parts of the south-west. Hence a joint analysis of the two diseases seems
appropriate. Note that a different scale with a wider range has been used for the
maps in Fig. 1, to accomodate the more extreme SMRs. The change in scale for the
relative risk maps shown in Fig. 2 and the remaining figures in this section was chosen
in order to show more clearly the different spatial patterns identified by the separate
cluster models and by the various components of the joint cluster models. For oral
cavity cancer, maps showing the SMRs and cluster model relative risk estimates on
the same scale, together with a more detailed discussion of the results, can be found
in Knorr-Held and Rafler (2000).

For the joint analysis, we have chosen c), = 0.1 and ¢4, = ¢4, = 0.2 and all other
values as above. These choices have been made in order to approximately match those
made in the separate analyses with a sufficient amount of penalization. Finally, the
parameter 72 (the variance of the log scaling parameter) has been set to 0.17, which
corresponds to a prior belief that the ratio of relative risks associated with the shared
latent covariates for each disease (i.e. £1/02) is between 1/5 and 5 with 95% probability.

Fig. 3 displays the estimated shared component A\. Most striking are two large
clusters, one in the north—east in Mecklenburg—West Pomerania and one in the south—
west covering the whole of Saarland and parts of Rhineland-Palatinate and Baden—
Wiirttemberg along the border to France. Both clusters are consistent with what is
known about the distribution of established risk factors in Germany, since they coin-
cide with regions where alcohol (Mecklenburg-West Pomerania) or smoking (Saarland,
Rhineland-Palatinate) consumption are known to be high, e.g. Becker and Wahrendorf
(1997). Also, many urbanized areas can be identified in Fig. 3, especially in the north

with higher estimates of the shared component in Bremen, Hamburg, Kiel, Berlin and

11



parts of the Ruhr area.

Prior and posterior distribution of the scaling parameter § can be seen in Figure 4.
The posterior median is estimated as 1.10 with a 90% credible interval of (0.99,1.25).
Hence the effect of the shared component on cancer of the oral cavity (median estimates
of Af in the range of 0.70 to 1.29) is slightly larger than on cancer of the oesophagus
(median estimates of A; /% in the range of 0.75 to 1.23). This indicates that the unob-
served risk factors common to both diseases are associated with a slightly higher risk
of oral cavity cancer than oesophageal cancer. If one assumes that the joint component
mainly reflects spatial variation in alcohol and tobacco consumption, than our findings
are in accordance with Baron et al. (1993), who find that the combined alcohol and
smoking risks for oral cancer are significantly greater than those for oesophageal cancer
in a unified analysis of data from a case-control study.

Fig.5 displays the two disease-specific components ¢; and ¢o. Interestingly, the
specific component for oral cavity cancer has a distinct spatial pattern with higher
values (around 1.15) in the south and lower values (below 1.0) in the north. This indi-
cates the existence of additional risk factors relevant only to oral but not to oesophageal
cancer. A possible explanation might be the higher consumption or different prefer-
ences for alcohol products in the south, where all the main wine-growing areas are. Of
course, this is rather speculative but supported by Leclerc et al. (1987), who analyse
case-control data on cancer of the upper respiratory and digestive tract, and find more
wine consumers among mouth cancer cases than cancer on other locations, controlling
for the total amount of alcohol consumed. The oesophageal specific component shows
a different spatial pattern with less variation and slightly higher values in the West and
North of Germany. Note that there is a “negative” cluster in the south of former East
Germany in both specific components, a bit more pronounced for oesophageal cancer.
This is somewhat surprising as one would think that such a common cluster would

be captured mainly by the shared component. The shared component also has low
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estimates in the same area but on a finer resolution (actually there seem to be two
distinct clusters). This may be indicative of artefacts in the data due to different data
collection procedures in the former East Germany (in particular, in the ICD coding
process) possibly resulting in apparent under-ascertainment of mortality from certain
cancers relative to West Germany.

We have therefore studied sensitivity of the results to the choice of hyperparameters,
especially to different values for ¢y. As one would expect, for ¢y = 0.2, the shared
component captures more of the joint cluster in the south of East Germany, while the
specific components have estimates closer to one. The other noticeable difference to
the analysis with ¢y = 0.1 is that the shared component now seems to link the two
clusters in West Berlin and Mecklenburg—West Pomerania to a larger one. Apart from
these two changes, however, there is surprisingly little sensitivity in the estimates of
the shared and specific components and the relative risk surfaces.

Finally Fig.6 displays the overall posterior median relative risk surface for each
disease. The estimates are quite similar to those obtained by separate analyses (Fig. 2),
although they show some differences, especially in more sparsely populated areas. The
differences are caused by “borrowing strength” from the spatial pattern of the other
disease through the shared component. For example, in the joint analysis estimates for
oesophageal cancer are slightly lower in east Brandenburg (south of Mecklenburg—West

Pomerania) on the border to Poland.

5 Discussion

The shared component models proposed in this paper offer a straightforward approach
to the joint spatial analysis of two related diseases. They represent a natural extension
of the cluster models proposed by Knorr-Held and Rafler (2000), and have the attractive

feature that the various components have a direct interpretation in terms of latent
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covariates which are either shared by both diseases or are selectively associated with
only one or other of the outcomes. The example illustrates some of the advantages to be
gained by simulataneous analysis of the spatial variation in two diseases. For example,
not only were we able to clearly identify joint clusters of oral cavity and oesophageal
cancers associated with common risk factors (alcohol and smoking consumption), but
our analysis also revealed a north-south trend specific to oral cavity cancer which was
less apparent from the separate analysis of this disease alone. Another interesting
application would be the joint analysis of a single disease, split by gender.

Our model makes a number of strong assumptions and so some cautionary com-
ments must be made in order to avoid overinterpretation of the results. In particular,
we assume that the net effect of all shared covariates may be modelled by a single
latent variable (A) with a different risk gradient for each disease. This may be rea-
sonable when there is one dominant, common risk factor such as smoking or a genetic
effect, but may be less satisfactory if there are a number of shared risk factors, each
with different risk gradient ratios for the two diseases. Likewise, we assume that the
spatial structure of the disease-specific covariates may be adequately captured by a
single latent variable for each disease. Our models also assume that the shared and
specific components are independent, which ignores the possibility of interaction be-
tween the “true” covariates. Nevertheless, we think that these models provide a useful
approximation to the underlying risk surface and may help gain further insight into

the true pattern of exposures relevant to each disease.

5.1 Extensions and future work

We note that the shared component models proposed here are easily extended to the
joint analysis of three or more diseases, although the number of possible permutations

of shared and specific components may rapidly become prohibitive. Observed area-
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level covariates may also be combined with shared component cluster models in the
same way as for a single disease (Giudici et al., 2000). Another variation on the above
models would be to assume a Markov random field prior rather than the Knorr-Held
and Rafler cluster model for each component.

Mollié (1990) adopts an alternative approach to the joint analysis of areal counts
of two diseases, based on a bivariate normal prior for the corresponding log relative
risk parameters in each region. However, this model ignores possible spatial correlation
in the relative risks across regions. Recently, Assungao et al. (1999) use multivariate
Markov random field models in a linear regression context with spatially varying coef-
ficents. We are currently working on a comparison of shared component models versus

multivariate spatial models for joint disease mapping.
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Figure 1: Standard mortality ratios for oral cavity and oesophageal cancer for males in Germany

(note that these maps are shown on a different scale to the other maps in this section).
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Figure 2: Posterior median relative risks for oral cavity and oesophageal cancer for males in

Germany, estimated using separate cluster models for each disease.
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Figure 3: Estimated posterior median for the shared component A in the joint cluster model.
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Figure 4: Prior (solid line) and posterior (histogram) distribution of the scaling parameter ¢.
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Figure 5: Estimated posterior median for the disease specific components ¢, (oral cavity cancer)

and ¢y (oesophageal cancer).
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Figure 6: Posterior median relative risks for oral cavity and oesophageal cancer for males in

Germany, estimated using the joint cluster model.
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