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Abstract

Parametric models for categorical ordinal response variables, like the pro-
portional odds model or the continuation ratio model, assume that the pre-
dictor is given as a linear form of covariates. In this paper the parametric
models are extended to a semiparametric or partially parametric form where
parts of the covariates are modeled linearly and parts are modeled as unspe-
cified but smooth functions. Estimation is based on a combination of local
likelihood and profile likelihood and asymptotic properties of the estimates are
derived. In a simulation study it is demonstrated that the profile likelihood
approach is to be preferred over a backfitting procedure. A data example

shows the applicability of the models.
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1 Introduction

We consider the ordinal response variable Y which takes values Y € {1,... k}
from a set of ordered categories. A widely used model for ordinal regression is the

cumulative model which has been proposed by McCullagh (1980). This has the form
P(Y <rlz) = F{Bo, + 278} for r=1,....q=k—1 (1)

where x is a set of explanatory quantities and the parameters [y, fulfill the restric-
tions By1 < foz < ... < fog- In (1), the probability P(Y < r|z) is linked to the
linear predictor 1, = (3, + 273 via the distribution function F(-). If F(-) is chosen
as the logistic distribution function F'(n) = exp(n)/{1 + exp(n)} one obtains the

widely used proportional odds model log{P(Y < r|z)/P(Y > r|x)} = S, + 27 5.

The cumulative model (1) can be motivated by considering Y as a coarser version
of a latent continuous variable U, where U follows the “classical” linear regression

model

U=-2"+¢ (2)
with e distributed according to the distribution function F(-) and E(e|z) = 0,
assuming that F'(-) has zero mean. The connection between the observed response
Y and the latent variable i/ is given by the threshold concept Y =1 < U < fFy; and
Y =r& Gy_1 <UL [y forr=2,...,q. Hence, the parameters 3y can be seen
as fixed unknown thresholds on a latent continuum, while the linear term n = 273

serves as predictor which parametrically shifts the mean of the latent variable on

the latent continuum.

The structural assumption E(U|z) = —aT 3 provides a model with linear pre-

dictor. If x consists of metrically scaled variables, however, linearity can be a too
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strong assumption for modeling data. In the same way as in smooth regression mod-
els, the parametric restriction can be circumvented by replacing the predictor 27 3 by
a nonparametric function y(x), i.e. we set E(U|z) = —vy(z), where y(z) is unknown
but assumed to be smooth. Due to the smooth modeling of the latent regression for

U one obtains with fixed threshold parameters . the smooth cumulative model
P(Y <rlz) = F{fo +70(z)} for r=1,...q (3)

It should be noted that (3) has a semiparametric structure since it contains the
nonparametric specification of the covariate effect, v(z), and the thresholds (o, as
fixed parameters. Obviously, the parameters in model (3) are not uniquely defined
and additional identifiability restrictions are needed. We set (y; = 0, i.e. we fix the

first threshold, which in turn provides a simple numerical solution.

An alternative ordinal regression model is the sequential model or continuation

ratio model
PY =7r|Y >rx)=F{By+a2"3} for r=1,....q=k—1. (4)

The underlying idea behind (4) is that categories are reached successively. This
means we model the binary transitions from category r to category r + 1, given
category 7 is reached, as binary regression model with response function F(-). The
linear predictor thereby has the form 7, = S, +a” 3 and describes the non-transition
from r to r+ 1, where now no additional order restrictions are required for .. This
modeling approach essentially yields model (4) and in the same fashion as for the

cumulative model, the sequential model (4) can be extended to the smooth version

PY =7|Y >rx)=F{f8, +7(x)} for r=1,...,¢q=Fk—1, (5)
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simply by substituting (z) for 273 in (4).

In this paper, estimation of the semiparametric structure in (3) and (5) will be
based on local and profile likelihood estimation, as generally discussed in Severini &
Wong (1992) or Severini & Staniswalis (1994). While (3) is treated as multivariate
response model, (5) can be fitted as a univariate binary response. This property
was emphasized for the parametric sequential model (4) e.g. by Cox (1988). We
derive asymptotic variance formulae for both cases and discuss bias properties in
the presence of ordinal data. In addition, models (3) and (5) will be considered in
a more general form by including factorial effects and interactions which leads to
varying coefficient models as introduced by Hastie & Tibshirani (1993). This allows

to model smooth interaction between factorial and continuous regressors.

Background material to cumulative and sequential models is found for instance in
Agresti (1990), Fahrmeir & Tutz (1994), Greenland (1994) or Barnhart & Sampson
(1994). Simonoff (1996) discusses the smoothing of sparse ordinal data, which ap-
plies if the number of categories are large and correspondingly the cell frequencies are
small, a topic not focussed in this paper (see also Hall & Titterington, 1987). Exten-
sions of the cumulative model to nonparametric regression models of the generalized
additive type are found in Hastie & Tibshirani (1990), Yee & Wild (1996) and Wild
& Yee (1996). Estimation there has been based on the penalizing concept which
yields spline fitting functions. We pursue a local and profile likelihood approach
which extends smooth estimation as considered in semiparametric models (see also
Severini & Wong, 1992). Cumulative models for dependent ordinal data are treated
in Fahrmeir & Pritscher (1996) or Heagerty & Zeger (1996) in a parametric fashion

and in Kauermann (1999) using nonparametric components. The latter paper does
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not make use of the semiparametric approaches, which are investigated here.

2 The Cumulative Model

2.1 Varying Coefficient Model

Although model (3) is already a semiparametric model, we consider a more general
form of (3). This is done by including covariates z = (21, 22), where the effect of 2
is modeled parametrically and the effect of z, is allowed to interact smoothly with

x. This means the model for the latent variable i/ is specified by
EUlw,2) = —{z{ B + () + 23 7:(2) }. (6)

In (6), the regressors z; act additively in the usual parametric fashion z{ #;. The
main effect of x is given by the smooth function vy(z), whereas 7,(x) represents
the effect of 2 which is smoothly modified by x. Thus the model contains vary-
ing coefficients in the sense of Hastie & Tibshirani (1993). If the variables in z
are factorial covariates, parametric modeling like (6) is natural. If z contains also
metrically scaled variables, the interaction of 2] 3 means that one has a parametric
form in mind, which may for instance be based on prior knowledge. The model for

the ordinal response resulting from (6) equals
P(Y <rlz,2) = F{Bor + 21 B. +(z) + 23 7.(2)}, r=1,...,4q, (7)

where 0 = Sy, < fog... < Bog. The additive term Sy, + 21 B; thereby represents
the parametric part of the model, while the nonparametric part is given by vy(z)
as main effect and 22+, (x) as varying-coefficient term. Of course, (3) is a special

case of (7) following from the omission of the components (z,22). Moreover, if
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z is neglected, (7) simplifies to the varying coefficient model P(Y < r|z,z) =
F{Bor + v0(x) + 2Ty (z)}. Hence, (7) represents a general class of smooth models

for ordinal data, including parametric, nonparametric and varying coefficient terms.

2.2 Local and Profile Likelihood Estimation

It is convenient to write model (7) in matrix form. Let 77 = (my,...m,) denote the
vector of cell probabilities 7, = P(Y = r|z,z). Then the multivariate model has the

form

Bo2

0 --- 0 2z 1 2
1 - 0 2 1 2 Bog

g(m) =

b
0 --- 1 2 1 2 Yo ()

~ -~ —_———
7:(2)

= Z1 = Z2

= Z\f+ Zyy(x)

with 7 = (Boas - - -, Bog: BT) and v(2)T = {y(2),7.(x)"}. The link function g =
(g1, -, g,) has components g,(7) = F~Y(m+...+m,). Let now (Y}, z;,2;),i =1,...,n
denote a random sample, and define y; = (y;1,...,%i,)" as indicator vector with
elements y;, = §(Y; =) = 1if ¥; = r and 0 otherwise. Moreover, let Z;; and Z,

denote the matrices Z; and Z, evaluated at z;.



Local and Profile Likelihood Estimation

With wy,;; = K{(x;—x;)/h} we define kernel weights, where K (-) denotes a symmet-
ric, unimodal kernel and A is the bandwidth or smoothing parameter. We first treat
the parametric part of the linear predictor as fixed, i.e. we consider Z;3 as given
offset. We then fit 7; = v(z;) for i = 1,...,n by maximizing the local likelihood
> whijli(8,7:) where (3, 7:) = log P(Y = Yj|n; ;) is the log likelihood contribution

with n; ; = Z, ;3 + Zs j;. Differentiation yields

0 = > wnijZsy (B 5) ®)

j=1
where 1, ;(8,7v:) = {897 (ni;)/(0n)} cov(y;)~* {y; — m;(ni;)} is the standard score
contribution with m;(n; ;)T = {P(Y; = 1|ni;), .., P(Y; = q|ni;)}. The solution of
(8) may be found by iterative weighted Fisher scoring. Since (8) is solved for a

particular choice of (3, the resulting estimate 7; depends on [, which is however

suppressed in the notation.

Profile Likelihood Estimation
Estimation of the parameter 3 is done by profile likelihood estimation. We insert
4; from above in the likelihood for # and maximize the profile likelihood function

>ili(3,7;). Differentiation with respect to [ yields the estimating equation

n

r | OV _r 5~
0=>" Zy;+ 03 Zyi | 1.4 (B, %) (9)

=1

where 057 /(03) is found by differentiating (8) with respect to 3. This yields

-1

it ) 7 ) '

L {221 Wnig 2 Ly (B, %)Zm} {Z Whij g, jlan. (B, %)Zz,j} (10)
=

=1

where lnn,j (ﬁ,’/)\/l) = (%w- (ﬁ, ’/)\/Z)/aﬁz,] with ﬁi,j = (ZLjﬁ + ZZJ’/}\/Z'). For simplicity one
can replace 7%, by «v; and [,;(8,%) by —F; = E{l,;8,7)} =
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{897 (n;)/(0n)}cov(y;) = {dg~(n;)/(dn™)} to reduce the computational effort. De-
fining Z,; = Z1; + 077/08 x Zj,;, the profile score equation (9) becomes 0 =
AR m(ﬁ 7;). One should note that Z;; depends on (3 so that iteration between

(8) and (9) is required to provide the final estimates for 5 and (u).

Asymptotic Consideration of the Estimates

Severini & Wong (1992) show that the profile likelihood approach provides efficient
estimation for (. In particular, the fixed parameter [ is estimated by the usual para-
metric \/n asymptotic rate. Bias consideration and variance estimation is directly
available from the estimating equations, as shown in the appendix. One finds

E(B-pB) = O (11)

-1

-1
cov(Fi) = {fj wi; Zy  F} ZZJ} {f:w Zy i F ZZJ} {f: wijzgj@ZZ,j} (12)
cov(B) = {Z Z{,F. zl,]} . (13)

Profile Likelihood Versus Backfitting

An alternative to profile likelihood estimation is backfitting, which has become a

popular estimation method in recent years for models with smooth components.

The principle of backfitting is that in each step the components are fitted separately

without consideration of mutual dependence. Applied to semiparametric models of

the present setting, this means that the profile likelihood estimating equation (9) is

replaced by

n

0= Z ZFi1,:(8 (14)



i.e. Z,; in (9) is replaced by Z;,;. Though this seems to be numerically simpler, no
direct variance formula like (13) is available for the backfitting estimate. Moreover,
the backfitting estimate is generally more biased, as has been shown by Severini &
Wong (1992) (see also Speckman, 1988). In a simulation study in the next section

we demonstrate that this point holds also in the ordinal case.

Choice of the Bandwidth

As generally in the smoothing context, the bandwidth h has to be chosen. For
simplicity we assume that x is univariate and A is a scalar. A common data driven
procedure is available by using cross validation. However, in a semiparametric model
as considered here, cross validation goes along with the burden of heavy computa-
tion, because iterated refitting is required. We therefore suggest to make use of
Generalized Cross Validation (see Hastie & Tibshirani, 1990), which applied to this

setting means we minimize

>y — ) var(y,) " (yi — )

GOv(h) na{l = df /(ng)}?

(15)

where df is the degree of the model which we calculate from df= p + >, tr(Sp).
Here p is the dimension of 3 and ¢r(S,;) denotes the trace of the matrix Sy, ;=
(X7 wnyij 23 jFjZo;) ' Z3;FiZy; One should note that for h — oo, ie. if v =
constant is fitted, the resulting degree df equals the number of parameters fitted.
The elements in Sy, ; can thereby be seen as the diagonal block in a smoothing type

matrix for fitting v(x;) .



2.3 Example and Simulation

Simulation

We simulate data from the sequential model U = —{z, 61 + yo(x)} + & with () =
1—cos(3.14x) and ; = 1, where ¢ is distributed according to the logistic distribution
function. As threshold parameters we choose By; = 0, B2 = 1 and [yz = 2. We take
z1 as binary dummy coded factor and choose z as 20 equidistant points on [0, 1].
For each design point of x we draw 4 replicates of U from two different settings
for z;. First, we choose z; as balanced binary factor, i.e. z1 = 1 for half of the
data, and secondly, we draw z; in each simulation from the Bernoulli distribution
P(z = 1]z) = logit *(1.5 — 3z). We fit the cumulative logit model P(Y < 7|z, )
= logit ™ '{Bo, + 218 + Yo(x)} by profile likelihood estimation. For comparison we
also pursue backfitting estimation by using (8) and (14). We run 150 simulations
in each setting and choose bandwidth A in each run using (15). Table 1 shows the
results of the simulation. Both, backfitting and profile likelihood estimate behave
comparable, though the backfitting estimate is slightly more biased. The profile
likelihood estimate provides valid and direct variance estimates, as proven above.
In contrast, taking (3°; Z{;FiZ1;)~" as variance estimate for the backfitting estimate,
i.e. using Z;; instead of Zl,i in (13), one obtains variance estimates which are too
small. This shows in Figure 1 where the normal quantiles are plotted against the
quantiles of the standardized estimate (3, — 3;)/ \/var(ﬁl), where standardization is
done by the use of the corresponding variance estimate. Profile likelihood estimation
yields the right variance estimates while backfitting shows the need for a correction

of the variance estimates. Moreover, the backfitting estimate yields more extreme
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values which also signals the bias problem of the backfitting estimate.

Example

We analyze data collected at n = 123 patients in a clinical study on the healing
of sports related injuries of the knee (for further information on the data see Tutz,
2000). By random design a therapy was chosen and the patients were treated under
two different condition. The treatment group used an anti-inflammatory spray while
the placebo group used a spray without active ingredients. After a ten days treat-
ment with the spray, the mobility of the knee was investigated in a standardized
experiment during which the knee was actively moved by the patient. The pain Y
occurring during the movement investigation was assessed on a four point scale from
1 representing no pain to 4 giving severe pain. We model the data by the smooth

cumulative logit model
P(Y < r|age,treatment) = F(B, + treatment (; + v(age)} (16)

with age as the patient’s age and treatment as indicator variable with value 0 for
the placebo group and 1 for the treatment group. The estimates are shown in Table
2. For comparison a parametric model with quadratic effect of age is also fitted. It
is seen that the treatment effect and its studentized value are about the same in
both models. If a parametric model is fitted, a quadratic age effect seems necessary
to model. For the semiparametric model it is however not necessary to decide a
priori upon the modeling of age, since the influence of age is modeled smoothly.
Hence, (16) is a more general model, but the parametric effect of treatment is still
estimated with the usual parametric accuracy. Figure 2 shows the age effect which

indicates that pain is decreasing for patients above 40 years of age. In Figure 3
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the cumulative model is illustrated by plotting the mean E(U|xz) of the latent score
separately for the placebo and treatment group. The horizontal lines thereby show
the thresholds fy, on the latent scale. The larger the value of & the more pain is felt
by the patient. Hence, i may be interpreted as an unobserved pain score. Although
there is some variation in the distribution of ¢, it is seen that the treatment group

is shifted towards less pain.

3 The Sequential Model

3.1 Smooth Modeling

We now consider smooth extensions of the sequential model (4). As in the previous
section, we let z = (z1,29) denote (factorial) covariates while x are continuous
regressors. We model the conditional probabilities P(Y = r|Y > r,z,x) for r =

1,...q =k — 1 as varying coefficient model
PY =r|Y >ruw,z2) = F{fo+ 26 +7(x)+ 227.(x)} (17)

where (y; = 0 is set to ensure identifiability. The cell probabilities according to (17)
are easily found by
r—1
P(Y =rlz,z) = PY =r]Y >ruzz2) [[{1-PY =k|Y >k, z,2)}.
k=1
Model (17) can again be derived from the consideration of latent variables. Let

Uy, ...U,; denote independent latent variables following the semiparametric regres-

sion model
U = {2181 +7(2) + 207.(2)} + &, (18)
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where ¢, are independent, identically distributed residuals following the distribution
function F(-). The response Y corresponds to the number of the first &, which is
less than the threshold ;.. This means we get Y = 1if Uy < Gy = 0. f Uy > By
we get Y = 2 if Uy < [yo and so on, until the first category r for which U, < Sy,

occurs (see also Tutz, 1991).

3.2 Local and Profile Likelihood Estimation

The sequential model is composed as sequential stopping process and it shows sim-
ilarities to discrete survival models. This mirrors in the likelihood as derived below.
Let again (Y;, z;,2;), ¢ = 1,...,n, denote a random sample with v/ = (yi1, ..., yi,)
as indicator vector, where y; = 1 if Y; = r and zero otherwise. Moreover, we define
the censor type variables d] = (dj,...,d;,) with d;; = 1if Y; > r and d; = 0

otherwise. This allows to write the log-likelihood function as

B2} = 33 duln(B,7) (19)

i=1r=1

with ;- (8, 7vi) = yir log{7s /(1 —73) } +1og(1—7;) and 7, = P(Y; = r|Y; > 1,24, ),
as given in (17), and 87 = (Boa, - - - Bog, 1), v(x) = {70(x), 11 (x)"}*. Therefore the
likelihood may be written nicely as sum of contributions of a univariate binary
response model. With F(-) being the logistic distribution function, the likelihood
(19) is equal to the likelihood of a logit model for the random sample y;,., x;, z; for
1 =1,...n, r = 1,...,q and d; = 1. The corresponding model for ;. equals
P(yir = 124, 2, dip = 1)=F{Bo, + 21i8. + Y0(xi) + 22i7.(x;) } and restriction fy; =0
(compare Fahrmeir & Tutz, 1994, ch 9). Estimation is carried out by local and
profile likelihood as in the previous section. Let Z;; and Z; be defined as in

the previous section and let Z;; and Zy; denote the r-th row of Z;; and Z,,,
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respectively. Considering (3 as fixed, the local likelihood for estimating v; = v(x;) =

{vo(;), 7. (2;)}T becomes

Z Whij Z dir{ Z3 501y (B, } (20)

where 1,,;.(-) = 0F(n)/0n var(yi|dir = 1) (ysr — 7ir). Inserting 7; in the profile
likelihood leads to the estimating equation
n q o N
> diel Z1 4y lnir (B, 7)) (21)
1=1r=1

where Zl,ir — Zl,zr a:)\/zT/(aﬁ) 2]1" and

oFr _
aB {th ij Zd Zf]rlﬂﬂﬂ ZZJT}{Z Wh,ij Zd ZzT]rlnnJr By i) Za,jr } !
j=1

is found by differentiating (20). The results derived in the previous section hold in
the same way for the sequential models. In particular, due to the factorization of
the likelihood, (20) and (21) give equations from a univariate response model. One

finds as estimates for the variance var(%;) and var(()
var(y;) = {iwh,zj Z djr 23, Fjr Zo g}
(3 iy 3 o 283 o 2oy W3 s Y 28 P (2)
j r= =
AO) = (X ) (23)
i=17=1
with Fj, = —E(ly.jr(5,7;). One should note that the components d;,, j =1,...,n

and 7 = 1,...,¢ in (22) and (23) are random variables which makes the variance

formulae of non-standard structure. Details are found in the appendix.
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3.3 Example

Example (continued)

We revisit the knee pain example form above and model the pain as sequential model
P(Y =1|Y > r, treatment,age) = F{fo + treatment 3, + vyo(age)}

with F'(-) as logistic link. Parameter estimates are shown in Table 3. For comparison,
we also fit a parametric sequential model with quadratic age effect. The treatment
effect shows to be the same in the parametric and semiparametric model, both with
comparable standard deviations. The threshold parameters (3;, now have a different
interpretation than those in the cumulative model. Here, they give the effect upon
the non-transition to a higher level of the pain. In Figure 4 the smooth age effect
is shown for both smooth models, i.e. for the cumulative and for the sequential
model. It is seen that the effects are rather similar in both models. This is not
surprising since there are specific link functions, e.g. the link function resulting from
the extreme value distribution, where cumulative and sequential model are identical

(see e.g. Ladrd & Matthews, 1985 or Tutz, 1991).

4 Discussion

Both types of models, the cumulative model as well as the sequential model, are
extended to the semiparametric case above. The derivation is given for the case
that the thresholds do not depend on covariates, which in both cases may be derived
from a latent variable framework with nice interpretations. Assuming the thresholds
themselves to depend on covariates one assumes that the predictor incorporates

category specific effects like 1, = Bo, + 21 B, +or (z) + 23 7., () for the r-th category.
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in this case not only the intercepts but also the effects of z and x are specific to
the category r. Of course, any combination of category specific and global effects
is possible. The only modification in comparison to the case treated in the paper
is, that the design matrices Z; and Z; are now constructed differently to cope for
possible category specific parameterization, e.g. Zs gets a diagonal type structure.
The fitting procedure and the asymptotic results itself remain unchanged. For the
case of the sequential model, purely category specific effects are of less interest, since

this corresponds to fitting separate binary models.
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A Technical Details

The Cumulative Model

For notational convenience we write [, ; for [, ;j(3,7;), this means we neglect the
parameter argument if we refer to the true parameters. Moreover with [, ; =
ol ;/(0n) we denote the second order derivative of the j-th likelihood contribution
and Fj=—FE(ly,;)=E(lyl,,;)={09 " (n;) /On}cov(y;) {9~ " (n;)/On}" denotes the
Fisher contribution. We use a bold notation if we refer to sums of elements, e.g.
Fi, = Y, Z1,F;Z5;, and we additionally use subscript (i) if we refer to weighted
sums, e.g. Foy () = 3w ij 22 ;F;Zs 5. We do not formally write down the technical

assumptions required for the following statements, but essentially what is needed is

that all Fisher matrices like F; or Fgy ;) are invertible for 7 = 1,...n. This holds
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for n sufficiently large, if the design density f(z1,22,2) is not degenerated, and if
h tends sufficiently slow to zero, i.e. nh — oo. For a more thorough discussion of
these points we refer to Kauermann & Tutz (2000). We expand (8) about 7; by
considering 3 as true parameter, which is supposed to be known. This yields
0 = > wnijZogilys +lmgZe;(Fi— ) +-- -}
J

SYi—v% = F221 th iiZ2,i8ng + FjZai(vi — 75) } (24)
j

+0,(n 'h ™) 4+ Op(n V2012 + O(hY)

where the asymptotic correction components follow by simple but tedious expansion
(see Kauermann & Tutz, 2000). Since [, ; and [, ; are independent for ¢ # j and have
zero mean one directly obtains (12). Moreover, the bias E(5; — ;) equals F22 1ba(i)
with by iy = 3 wh,ijZo,jF;Z2 (7 — 7;). Using standard smoothing arguments one

can show that Fa ;) has order O(nh) and by ;) = O(nh?) so that E(5;—;) = O(h?).

With 753 we now denote the solution of (8) for f fixed, i.e. we make the de-
pendence of 7; on 3 explicit in the notation. Hence %E denotes the final estimate.

Expanding (9) about the true parameters § and ; yields

0 = Zzun, )
= ZZ (i + b { 2148 = B) + Zoa (5= 1)} + -]
= ZZ (i + {2148 = B) + Zoi (g = 1)} + -]

S p-0 = Fy Z Zl,i{ln,i - EZ?J(’AVZ'W - %)}] + .

where Fi; = ¥, Z{ZFZ-ZLZ-. It is shown in Severini & Wong (1992) that the expect-
ation of the latter component above has negligible order O(h'). We give a short

sketch of the statement here. Using expected second order derivatives in (10) gives
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Zl,i = Zl,i — F12,(i)F;2{(i)Z2,i with FlZ,(i) = E] wh,ijZ%:jleZQ,j- Maklng use of (24)

and using the above definition of Zl,i one finds

E(B— )

= _ﬁ1—11{z ZIYZZ'FZ'Z?,Z'FEQI,(Z')bQ:(i) - Z F12,(i)F2_21,(z')Z2,iEZZ,iF2_21,(z‘)b2y(i)}- (25)
Matrix Fap ;) =: Fay(s;) can be interpreted as a conditional mean in the sense
Foou0)/(nh)= E,, ,,|Z3 F{Z18 + Zyy(x)} Zs|x;]{1 + O(h?)}, where the expectation
E,, ., (-|z;) is carried out with respect to the conditional design density f(z1, 22|%;)
and F{n} = —FE{l,,(n)}. Note that in the simple model (3), where 2; and 2z
does not exist, formal integration is not required and Fao (;) in this case is a simple
function in x;. Making use of the conditional expectation interpretation it follows,

for instance,
nhd_ Fo i Zsibi2n,
= 0 [l [ ZF20 + 20 2af (1, 2}z f@)da{1 + O0))
~n / F oy Fao o) f (2)dz{1 + O(h?)} = nI{1 + O(h?)}
with I as identity matrix. Using arguments similar to this shows that the two

components in (25) coincide up to order O{bias(7)}O(h2) = O(h*) so that E(3 —

B) = O(h*) as claimed in (11).

The calculation of the variance of B uses similar arguments. We first show that the
covariates Z; and Z, are asymptotically orthogonal. This follows by the definition
of Z, since

Fu/n = ZZ?ZFZZM/W
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Analogously one gets Fio ;)/(nh) = > Wh Z]Z F;Z5j/(nh) = O(h?*). This implies

now

cov {Z Zl] UNE {Z ZhiFiZs (s — %)}T}
= Z wnii 21 F2s, jFQZ{(i)Zg:iFiZI,i

— Z FioiFoiZa;FiZii{1 + O(h*)} = O(nh*).
and similarly

cov Z 71iFiZ2i(Fs — 1), A2 213 F; 22, (318 — 1) -
i J
Z Flo VP22, Fi72F 5 i )F21 @) = O(nh").

Making use of these results one directly finds (13).

The Sequential Model

Due to the factorization (19) of the likelihood, the results above directly transfer
to sequential models. It is however not ad hoc obvious that (22) and (23) hold,
since in contrast to above, the likelihood (19) is not standard due to d; which
is random. We show however, that this does not affect the asymptotic variance.
Let 1,; = i dirly i where as above we neglect listing of the parameters if we
refer to the true parameters. It is easily seen that E{/,;} = 0 which follows since
E{dil, ir|dir = 0} = 0 and by definition

aF ir _ ~
E(dirln,ir|dir = 1) = (3(7777 )var(yir|dir = 1) 1{P(yir - 1|d“n = 1) — 7Tir} = 0 (26)

In the same fashion it is shown below that the Fisher matrix contributions can be

estimated by

F‘i - E(ZWZ nz - Z Zdsz‘zr (27)

i r=1
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with F, = OF () Onievar (Yir [0y, dig = 1)~ OF (03 ) /O where 1 = Bor+21,ir B1+70 () +
22,ir7z(x;). Thus, the multinomial ordinal response, modeled as sequential model,

can be treated as univariate binary response resulting from the transition model.
Formula (27) follows since

q q q q
E{Z Z dz’rdisln,irln,ir} = Z Z Edir dis [E{lmirlmis

r=1s=1 r=1s=1

q
= Z Edir {E(ln,irln,irn/; > 7")} (28)
r=1

dir = ladis = 1}]

7 q
+2 Z Z L, a;, {E(ln,irln,isD/i 2 5)}

g
where we made use of the fact that (dj, = 1,d;; = 1) implies Y; > max(r, s).
The first term in (28) consists of elements E{l, ;,l,:|Y; > r} = F,. Considering
the structure of [, ;,, as given in the sequel of (20), the components in the second
term in (28) become E{l,ilyis|Yi > st=—WlIa,E{l,:s|Y: > s}=0 with W;, =
OF (n;) /Onirvar(yir|Mir, diy = 1)~ where we made use the fact that y;, = 0 by
definition, given the condition that Y; > s > r. It is easily shown that (28) simplifies
to S0 Eg, {E{lyirlnir|Y: > r}=20_ P(Y; > r|ny)Fir. Since d;, is the empirical
estimate for P(Y; > r|n;) with E(d;;) = P(Y; > r|n;), one obtains (27) as an
estimate for the Fisher matrix contribution. Using this property it is now direct to

transfer the results for the cumulative model from above to the sequential model.
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Figure 1: Simulated profile likelihood estimate Bl compared with backfitting estim-

ate for balanced design (upper row) and random design (lower row).



Profile Likelihood Estimates Backfitting Estimates

Balanced Design

parameter mean standard deviation mean standard deviation

Boz 1.04 0.23 1.02 0.22

Bo3 2.08 0.34 2.04 0.32

By 1.00 0.39 0.97 0.36
Random Design

Boz 1.00 0.21 0.97 0.20

Bos 2.01 0.31 1.97 0.30

Gy 1.04 0.44 1.09 0.40

Table 1: Mean and standard deviation of simulated estimates

coefficient estimate standard deviation studentized value

Semiparametric Model

Boz 1.28 0.17 7.56
Bos 2.30 0.21 11.13
treatment 1.14 0.26 4.67
Parametric Model
Bor 3.59 1.12 3.18
Boz 1.25 0.20 6.35
Bos 2.29 0.21 10.90
treatment 1.28 0.23 5.48
age -0.39 0.08 -4.92
age’ 0.006 0.001 5.30

Table 2: Parameter estimates in the cumulative model
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Figure 2: Fitted smooth age effect 7p(x) in the cumulative model

coefficient estimate standard deviation studentized value

Semiparametric Model

Boz 0.54 0.31 1.72
Bos 1.04 0.36 2.92
treatment 0.93 0.28 3.31
Parametric Model
Bor 1.96 1.73 1.13
Boz 0.56 0.20 1.78
Bos 1.08 0.21 3.00
treatment 0.94 0.23 3.35
age -0.27 0.11 -2.26
age? 0.004 0.001 2.44

Table 3: Parameter estimates in the sequential model
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Figure 3: Fitted mean Function E(U|z,z) with thresholds [y,
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Figure 4: Fitted smooth age effect 7o(x) in the sequential and cumulative model



