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SUMMARY

We consider the problem of an ITT analysis in a randomized clinical trial. Due to (study)
drop-outs, standard methods are not applicable and simple imputation methods like LOCF
(last observation carried forward) may lead to biased results.

Since a patient who drops out of the study often will also change or drop the assigned
treatment, an ”ignorable” analysis in the sense of Rubin (1976) assuming MAR (missing
at random), as e. g. a propensity weighted analysis or a likelihood based MAR-analysis
(Heyting, Tolboom and Essers (1992), Lavori, Dawson and Shera (1995)) is not valid. This is
due to the fact that information is missing about outcomes as well as the covariate treatment
after drop-out. That is, even if the drop-out process itself is ignorable, we can not treat the
problem as ignorable because of the missing covariate information.

Two different proposals for treating the problem were made from Little and Yau (1996),
who used a fixed effects model for modeling the treatment effect, and from Kleinman, Ibrahim
and Laird (1998), who used a Bayesian approach with a random effects model.

We follow the path given by Little and Yau (1996), who created multiple imputations under
various assumptions about the actual treatment after drop-out, and conduct a simulation
study on the a-error and power of simple endpoint tests. This should also shed light onto
the problem whether the true treatment effect can be sensibly bracketed by assumptions like
zero dose or continuing dose after drop-out.
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1 Introduction

In a recent article, Frangakis and Rubin (1999) state: " Randomized experiments with human
subjects often suffer from two major complications, namely non-compliance to treatment
assignment and missing outcomes”.

An intention-to-treat (ITT) analysis is the standard approach for randomized trials with
non-compliance. It is a valid method for estimating the effect of assignment (to a specific
treatment) on the population averages of the outcome Y. The ITT principal requires that
all subjects initially randomized to one of, say, two treatments, have to be included in the
analysis and that one has to analyse the data ”as randomized”. The latter means that even
if some subjects drop their assigned treatment and switch, e.g., to the Placebo group, we
treat them as if they have not dropped their treatment. In such a sense the I'TT analysis
is a method for dealing with treatment drop-out (Kleinman et al, 1998). In a Placebo-
controlled trial one expects, that the ITT analysis conservatively (underestimates) the true
biological effect of a new treatment, if there exists a treatment effect. It can be shown that
an analysis which uses the actual received treatment (”as-treated analysis”) or only the data
from compliers can be biased, see Nagelkerke, Fidler, Bernsen and Borgdorff (2000).

While it is clear how to apply an ITT analysis if the (final) outcomes of all subjects are
recorded, there is no standard way for an ITT analysis if some of the outcomes are missing,
e.g. because of drop-outs (study drop-out). It also can be shown that approaches which use
the assumption of missing at random (MAR) and analyse the data according to the ITT
principle may lead to an overestimation of the treatment effect (Kleinman et al., 1998).

In the following we study an extension of the multiple imputation ideas of Little and Yau
(1996) to the case of non-ignorable non-response using a selection model approach. We
assume that the treatment received after a drop-out is unknown and that the treatment can
be described by a binary treatment indicator (say, 1 for treatment, 0 for Placebo). This
scenario is clearly not relevant, if a subject has no access to the treatment after drop-out.

We study two main settings:

e Full compliance but missing data: non-response may be non-ignorable, that is de-



pendent on previous outcomes and previous received treatments, but the true data

generating process is such that each subject stays on the assigned treatment.

e Non-compliance and missing data: the actual received treatment in the treatment
group depends on previous outcomes, and: a treatment drop-out implies a study drop-
out. That means, non-compliance in the treatment group automatically leads to a

study drop-out (while a complier has some probability for a study drop-out).

In both settings we develop multiple imputation procedures for the missing outcomes based
on the assumption of non-ignorable non-response and some assumed treatment after drop-out
similar to Little and Yau (1996), namely the zero dose and continuouing dose assumptions.
The imputation model can be considered as a conditional model while a simple end-point
analysis is used for testing the ITT effect. In the following we describe the set-up of the

simulation study and describe more precisely the underlying assumptions.

2 Data generating model and missing model

We restrict ourselves to the case where each subject is measured before randomization
(baseline value) and at two distinct time points (7' = 2) after randomization. Denote
the baseline value by Z;y, and the two subsequent measurements by Y;; and Y;y, where ¢
is the subject index. Let further D,y and D;; denote the binary treatment indicators with
values 1 (treatment) and 0 (Placebo). We further assume that missing responses only occur
at the second time point and therefore Yy is possibly not observed. The indicator vari-
able R;y is always observed, taking values 1 (responded) if Y;y is observed and 0 if Y}, is
missing. The sample sizes for the two groups were hold fixed through the simulation at

NPlacebo = N’I‘reatment = 60 and thus N = 120.



2.1 Data generating model

The following models were used for generating the data:

Zin ~ N(0,1),
Yin ~ fi1:N(Oéo+Oél(Zi0—Zo)+OézDi0,U%)7 (1)

Yio ~  fion = N(Bo+ b1(Ya — Y1) + BoDis + B3(Zio — Zo), 03)

where Z; is the mean of all individual baseline values. If a subject is randomized into the
Placebo group then Dy = D;; = 0 in any case. That is, a subject receiving Placebo can
never receive a treatment whether it is a (potential) complier or not and whether it drops
out of the study or not. If a subject is randomized into the treatment group, D;p = 1. We
assume therefore that all subjects are compliers at least until the first measurement is made.
On the other hand, D;; depends on whether the subject is a complier or not. Summarizing,
we allow three treatment regimes: (Djy, D;;) = (0,0) for subjects in the Placebo group,
(Djo, D;1) = (1,1) for compliant subjects in the treatment group and (D;y, D;1) = (1,0) for
non-compliant subjects in the treatment group. We further assume, that the conditional
variances are equal in both groups.

We can compute the marginal expectations from (1) as

E(Ys) = ao+ aDjy ,

E(Yi2) = (6o —0.5010) + BiaeDig + 2Diy

where we have used that

- 1 NPlacebo NTreatment
E(V) = 5 = a4+ Y, (a0 + o)
Placebo T VTreatment i=1 i=1
= Qo+ 0-5052 since NPlacebo - N’I‘reatment

and therefore

E(}/ﬂ - }71) = OézDZ'O - 0.50[2 .



We can also formulate the expectations in terms of the randomization group and compliance

status:
g if subject 7 is in the Placebo group
E(Y;) = (2)
g + ay if subject 7 is in the treatment group
and
)
(Bo — 0.5010) if subject i is in the Placebo group
E(Yi) (Bo — 0.5010) + Pras + [y if subject 7 is in the treatment group and is a complier
i2) = 9

(Bo — 0.501a5) + Prag if subject 7 is in the treatment group

and is a non-complier
(3)
As can be seen, even if a subject is a non-complier, there is a ”carry-over” effect (ias.

2.2 Missing model

We used a logistic regression model for modeling the drop-out probability:

pr(Riz =1) ( o > _ ~ )
og (pT(Riz — 0) og 1_ Tio ’YO"”VI( 2 2)"”)/2( 1 1)—|—’y3 1—|—fy4( 0 0) ( )

A ceterus paribus interpretation can be given as follows: if 73 > 0, then a subject ¢ where
(Yo — 572) > 0 has higher probability of being observed in T' = 2 than a subject where this
difference is negative. If 3 > 0, a subject ¢ which is in the treatment group and is a complier
(D;; = 1) has higher probability of being measured in 7" = 2 than a subject which is in the
treatment group but is a non-complier, etc. We note, that non-compliers have a different
drop-out rate than subjects in the Placebo group, if there is a treatment effect and if ; # 0
and/or 75 # 0, since the responses Y;; and Y, themselves are influenced by the treatment

after randomization (D).



3 A multiple imputation procedure for non-ignorable
non-response

In the following we describe a multiple imputation procedure applicable to the case of non-
ignorable non-response. Although the basic ideas can be found in Shafer (1997) for the MAR
case, we have to develop a method where the missing model has to be incorporated in the
estimation and imputation tasks. The procedure is a Bayesian approach and repeats the

following steps:

e P(robability)-Step: draw #) from the conditional distribution of the parameters given
observed and imputed data. #® stands for the vector of all parameters used in the

described models above.

e I(mputation)-Step: draw YZ-(QP) from the conditional distribution of the missing data

given 6®) and the observed data for all i, where R;, = 0.

In the following we describe in detail the Bayesian procedure.

3.1 Complete data likelihood

As we use a selection model, the joint distribution of the response Y and the indicator

variable R can be factorized as

Y, R] = [R]Y][Y] .

To be precise, let Y5 be the potential outcome in T' = 2 with Y5 = Yo, if the response
of subject 7 is observed and Y;; = Y7 if the response of subject i is missing. Then the
contribution of subject i to the complete data likelihood is (in the following we condition on

the baseline values Z;)

1 1
L; = exp {——Q(yﬂ — g — o (20 — %) — OézDio)Z}
21o? 207
1 1, ) N
X exXp _—Q(yiQ — Bo — Bi(yin — 1) — B2Din — P3(2i0 — Z0))
2103 203



X [ exp {70 + 71 (¥ — 5) + Y2y — 1) + v3Dix + va(zio — Z0) } r?
L+exp{vo+ 7y —¥5) +v2(yir — 41) + v3Dix + va(zi0 — 20) }
1 (I—Tiz)
X
[1 +exp {0 + (¥ — ¥5) + v2(ya — 41) + v3Dir 4 Ya(2i0 — ZO)}]
= fufpmigt(1—mg)' " (5)

We note that the observed data likelihood contribution of subject ¢ is
L?bs = fufaomi
if the response in 17" = 2 is observed, and
L = fa [ Fall = mo)dyy

if the response in 7" = 2 is missing.

3.2 Prior distributions

Since we implement a Bayesian procedure, we need to choose some prior distributions for

the model parameters.

Parameter a = (ag, a1, a3): In the complete data case, a can be estimated by a regression

of the ;1’s on the baseline value and treatment indicator. We choose a diffuse prior for a:
P(a) o const .

Parameter 0?: We choose a highly dispersed Gamma distribution with parameters 1 and

0.001 for the precision 7 = 1/0%:

P(7) ~ G(1,0.001) .

Parameter 3 = (o, 01, 32, 43): As for a, we choose a diffuse prior

P(B) o const .



Parameter o3: As for 07 we choose a highly dispersed Gamma distribution with para-

meters 1 and 0.001 for the precision 7, = 1/03:

P(73) ~ G(1,0.001) .

Parameter v = (y0,71,72,73,71): For the parameters of the missing model we choose

independent normal and informative priors:

P(y) = P(n)=P(r)=P()=P(yu) ~N(0,1)

P(y) = HOP(%‘)-

3.3 Creating multiple imputations by data augmentation

Let Y, and Y,,;s denote all observed and missing responses and (Y7, Yy") all potential out-
comes. Further let R, be the vector of all missing indicators and 6 = (a, 3,7, 71, 72).
Having defined the complete data likelihood and the priors, a data augmentation procedure
(Shafer, 1997) allows us to create proper imputations for the missing values. The procedure
has much similarity with the EM-algorithm: the E-step is replaced by a P-step, a draw from

the complete data posterior distribution
P(GD/;)[)S) Ymis: RZ) - P(9|}/17 }/2*7 RZ) )
and the M-step is replaced by an I-step, a draw from the posterior predictive distribution
Ymis ~ P(Ymis|Y;)bs; RQ; 0)
The complete data posteriori distribution is with (5) and the priors in section (3.2) given by
N
POy ) (T2 ) PP )
i=1

The P- and I-steps are then repeatedly applied. In the following, the details are given.



P-step: The P-step is built by the following MCMC updating scheme. We assume that
the missing values Y,,;s have been imputed such that we have generated a complete matrix
of potential outcomes (Y7,Y5). Since the full conditionals are proportional to the joint

posterior, we get,

N 7_1

P(ri|o, 12, 8,7, Y1,Y5) o< [] [(7'1)% exp {_E(yil — g — aq (20 — Zp) — OézDz'o)ZH P(r)
i=1
(7)
With the chosen Gamma-prior for 7; it can be shown that the full conditional is also a

Gamma distribution with parameters

N 1Y
G (]. + 5, 0.001 + 5 Z(yll — Oy — al(ZiO - 20) - OézDio)2> . (8)
i=1
Further,
* N 71 = 2
P(alr, 7, 8,7, Y1,Y5) o< [] [exp {—5(%’1 — ap — a1 (20 — Zp) — D) H 9)
i=1

Let o}, = (1, (2zi0 — Z0), Dio) and X; = (211, ..., 2n1)". Then (9) may be written as
P(alm, 72, 8,7, Y1, YY)
x exp{ =2 - Xia) (i - X))
X exp {—%[a’(X{Xl)a Y/ Xia— &' X]Y] + Yl'Xl(X{Xl)lX{Yl]}
— exp {—%[a — (XX XY (XX [a — (X1X) XY } (10)
which is the kernel of a multivariate normal distribution with parameters

MVN(&, 77 (X1X1)7) (11)

where & = (X]X;) ' X]Y] is the least square estimate of the regression of ¥; on X;. Random
variates can be generated by using "independent” standard normal pseudo random variates
and a Cholesky decomposition of (X X)~!'. Analogously, the full conditional for 7y is

N
G <1 + g, 0.001 + % > (i — Bo — iy — i) — B2Diy — Ps(zi0 — Zo))2> (12)
i=1



and the full conditional for 3 is
MVN(B, 75 (X3X5) ) (13)

where @, = (1, (yir — i), Dir, (zi0 — %0)), Xo = (212, ..., 2n2) and B = (X} X,) "' XYy, The

last full conditional we have to look at, is

(7|7_17a 7_25/6 }an*)
x HWW (1 —m) 2P ()

1

4
x H 7rm2 1— 7Ti2)17”2 H eXp(_EVJZ) ) (14)
j=0

from which can be sampled by a Metropolis-Hastings (MH) step. For simplicity we update
each parameter separately using a normal proposal centered at the current value. The
proposal variance is automatically chosen in a first trial run such that the acceptance rate
lies in the interval [0.2,0.6] for all parameters. Let ¢(-) denote the standard normal density
function and, e.g. 7] a new proposal for ;. Further, let ms = m(v0, 71,72, 73, 74) and
Ty = T2 (Y0, V15 Y2, V3, Ya)- Since we have chosen standard normals as priors for the parameter
vector v and the proposal distribution is symmetric, one computes the ratio

¢ = I, iy (1 — mhy) 7 o)
Iy w37 (1= m)t e d(n)

(15)

and accepts the proposal 7] with probability min(1,¢). A modification to prior variances

other than 1 is straight forward.

I-step: In the I-step, we have to draw from the posterior predictive distribution of the
missing values given the actual parameter values and the observed data. Since we assume

independence among subjects, we get for subjects with missing ;o m:s (and therefore r;; = 0):

P(in,mis|7—1; «, T2, 167 Y, }/;)bsa Ymis,—z')
T
_g(yilmis — Bo — Bi(yan — 1) — BaDin — Bs(zi0 — Z0))2}
1

X
1+ exp {70 + 71 (Yiz,mis — T5) + V2(¥ir — 71) + ¥3Dir + Ya(2i0 — Z0) }

x exp{

10



where we assume, that the missing values of subjects other than i are actually fixed or
imputed (therefore Y, _; in the condition). Note, that y; contains v m:s. To get draws
from this conditional distribution we again apply MH-steps independently for each subject
with a missing y;2 mis using normal proposals centered at the actual value of ;o is. As can

be seen one has to recompute the mean g3 to compute the ratio ¢ as in (15) in each step.

4 Measuring the ITT effect

Usually, the data augmentation algorithm is run for a pre-specified number of iterations
where the parameters and the imputed missing values are stored after an initial burn-in
phase. Since we are mainly interested in the I'TT effect, that is, the difference of the marginal
means in the two groups at the endpoint in 7" = 2, we looked at only m completed data sets.
In our simulation study we chose m = 10, which should be sufficient. Since the run length
was 2500 for each parameter setting (after a burn-in of length 2500), we simply take every
250-th completed dataset for the anylysis of the ITT effect where we hope that the draws
from the posterior predictive distribution with lag 250 are approximately independent. That
is, for measuring the I'TT effect, we take each completed dataset k = 1,..., m, and compute
the regression

Yio = K+ wDi,assigned + error (17)

where y;o is an observed or imputed value and D; gsigneq is the assigned (not the actual
received) treatment. This results in m least square estimates U with associated estimated
variances Ug. According to a rule for combining the estimates given by Rubin (1987), we
can construct a confidence interval for ) from the m completed data sets as follows under

the assumption of asymptotic normality of U, Y (= ahy):

_ 1 m.

1/) = E};wk

_ 1 mm

U — E};Uk

B = %Z(W—lbf
k=1



V = U+(1+m "B, (18)

V' is called the total variance, which has as components the within imputation variance U

and the between imputation variance B. A 100%(1 — «) CI is given by
bt (1 - %) Vs (19)

with v = (m — 1)(1 +17"? and [ = (1 + m~')B/U. Analogously a test for the hypothesis

Hy : ¢ = 0 versus the alternative H; : 1) # 0 can be constructed.

5 Simulation results

In the following we give the simulation results splitted into two parts. In the first part, the
true data are generated according to the assumption, that all subjects stay on their assigned
treatment, that means either D;y = D;; = 0 or Dy = D;; = 1 (no non-compliers). In the
second part we drop that assumption. We compare the multiple imputation procedure with
complete case analysis (CC) and last observation carried forward (LOCF) under different
assumptions about the missing model: missing completely at random (MCAR), missing at
random (MAR), non-ignorable non-response (NI). Each result is based on 1000 simulations
where each simulation consists of 2500 repeated applications of the P- and I-step after a 2500

burn-in phase. Every 250-th imputation is used to produce a 95%-CI for the ITT effect.

5.1 Full compliance case

In the full compliance case, the true treatment difference is given by Gias + Go. We tried
a number of different parameter settings: no treatment effect, increasing treatment effect,
increasing and decreasing treatment effect, etc. The results are given in tables 1, 2 and 3.
The first two columns in table 1 show a parameter setting, where the missing processes are
MCAR and MAR and where the treatment effect is zero. The responses at both time points
depend on the baseline value (ay = 3 = 1). As can be seen, all methods work sufficiently

well. The row denoted by ”full” (F) takes the ”true” response value known in the simulation

12



for measuring the I'TT effect. The MI procedure is slightly conservative, especially in the
MAR case. The last two columns in table 1 describe a case where the treatment effect is
(linearly) increasing over the two time points. The missing processes are MAR and NI. In
the MAR case the response probability is higher for individuals with a response exceeding
the mean response in ¢ = 1 and is higher in the treatment group (73 > 0). In the NI case,
the response probability depends on the (possible unknown) response in ¢ = 2 in a similar
way. CC has the lowest power, F' has the highest power and LOCF and MI are comparable
and lie between CC and F.

The first two columns in table 2 describe a situation where the treatment effect is first
increasing and then decreasing in a way that the marginal treatment effect in ¢ = 2 is zero.
MAR and NI situations were simulated. In both situations, LOCF exceeds the nominal
value with a very high value of 0.094 in the NI case. That is, LOCF in nearly 10% of the
1000 simulations wrongly detects a treatment effect. That can be explained by the fact the
LOCEF procedure simply takes the observed values at t = 1 where some effect exists and thus
the imputed values in the treatment group are in general too high. The last two columns
describe a case similar to the last two columns of table 1, but where the response probability
is lower for individuals exceeding the mean response in ¢ = 1 (MAR) and ¢ = 2 (NI). The
results are as expected with CC having the lowest power and F the highest.

Finally, the last column in table 3 gives the results for a case where the response probability
is lower for subjects exceeding the mean in t = 2 and higher drop-out probability for subjects
in the treatment group. The treatment effect is again linearly increasing. The power of CC

completely breaks down in that case.

5.2 Non-compliance case

We have also made two simulations for the non-compliance case, where the actual treatment
D;; in the treatment group is dependent on the response in ¢ = 1. That is there are some
individuals having a true treatment regime of (1,0). We have simulated the ”true” actual

received treatment before ¢ = 2 in the following way: let U a uniform random number on

13



[0,1]. Foralli=1,...,N

5 1, ifU<05+05(Y; —Y)) ()
il =
0, else (xx)

12 Further, treatment drop-out implies study drop-out:
P(RZ2 == 0|D21 == O,Dio == 1) =1.
The imputations were then applied under two models:

e zero dose model: the assumption is, that any subject that drops out, has no access to

the treatment and thus only has some ”carry-over” effect.

e continuing dose model: the assumption is, that any subject that drops out, continuoues

its assigned treatment.

For both assumptions confidence intervals were calculated. The results are given in table 4.

The first column shows the results for a linearly increasing treatment effect. Since some
subjects are non-compliers, the overall mean effect is smaller (< 1) than if all subjects would
comply to their assigned treatment. The methods produce the expected results: zero-dose
leads to an under-estimation of the true treatment effect (the true parameter lies above the
upper bound of the CI in all cases where it isn’t covered by the CI), continuouing dose leads
to an over-estimation of the true treatment effect (in nearly all cases the true parameter lies
below the lower bound of the CI if the parameter is not covered by the CI).

The second column shows the results for the case of an increasing and then decreasing
treatment effect. Now the results are contrary to the results of the former case. Under the
continuous dose assumption, the treatment effect is under-estimated. The true parameter is
covered by the CI in only 60% of the simulations. In all other cases it lies above the upper
bound of the CI. An explanation could be the following: the missing model correctly identifies

the dependence on D;; (more drop-outs in the treatment arm) but incorrectly estimates the

L(x) is always fulfilled, if 0.5 + 0.5(Y;; — Y1) > 1.
2(x%) always fulfilled, if 0.5 + 0.5(Y;; — Y1) < 0.

14



dependence on (Y — Y3) (the estimate 4; is in most cases greater than zero) and thus
incorrectly assumes that individuals with low values of (Y3 — Y3) have higher probability
of drop-out. The imputed values are therefore too low and the estimate of the treatment
effect is biased towards zero. Omn the other hand, under the zero dose assumption, the
missing model correctly identifies the dependence on (Y;2 — Y3) but incorrectly estimates the
dependence on D;; (the estimate 43 is in most cases greater than zero) and thus incorrectly
assumes a lower drop-out rate in the treatment group. This leads to an over-estimation of

the treatment effect.

6 Discussion

We have developed a method creating multiple imputations under a selection model for the
missing process. The first set of simulations show that MI is a relatively stable procedure,
while CC may break down concerning the power of detecting a true treatment effect and
LOCF may falsely detect a treatment effect to often. In the case of non-compliance, new
issues arise, when using the zero or continuous dose assumption. A combination of both
methods may give bounds for the treatment effect, but the resulting interval may be too
long to draw a definite conclusion about the effectiveness of the treatment, especially if
the sample sizes are as small as in the simulation study. It seems that the progress of
the treatment effect has an influence on the quality of the ad hoc methods as well as our
extended MI procedure. As a cautionary note, we remind that selection models are known
to be very sensitive. Their value lies in the possibility of a sensitivity analysis, especially
using a Bayesian approach. We do not claim that each simulated situation is realistic but
the examples show how the ad hoc methods can fail even in simple set-ups. To handle
more realistic situations, methods for dealing with different causes for drop-out have to be
developed. An approach, where a random effect influences the compliance as well as the
response probability (representing e.g. the health status) could perhaps be an interesting

alternative to this approach.

15



MCAR MAR || MAR NI
o 0 0 0 0
o1 (Zin— Zo) |1 1 1 1
as (Dy) 0 0 0.5 0.5
Bo 0 0 0 0
B (Yin — 571) 0 0 1 1
By (Dyy) 0 0 0.5 05
Bs (Zin — Zy) |1 1 0 0
Yo 0 0 0.5 0.5
7 (Ye—Y2) |0 0 0 0.5
v (Yu—=Y1) |0 0.5 05 0
vs (Di1) 0 0 0.2 02
Y (Zio —Zo) |0 0 0
A (Brag+02) | O 0 1 1
Sig. 0.05 0.05 || 0.05 0.05
Full 0.053  0.054 | 0.87 0.89
CcC 0.057  0.05 | 062 0.58
LOCF 0.057  0.054 | 0.75  0.78
MI 0.040  0.032 || 0.75 0.74

Table 1: Full compliance case; left two columns: treatment effect zero; right two columns:

increasing treatment effect

16



MAR NI MAR NI
Qg 0 0 0 0
o (Zig— Zy) | 1 1 1 1
s (D) 05 05 [05 05
B 0 0 0 0
b (Ya—1) |1 1 1 1
Bs (Dj1) -0.5 -0.5 0.5 0.5
Bs (Zig— Zy) |0 0 0 0
Yo 0.5 0.5 0.8 0.8
7 (Vi — V3) 0 0.5 0 -0.5
v (Ya—-Y) [05 0 05 0
s (Di1) 02 02 |02 02
Y4 (Zig— Zy) | 0 0 0 0
A (Braz+02) | O 0 1 1
Sig. 0.05 0.0 0.05 0.0
Full 0.047 0.046 || 0.87  0.88
CC 0.041 0.049 || 0.75  0.72
LOCF 0.071 0.094 || 0.79  0.79
MI 0.031 0.036 || 0.78  0.79

Table 2: Full compliance case; left 2 columns: first increasing than decreasing treatment

effect; right 2 columns: linearly increasing treatment effect
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Yo 0.5 1.0
7 (Yo —Ya) |-15 -15
Yo (Vi1 — 71) 0 0
v3 (Di1) 1.0  -1.0
Ya (Zio— Zo) |0 0

A (frag+ ) | 1 1

Sig. 0.05 0.05 (0.1)
Full 0.88  0.89 (0.93)
CC 0.77 0.15 (0.24)
LOCF 0.79 0.76 (0.84)
MI 0.79  0.47 (0.70)

Table 3: Full compliance case; higher versus lower response rates in the treatment group

(than in the Placebo group) in the case of a linearly increasing treatment effect

18



NI NI
Qg 0 0
a1 (Zio — Zy) 1 1
ay (Dio) 0.5 1
Bo 0 0
B (Ya — Y1) 1 1
Ba (Dj1) 0.5 -1
Bs (Zio — Zy) 0 0
Yo 0.5 1.0
1 (Yio — Y3) -1.5  -1.5
V2 (Yzl 1) 0 0
vs (Di1) 1.0 -1.0
Y1 (Zio — Zo) 0 0
A (# fras + (2) <1 >0
Level of confidence | 0.95  0.95
Zero dose 0.94¢ 1.0
Cont. dose 0.95° 0.6¢

Table 4: Non-compliance case; *) In all other cases the true parameter lies above the upper
bound of the CL. °) In nearly all other cases the true parameter lies below the lower bound

of the CI ¢) In all other cases the true parameter lies above the upper bound of the CI.
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