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SUMMARY

We present a uni�ed semiparametric Bayesian approach based on Markov random
�eld priors for analyzing the dependence of multicategorical response variables on
time� space and further covariates� The general model extends dynamic� or state
space� models for categorical time series and longitudinal data by including spatial
e�ects as well as nonlinear e�ects of metrical covariates in �exible semiparametric
form� Trend and seasonal components� di�erent types of covariates and spatial
e�ects are all treated within the same general framework by assigning appropriate
priors with di�erent forms and degrees of smoothness� Inference is fully Bayesian
and uses MCMC techniques for posterior analysis� We provide two approaches�
The �rst one is based on direct evaluation of observation likelihoods� The second
one is based on latent semiparametric utility models and is particularly useful for
probit models� The methods are illustrated by applications to unemployment data
and a forest damage survey�

KEYWORDS� Categorical time�space data� forest damage� Markov random �elds�
MCMC� semiparametric Bayesian inference� unemployment�

� Introduction

Multicategorical longitudinal data consists of observations 	Yit� xit
� i � �� � � � � n�
t � �� � � � � T � for a population of n units observed across time� where the response
variable Y is observed in ordered or unordered categories r � f�� � � � � kg� Covari�
ates may be time�constant or time�varying� For T small compared to n� generalized
estimating equation approaches are a popular choice for data analysis� For mod�
erate or larger T � dynamic or state space models are a useful alternative� see� e�g��
Fahrmeir and Tutz 	��� ����� ch��
� For the special case 	n��
 of categorical time
series� dynamic generalized linear models are a meanwhile well established tool for
approximate or full Bayesian inference�

In this paper� we consider multicategorical time�space data� where the spatial loca�
tion or site s on a spatial array f�� � � � � s� � � � � Sg is given for each unit as an additional
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information� We also distinguish between metrical covariates xt � 	xt�� � � � � xtp

��

whose e�ects will be modelled and estimated nonparametrically� and a further vec�
tor wt of covariates� whose e�ects will be modelled parametrically in usual linear
form� Multicategorical time�space data on n individuals or units then consists of
observations

	Yit� xit� wit� si
� i � �� � � � � n� t � �� � � � � T� 	���


where si � f�� � � � � Sg is the location of individual i�

A typical example are monthly register data from the German Employment O�ce
for the years ������� where Yit is the employment status 	e�g� unemployed� part
time job� full time job
 of individual i during month t and si is the district in
Germany where i has its domicile� Data from surveys on forest health are a further
example� Damage state Yit of tree i in year t� indicated by the defoliation degree�
is measured in ordered categories 	severe to none
 and si is the site of the tree on
a lattice map� In both examples� covariates can be categorical or continuous� and
possibly time�varying�

In general� time�space data of this kind cannot be analyzed adequately with existing
nonparametric or conventional parametric methods� We present a uni�ed semipara�
metric Bayesian framework for jointly modelling and analyzing e�ects of time� space
and di�erent types of covariates on categorical responses� Trend or seasonal compo�
nents� spatial e�ects� metrical covariates with nonlinear e�ects and usual covariates
with �xed e�ects are all treated within the same general framework by assigning
appropriate priors with di�erent forms and degrees of smoothness� This broad class
of models contains state space models for categorical time series considered in pre�
vious work as a special case� Inference is fully Bayesian and uses recent MCMC
techniques� We suggest two approaches for MCMC inference� The �rst one is use�
ful if the likelihood of the data� given covariates and unknown parameters� can be
easily computed as for cumulative or multinomial logistic models� Markov chain
samples are then generated by an extension of Metropolis�Hastings algorithms de�
veloped in Fahrmeir and Lang 	�
 for univariate responses� The second approach
is based on latent variables� where the observable categorical responses are generated
through threshold or utility mechanisms� For latent Gaussian variables this leads
to multicategorical probit models� see Albert and Chib 	��
 for the simpler case
of linear predictors� and Yau� Kohn and Wong 	����
 for nonparametric regression
using basis functions� For MCMC inference� Gaussian latent variables are consid�
ered as unknown additional �parameters� and are generated jointly with the other
parameters in a Gibbs sampling scheme� E�cient methods for sampling from high
dimensional Gaussian Markov random �elds are incorporated as a major building
block�

Section � describes our Bayesian semiparametric regression models for categorical
responses� observed across time and space� and depending on unknown functions
and parameters� MCMC algorithms are presented in Section �� In Section �� the
methods are applied to reemployment chances based on categorical time�space data
on 	un�
 employment status and to data from a forest health inventory�
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� Semiparametric Bayesian models for multicat�

egorical time�space data

Categorical response models may be motivated from the consideration of latent
variables� This is not only useful for construction of models� but also for Bayesian
inference� treating latent variables as additional unknown �parameters��
For the case of a nominal response Y with unordered categories ��� � � �k� let Ur be a
latent variable or utility associated with the r th category� Assume that Ur is given
by

Ur � �r � �r� 	���


where �r is a linear or semiparametric predictor depending on covariates and para�
meters� and ��� � � � � �k are random errors� Following the principle of random utility
the observable response Y is determined by

Y � r � Ur � max
j�������k

Uj� 	���


i�e�� in choice situations the alternative is chosen which has maximal utility� De�
pending on the distributional assumptions for the error variables �r� equation 	���

yields di�erent models� If the ��s are i�i�d� normal� one gets the independent pro�
bit model� The more general multivariate probit model allows correlated noise
variables� Assuming i�i�d� error variables following the extreme value distribution
F 	z
 � exp	�exp	�z

 yields the multinomial logit model

P 	Y � r
 � exp	�r
�	exp	��
 � � � �� exp	�k

�

Since only di�erences of utilities are identi�able we may set �k � � for the reference
category k� With a linear predictor �r � w��r� one obtains the common form

P 	Y � r
 � exp	�r
�	� � exp	��
 � � � �� exp	�k��

� r � �� � � � � k � ��

of a parametric multinomial logit model�
For the case of an ordered response Y � cumulative models based on a threshold
approach are most widely used� It is postulated that Y is a categorized version of a
latent variable

U � � � �� 	���


obtained through the threshold mechanism

Y � r� 	r�� 
 U � 	r� r � �� � � � � k� 	���


with thresholds �� � 	� 
 	� 
 � � � 
 	k � �� If the error variable � has
distribution function F � it follows that Y obeys a cumulative model

P 	Y � r
 � F 		r � �
� 	���


With a linear predictor � � w�� one gets parametric cumulative models� For iden�
ti�ability reasons� the linear combination does not contain an intercept term ���
Otherwise one of the thresholds� for example 	�� had to be set to zero�
The most popular choices for F in 	���
 are the logistic and the standard normal
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distribution function leading to cumulative logit or probit models�
For multicategorical time�space data 	���
� we generally assume more �exible semi�
parametric predictors� For nominal responses Yit� the general form of a semipara�
metric additive predictor associated with category r is

�itr � f r
time	t
 � f r

spat	si
 �
pX

j��

f r
j 	xitj
 � w�

it�r� 	���


Here f r
time and f r

spat represent possibly nonlinear e�ects of time and space� f r
� � � � � � f

r
p

are unknown smooth functions of the metrical covariates x�� � � � � xp� and w�

it�r cor�
responds to the usual parametric part of the predictor� Note that the latter may
also contain a 	category speci�c
 intercept� Depending on the analysed dataset� the
e�ect of time f r

time may contain only a nonlinear time trend or may be split up into
a trend and a seasonal component� i�e�

f r
time	t
 � f r

trend	t
 � f r
season	t
�

In analogy we usually split up the spatial e�ect f r
spat into a spatially correlated

	structured
 and an uncorrelated 	unstructured
 e�ect

f r
spat	s
 � f r

str	s
 � f r
unstr	s


A rational therefore is that a spatial e�ect is usually a surrogate of many unobserved
in�uential factors� some of them may obey a strong spatial structure and others may
be present only locally� By estimating a structured and an unstructured e�ect we
aim at separating between the two kinds of in�uential factors� As a side e�ect we
are able to assess to some extent the amount of spatial dependency in the data by
observing which one of the two e�ects exceeds� If the unstructured e�ect exceeds�
the spatial dependency is smaller and vice versa� With the same arguments we
could also divide up the time trend f r

Trend	t
 into a correlated and an uncorrelated
component� Such models are common in spatial epidemiology� see Besag� York�
Mollie 	��
 and Knorr�Held� Besag 	��
�

A further extension of 	���
 are varying coe�cient models� where nonlinear terms
f r
j 	xitj
 are generalized to f r

j 	xitj
zitj� where zj may be a component of x or w or a
further covariate� Covariate xj is called the e�ect modi�er of zj because the e�ect
of zj varies smoothly over the range of xj� Of course� time t and even the spatial
covariate s are also possible e�ect modi�ers�

Finally� we note that the e�ect of a particular covariate in 	���
 may be present
only for some of the k categories of the response� In addition� we may observe
covariates that are associated only with one speci�c category of the response� so
called category speci�c covariates� This leads to the distinction between category
speci�c and global covariates� Although a modi�cation of 	���
 and estimation of
such models is straightforward 	and already implemented
 we do not go into details
here� because the inclusion of category speci�c covariates is not necessary for the
applications of this paper� More details can be found in Fahrmeir� Tutz 	��� �����
Ch� �
 and the references therein�

For ordered responses Yit following a cumulative model 	���
� we assume semipara�
metric predictors

�it � ftime	t
 � fspat	si
 �
pX

j��

fj	xitj
 � w�

it�� 	���
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where the terms have the same interpretation as in 	���
� omitting the category�
speci�c index r� Note that the term w�� for �xed e�ects must not contain an
intercept to make thresholds identi�able�

For Bayesian inference� unknown functions ftime�fspat�f�� � � � � fp� thresholds 	 �
		�� � � � � 	k��


� and all other parameters are considered as random variables� Categor�
ical response models are to be understood conditional upon these random variables
and have to be supplemented by appropriate prior distributions� For the ��xed
e�ect� parameters 	 and � we assume di�use priors

p		
 � const� p	�
 � const�

Priors for a time trend ftrend of time t and functions f�� � � � � fp of metrical covari�
ates are speci�ed by local smoothness priors common in state space modelling of
structural time series� We illustrate the approach for the e�ect of a speci�c metrical
covariate x� Let

x��� 
 � � � 
 x�l� 
 � � � 
 x�m��

denote the m di�erent� ordered observed values of the metrical covariate x� De�ne
f	l
 �� f	x�l�
 and let

f � 	f	�
� � � � � f	l
� � � � � f	m

�

denote the corresponding vector of function evaluations� For equally�spaced values
x���� � � � � x�m� we usually assign �rst or second order random walk models

f	l
 � f	l � �
 � �	l
 or f	l
 � �f	l � �
� f	l � �
 � �	l
 	���


with Gaussian errors �	l
 � N	�� � �
 and di�use priors f	�
 � const� or f	�
 and
f	�
 � const� for initial values� respectively� Both speci�cations act as smoothness
priors that penalize too rough functions f � The variance � � controls the degree of
smoothness of f � 	f	�
� � � � � f	l
� � � � � f	m

�� Of course� local linear trend models
or higher order autoregressive priors are also possible� An example is a time varying
seasonal component fSeason of time t� A �exible seasonal component with period
per can be de�ned by

fseason	t
 � �
per��X
j��

fseason	t� j
 � �	t
 	��


and once again di�use priors for initial values�

For non�equally spaced values x���� � � � � x�m�� priors have to be modi�ed to account for
nonequal distances l � x�l� � x�l���� Random walks of �rst order are now speci�ed
by

f	l
 � f	l � �
 � �	l
� �	l
 � N	�� l�
�
�

and random walks of second order by

f	l
 � 	� �
l
l��


f	l � �
�
l
l��

f	l � �
 � �	l
� �	l
 � N	�� �l�
�


with appropriate weights �l� Based on Fahrmeir� Lang 	����
 we choose �l � l	��
�l

�l��

�

All these priors can be equivalently rewritten in form of a global smoothness prior

f j� � � exp
�
�

�

�� �
f �Kf

�
� 	����
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with appropriate penalty matrix K� For example�

K �

�
BBBBB�

� ��
�� � ��

� � �
� � �

� � �

�� � ��
�� �

�
CCCCCA

in the simple case of a �rst order random walk and equidistant observations�

Let us now turn our attention to a spatial covariate s� where the values of s repre�
sent the location or site in geographical regions� For the spatially correlated e�ect
fstr	s
� s � �� � � � � S� we choose Markov random �eld priors common in spatial
statistics 	Besag� York and Mollie� ��
� These priors re�ect spatial neighbour�
hood relationships� For geographical data one usually assumes that two sites or
regions si and sj are neighbours if they share a common boundary� Then a spatial
extension of random walk models leads to the conditional� spatially autoregressive
speci�cation

fstr	s
jfstr	u
� u �� s � N

�
�X

u��s

�

Ns

fstr	u
�
� �str
Ns

�
A � 	����


where Ns is the number of adjacent regions� and u � �s denotes that region u is
a neighbour of region s� Thus the 	conditional
 mean of fstr	s
 is an average of
function evaluations fstr	u
 of neighboring regions� Again the variance � �str controls
the degree of smoothness� This prior will be used in our �rst application on durations
of unemployment� In some applications� as in our second example on forest damage
data� a more general prior speci�cation seems to be more appropriate� In this
application we assume that two sites si and sj are neighbors if they are within a
certain distance� d say� In addition� we assume that the conditional mean of fstr	s

is now a weighted average of function evaluations fstr	u
 of neighboring sites rather
than an unweighted average as in 	����
� The weights are chosen to be proportional
to the distance of neighboring sites to site s� In terms of weights wsu a general
spatial prior can be de�ned as

fstr	s
jfstr	u
� u �� s � N

�
�X

u��s

wsu

ws�
fstr	u
�

� �str
ws�

�
A � 	����


where � denotes summation over the missing subscript� In the forest damage ap�
pliaction the weights wsu are equal to the distance of site s and u� Note that the
spatial prior 	����
 is a special case of 	����
 with weights wsu � ��
As for autoregressive priors� 	����
 can be written in the form 	����
� where the
elements of the penalty matrix K are given by

kss � ws�

and

ksu �

�
�wsu u � �s

� else�

As mentioned before� we usually split up the e�ect of a spatial covariate into a
structured 	spatially correlated
 and an unstructured 	uncorrelated
 e�ect� For the
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unstructured e�ect funstr a common assumption is that the parameters funstr	s
 are
i�i�d� Gaussian

funstr	s
j�
�
unstr � N	�� � �unstr
� 	����


Note that we are not restricted to an unstructured e�ect only for the spatial covariate
s� An unstructured e�ect for time t� or with respect to any other grouping variable�
is also possible 	and already supported in our implementation
�

For a fully Bayesian analysis� variance or smoothness parameters � �j � j �
trend� season� str� unstr� �� � � � � p are also considered as unknown and estimated si�
multaneously together with unknown functions� Therefore� hyperpriors are assigned
to them in a second stage of the hierarchy by highly dispersed inverse gamma dis�
tributions

p	� �j 
 � IG	aj� bj


with known hyperparameters aj and bj� It turns out that the simultaneous esti�
mation of smooth functions and smoothing parameters is a great advantage of our
Bayesian modelling approach� In a frequentist approach smoothing parameters are
usually chosen by minimizing some goodness of �t criteria 	e�g� AIC
 with respect
to the smoothing parameters� or via cross validation� However� if the model contains
many nonparametric e�ects as in the applications of this paper� a multidimensional
grid search is required which becomes totally inpractical for higher dimensions� This
problem gets even worse in multicategorical response models�

The Bayesian model is completed by the following conditional independence assump�
tions�

	i
 For given covariates and parameters observations Yit are conditionally inde�
pendent�

	ii
 Priors for function evaluations� �xed e�ects parameters and for variances are
all mutually independent�

� Posterior analysis via MCMC

In the following f denotes the vector of all function evaluations including trend and
seasonal components of time t and structured and unstructured spatial e�ects� � is
the vector of all variances� � � � for nominal and � � 	�� 	
 for ordinal models�
For a nominal logit model or a cumulative logit model� the contribution of Yit to
the likelihood p	Y jf� �
 of the data given the parameters can be easily calculated�
Bayesian inference can then be based on the posterior

p	f� �� �jY 
 � p	Y jf� �
p	f j�
p	�
p	�
�

MCMC simulation is based on drawings from full conditionals of single parameters
or blocks of parameters� given the rest and the data� Single moves update each
parameter separately� Convergence and mixing is considerably improved by block
moves for the vectors fj � 	� � � � fj	l
� � � �


� of function evaluations� where blocks
fj�u� v� � 	fj	u
� � � � � fj	v



� of parameters are updated instead of single parameters
fj	l
�

�



Markov chain samples for fj�u� v� from the unnormalized full conditionals p	fj�u� v�j	

are generated by Metropolis�Hastings 	MH
 steps with conditional prior proposals
as suggested by Knorr�Held 	�
� Drawings from p	�j	
 and the unstructured
spatial e�ect funstr 	or other unstructured e�ects
 can be obtained by the weighted
least squares proposal of Gamerman 	��
 or a slight modi�cation� Updating of
variance parameters is done by Gibbs steps� drawing directly from inverse gamma
densities� Details of the updating schemes are described in Fahrmeir and Lang
	�
 for univariate responses�
The resulting hybrid MCMC scheme for generating posterior samples is then
de�ned by drawing from the following full conditionals�

Sampling scheme ��

	i
 Draw samples for ��xed e�ects� parameters � by MH steps with weighted
least squares proposals� For cumulative models 	���
� thresholds have to obey
order restrictions�

	ii
 For each function f � partition the vector of function evaluations into blocks
f �b��b � �� �� ���� and draw from

p	f �b�j	
� b � �� �� � � � �

with MH steps using conditional prior proposals�

	iii
 Draw samples for unstructured spatial e�ects funstr	s
� s � �� � � � � S by MH
steps with weighted least squares proposals�

	iv
 Draw samples for variances � �j from inverse Gamma posteriors

p	� �j j	
 � IG	a�j� b
�

j


with updated parameters a�j� b
�

j given by a�j � aj �
rank�Kj�

�
and b�j � bj �

�
�
f �jKjfj�

For categorical responses� useful alternative sampling schemes can be developed
on the basis of the latent variable mechanisms 	���
 and 	���
� augmenting the
observables Yit by corresponding latent variables

Uitr � �itr � �itr or Uit � �it � �it�

respectively� with semiparametric predictors as in 	���
 or 	���
� Assuming Gaus�
sian errors� we obtain multicategorical probit models with latent semiparametric
Gaussian models� Posterior analysis is now based on

p	f� �� �� U jY 
 � p	Y jU
p	U jf� �
p	f j�
p	�
p	�
�

with p	Y jU
 �
Q
i�t
p	YitjUit
� where Uit � 	Uit�� � � � � Uitk


� for nominal responses� The

conditional likelihood p	YitjUit
 is determined by the mechanisms 	���
 or 	���
� For
a nominal response� we have

p	YitjUit
 �
kX

r��

I	max	Uit�� � � � � Uitk
 � Uitr
I	Yit � r
� 	���


�



For a cumulative model� we get

p	YitjUit
 �
kX

r��

I		r�� 
 Uit � 	r
I	Yit � r
� 	���


due to the fact that p	YitjUit
 is one if Uit obeys the constraint imposed by the
observed value of Yit� Compared to the direct sampling scheme above� additional
drawings from full conditionals for the latent variables Uit are necessary� As an
advantage� full conditionals for functions and �xed e�ects parameters become Gaus�
sian� allowing computationally e�cient Gibbs sampling� The full conditionals for
Uit are�

p	Uitjf� �� Yit
 � p	YitjUit
p	Uitjf� �
� 	���


Since latent variables Uit have 	conditional
 Gaussian distributions with means �it
and unit variances� their full conditionals are truncated standard normals� with
truncation points determined by the restrictions 	���
 and 	���
�

To derive full conditionals for functions fj and �xed e�ects parameters � it is con�
venient to rewrite the predictors 	���
 and 	���
 in matrix notation� For example
for 	���
 we obtain

� � Xtimeftime �Xspatfspat �
pX

j��

Xjfj �W�� 	���


Here the Xj are ��� matrices where the number of columns is equal to the number
of parameters of the respective e�ect� If for observation i� t the value of covariate xj
	or time t or site s
 is l� then the element in the i� t th row and the l th column is
one� zero otherwise� Now standard calculations show that the full conditional for a
function fj is Gaussian with covariance matrix

�j � P��
j � 	X �

jXj �
�

� �j
Kj


�� 	���


and mean

�j � 	X �

jXj �
�

� �j
Kj


��X �

j	U � ��
� 	���


where �� is the part of the predictor associated with all remaining e�ects in the
model� Since X �

jXj is diagonal and the penalty matrix Kj is a bandmatrix 	e�g�
with bandwidth two for a second order random walk
 it follows that the posterior
precision Pj is also a bandmatrix with the same bandwith� Following Rue 	����
�
drawing random numbers from the full conditionals for fj is as follows�

	i
 Compute the Cholesky decomposition Pj � L�L�

	ii
 Solve Lfj � z� where z is a vector of independent standard Gaussians� It
follows that fj � N	���j


	iii
 Compute the mean �j by solving Pj�j � X �

j	U � ��
� This is achieved by
�rst solving by forward substitution L�� � X �

j	U � ��
 followed by backward
substitution L�j � ��





	iv
 Set fj � fj � �j� then fj � N	�j��j
�

All algorithms involved take advantage of the bandmatrix structure of the posterior
precision Pj�

Finally� the full conditionals for �xed e�ects parameters � with di�use priors are
Gaussian with mean and covariance matrix given by

�beta � 	W �W 
��W �	U � ��
� �beta � 	W �W 
��� 	���


We can now summarize the resulting sampling schemes� For a cumulative probit
model� a Gibbs sampling scheme is de�ned by the following steps�

Sampling scheme ��

	i
 The latent variables Uit� i � �� � � � � n� t � �� � � � � T are sampled as follows� If
Yit � r� then Uit is generated fromN	�it� �
� with mean �it as in 	���
� evaluated
at current values of fj and �� subject to the constraint 	r�� 
 Uit � 	r�

	ii
 Following Albert and Chib 	��
� the full conditional for threshold �r� r �
�� � � � � k � � is uniform on the interval

�maxfUit � Yit � rg� minfUit � Yit � r � �g��

Posterior samples from these uniform distribution may exhibit bad mixing�
A reason is that intervals can become quite small and� as a consequence� the
chain moves slowly� In such a case� other parametrizations as suggested for
example in Chen and Dey 	����
 are a possible alternative� For k � � such
a reparametrization becomes particularly convenient� see our application to
forest damage in Section ��

	iii
 Function evaluations fj are generated from Gaussian full conditionals p	fjjU� 	

with covariance matrix 	���
 and mean 	���
� using the algorithms for band�
matrices described above�

	iv
 Samples for variances are generated from inverse Gamma priors with updated
parameters given in sampling scheme ��

	v
 Samples for �xed e�ects � are drawn from Gaussian full conditionals with
mean and covariance matrix in 	���
�

For nominal response� we choose k as the reference category� Since only di�erences
of utilities can be identi�ed 	see Section ���
� we may either set the predictor �itk
to zero or the latent variable Uitk�

Sampling scheme ��

	i
 Setting Uitk 
 �� latent variables Uitr� r � �� � � � � k��� are generated as follows
for each observation Yit� i � �� � � � � n� t � �� � � � � T �
If Yit � r� r �� k� then Uitr is generated �rst from a normal distribution with
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mean �itr and variance �� subject to the constraints Uitr � Uitl� l �� k� and
Uitr � � 	
 Uitk
� Next we generate Uitl for l �� r from a normal distribution
with mean �itl and variance �� subject to the constraint that Uitl is less than
the Uitr generated just before�
If Yit � k 	the reference category
� then we generate Uitl� l � �� � � � � k��� from
a normal with mean �itl and variance �� subject to the constraint Uitl 
 ��

	ii
 Posterior samples for functions f r
j � r � �� � � � � k � � and all other parameters

are generated as in the steps 	iii
�	v
 of sampling scheme ��

� Applications

We consider two applications� In a �rst application on unemployment durations we
analyse unemployment data from the German Federal Employment O�ce 	�Bunde�
sanstalt f ur Arbeit�
� This is a huge dataset with approximately ������ observations
showing the practicability of our methods even for very large datasets� In a second
application� we analyse longitudinal data on forest health collected in the forest dis�
trict of Rothenbuch in northern Bavaria for the years ������� All computations
have been carried out with BayesX� a software package for Bayesian inference that
has been developed at our department� The program is available for public use
under http���www�stat�uni�muenchen�de��lang�� See also Lang� Brezger 	����

for a detailed description of the capabilities of BayesX�

��� Reemployment chances

In our �rst application we analyse monthly unemployment data from the German
Federal Employment O�ce for the years ������� Our analysis is restricted to data
from former West Germany 	excluding Berlin
 and to women� For each individual
the data provides information about the employment status in month t� the district
where the individual lives and a number of personal characteristics� Since we are
interested in analyzing reemployment chances� distinguishing between full and part
time jobs� we de�ne three�categorical response variables Yit as event indicators

Yit �

�	

	�

�� gets a new full time job in month t 	calendar time

�� gets a new part time job in month t
�� i is unemployed in month t 	reference category
�

Our analysis is based on the following covariates�

D duration time measured in months
A age 	in years
 at the beginning of unemployment
N nationality� dichotomous with categories !german� and

!foreigner� 	� reference category

Ud unemployment compensation 	in month d of duration time
�

dichotomous with categories !unemployment bene�t�
	�reference category
 and !unemployment assistance�

Pt number of previous unemployment periods 	in month
t of calendar time
� ����� and more� � 	reference category
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E education� trichotomous with categories �no vocational training�
�vocational training� 	reference category
 and university

S district in which the unemployed have their domicil

All categorical covariates are coded in e�ect coding�

Then we model the probabilities P 	Yit � rj�itr
� r � �� �� by an independent probit
model� with predictors

�itr � f r
trend	t
 � f r

season	t
 � f r
str	Si
 � f r

unstr	Si
�
f r
� 	Dit
 � f r

� 	Ait
 � w�

it�r� r � �� ��

where f r
trend and f

r
season are trend and seasonal component of calendar time t� f r

str and
frunstr are structured and unstructured spatial e�ects of the district� f r

� is the e�ect of
duration D in current unemployment status and f r

� is the e�ect of age A� The priors
for f r

trend� f
r
� and f r

� are second order random walk models 	���
� For f r
str and f r

unstr

we assign the Markov random �eld prior 	����
 and the exchangeable prior 	����
�
respectively� For the seasonal component we choose the �exible seasonal prior 	��
�
Priors for �xed e�ects parameters �r are di�use� An analysis with similar predictors
using a multinomial logit model and sampling scheme � for drawing samples from
full conditionals can be found in Fahrmeir� Lang 	����
�

Figure � displays estimated e�ects of duration time and calendar time trend and
seasonal component for getting full time jobs 	left column
 and part time jobs 	right
column
� Duration time e�ects have the typical pattern also observed in other
investigations� with a peak after ��� months and sloping downward then� Calendar
time trends for full and part time jobs show a similar general pattern� declining
until the year ���� then slowly increasing until �� 	one year after the German
reunion
� declining distinctly again thereafter� with an intermediate recovery� This
corresponds to the observed economic trend of the labor market in Germany during
this period� Estimated seasonal e�ects are more or less stable over this period
although varying in size� To gain more insight Figures f
 and g
 displays a section of
the estimated e�ects for the year �� with the typical peaks in spring and autumn�
and a global minimum in Dezember� The e�ect of age can be found in Figure �� For
the age e�ect there are local minima for women about ��� which may be a �family�
e�ect� The dramatic decline of unemployment probabilities of people older than ��
years is particularly striking� The increase after �� may be caused by boundary
e�ects and we do not interpret it� Note that the age e�ect is much stronger for
women seeking full time jobs 	Figure a

 compared to women seeking part time jobs
	Figure b

� Structured regional e�ects are shown in Figures � and �� Figure �
shows the estimated posterior mean and Figure � shows �probability� maps where
the levels correspond to �signi�cantly negative� 	black colored
� �nonsigni�cant�
	grey colored
� i�e� zero is within the con�dence interval around the estimate� and
�signi�cantly positive� 	white colored
� In order to interpret the structured e�ects�
unstructured e�ects must be taken into consideration as well� Therefore Table � gives
a summary of the estimated posterior means of the unstructured spatial e�ect for
the di�erent regions� We observe that the structured e�ect for getting full time jobs
is stronger than for getting part time jobs� Even more important� the unstructured
e�ect for part time jobs cleary exceeds the structured e�ect which is in constrast
to the estimated e�ects for full time jobs� Although the estimated posterior mean
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of the structured e�ect for getting part time jobs in Figure � b
 shows some spatial
variation� Figure � cleary indicates that there is no �signi�cant� variation in terms
of posterior probabilities� In the contrary� the structured e�ect for getting full time
jobs displays �signi�cant� variation with improved chances in the south compared
to the middle and the north� The two dark spots in Figures � a
 and � b
 mark
areas that are known for their structural economical problems during the eighties
and nineties�

Estimates of �xed e�ects for getting full time jobs are shown in Table � and for
getting part time jobs in Table �� Tables � and � con�rm some facts already known
from previous analyses with more conventional methods� Chances for re�employment
are better for Germans and for women with a university degree compared to women
with vocational training and no vocational training� Both e�ects are stronger for
women getting part time jobs� The number of previous unemployment periods
serves as a surrogate for experience at the labor market� an increase in the number
of previous spells increases the probability for shorter unemployment duration� The
estimated e�ect of unemployment assistance is signi�cantly negative and positive
for umenployment bene�ts� which seems to contradict the widely�held conjecture
about negative side�e�ects of unemployment bene�ts� However� it may be that the
variable !unemployment bene�t� also acts as a surrogate variable for those who have
worked� and therefore contributed regularly to the insurance system in the past�

��� Forest health

In this longitudinal study on the state of trees� we analyse the in�uence of calendar
time� age of trees� canopy density and location of the stand on the defoliation degree
of beeches� Data have been collected in yearly forest damage inventories carried out
in the forest district of Rothenbuch in northern Bavaria from ��� to ��� There
are �� observation points with occurence of beeches spread over an area extending
about �� km from east to west and �� km from north to south� see Figure �� The
degree of defoliation is used as an indicator for the state of a tree� It is measured
in three ordered categories� with Yit � � for �bad� state of tree i in year t� Yit � �
for �medium� and Yit � � for �good�� A detailed data description can be found in
G ottlein and Pruscha 	��
� Covariates used here are de�ned as follows�

A age of tree at the beginning of the study in ���� measured in three e�ect
coded categories a� � �below �� years�� a� � between �� and ��� years� and
a� � above ��� years 	reference category
�

C Canopy density at the stand measured in percentages �"���"�� � � ��"����"�

The covariate age is time constant by de�nition� while canopy density is time varying�
Based on previous analysis� we use a three�categorical ordered probit model 	���

based on a latent semiparametric model Uit � �it � �it with predictor

�it � ftrend	t
 � fstr	si
 � f	cit
 � ��ai� � ��ai�� 	���


Here ai� and ai� are the indicators for age categories � and �� The calendar time
trend ftrend	t
 and the e�ect f	c
 of canopy density are modelled by random walks
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Variable mean Std�Dev� ��� quant� median ��� quant�

const ����� ����	 ����
 ����� �����
a� ��	�
 ����� ����� ��	�� ����
a� ����� ���
� ������ ����� ����	
a� ���	��� ���
� ����	 ���	�� ������

Table �� Estimates of constant parameters

of second order� For the structured spatial e�ect we assign the Markov random �eld
prior 	����
� with the neighborhood �s of trees including all trees u with euclidian
distance d	s� u
 � ��� km and with weights de�ned by wsu � d	s� u
� An unstruc�
tured spatial e�ect is excluded from the predictor for the following two reasons�
First� a look at the map of observation points 	Figure �
 reveals some sites with
only one neighbor� making the identi�cation of a structured and an unstructured
e�ect di�cult if not impossible� The second reason is that for each of the �� sites
only �� observations on the same tree are available with only minor changes of the
response category� In fact� there are only a couple of sites were all three response
categories have been observed� Thus� the inclusion of an unstructured e�ect in our
model leads to severe inditi�cation problems between the structured and unstruc�
tured e�ect� which can be observed by inspecting sampling paths of parameters�

We �rst applied the ordered probit model in standard parametrization� However�
in step 	ii
 of sampling scheme � mixing of posterior samples for thresholds 	� and
	� was not satisfactory� see Figure �� Following Chen and Dey 	����
� we therefore
reparametrized the model� First� inclusion of a constant �� in 	���
 allows to set
	� � �� Secondly� because parameters in the predictor of the latent Gaussian model
are only identi�able up to a multiplicative factor� we assume that errors �it are
N	�� ��
 distributed with unknown variance ��� This allows us to set 	� � ��
The parameter �� is sampled simultaneously with �xed e�ects �� and ��� For ��

we specify an inverse Gamma prior� leading to posterior samples from an inverse
Gamma full conditional�

For interpretation of estimation results note the following� In accordance with our
de�nitions 	���
 to 	���
� higher 	lower
 values of the predictor 	���
 	or of e�ects
in this predictor
 correspond to healthier 	worse
 state of the trees� Estimates for
�� and the e�ect of age are given in Table �� As we might have expected younger
trees are in healthier state than the older ones� Figure � shows posterior mean
estimates for the calendar time trend and for the e�ect of canopy density� We see
that trees recover after the bad years around ���� but after �� health status
declines to a lower level again� The distinct monotonic increase of the e�ect of
canopy densities � ��" gives evidence that beeches get more shelter from bad
environmental in�uences in stands with high canopy density� Figure � shows the
estimated 	structured
 spatial e�ect in form of posterior probabilities� were black
spots indicate areas with strictly negative credible regions� i�e� areas with more
trees in bad state� The black colored sites correspond mostly to areas in the forest
district which are located higher above sea level than the other sites� Here the
environmental conditions in terms of nutrient quantity and soil quality are worse
compared to other areas�
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� Conclusion

The applications demonstrate that the Bayesian methods developed are useful and
�exible tools for inference in realistically complex categorical regression models�

A variety of extensions are possible by modifying or generalizing the observation
models� predictors and smoothness priors� For example� probit models based on la�
tent utilities can be extended to correlated categorical or mixed continous�categorical
responses by considering latent multivariate semiparametric Gaussian models� Pre�
dictors can be made more �exible by introducing nonparametric interactions between
covariates following suggestions in Clayton 	��
 and Knorr�Held 	����
� Replac�
ing Gaussian priors by heavy�tail distributions would allow to consider unsmooth
regression functions�
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Figure �� Estimated nonparametric e�ects of age� Shown is the posterior mean
within �� " credible regions
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Variable mean Std�Dev� ��� quant� median ��� quant�

german ������
�
 ����
	��� ����
��� �����
�	� ����	��
foreign �������
�
 ����
	� �����	�� ������
�	� �����
���

unemployment assistance �����		�
� �����
���� ����
����
 �����	���� �����	�
��
unemployment bene�t ����		�
� �����
�	� ����	�
� ����	���� ��
����


no vocational training ����	��� �����
�� ��������� ����	���	 ���������
vocational training ��������� ������	� ����	�		� ������	�

 ���������
university ����	
	�	 ����
	
�� �������
� ����	
�	 �������

P � � �������� �������	
 ���������� ������
��� ������
�	
P � � ����	����� ����
����
 �������� ����	����� ������	��
P � � �����	���	 ��������� ���������� ��������		 ������
	
P � 	 ���	�
� �������	� �������� �����

 ����	���

Table �� estimates of constant parameters �full time�

Variable mean Std�Dev� ��� quant� median ��� quant�

german ����
��� �������	
 ���
�
�� �����
� ����
���
foreign �����
���� ������	�� �����
���� ������
��� ����
�
��

unemployment assistance ����
	���� ������	
� �����
���� ����
	�	�� ������	��
unemployment bene�t ���
	���� ������� �����	�� ���
	�	�� ����
����

no vocational training �����
���
 �������� �����

�� �����
���	 ������
��

vocational training ����	���� ���	��� �����		� ����	���� ���	�	�	
university ������
� �������
 �������� �����	 ���
�
��

P�� �������
 �����	� ������� ������� ����	��
P�� ���������� ����	��� �������	�� ���������� ����	�
�	�
P�� �����			�� ����
�	� �������	� �����
�� �����
�
P�	 ����	� ��������
 ���
	��� ����		�� ����		��

Table �� estimates of constant parameters �part time�

full time part time

std� dev� ����� ����	
minimum �����	 �����
��� quantile �����
� ������
��� quantile ������ ���	
maximum ����
 �����

Table �� summary of the posterior means of the unstructured spatial e�ect
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Figure �� Estimated nonparametric e�ects of duration and calendar time� Shown is
the posterior mean within �� " credible regions
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Figure �� posterior mean of the structured spatial e�ects of the district speci�c e�ect
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Figure �� posterior probabilities of the district speci�c e�ect
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Figure �� Map of observation points
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Figure �� Sampling paths of thresholds for the �rst ���� iterations�
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Figure �� Estimated time trend and nonlinear e�ect of canopy density� Shown is
the posterior mean within �� " credible regions
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Figure �� Estimated posterior probabilities of the spatial e�ect
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