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Abstract

Varying—coefficient models provide a flexible framework for semi— and nonpara-
metric generalized regression analysis. We present a fully Bayesian B-spline basis
function approach with adaptive knot selection. For each of the unknown regression
functions or varying coefficients, the number and location of knots and the B—spline
coefficients are estimated simultaneously using reversible jump Markov chain Monte
Carlo sampling. The overall procedure can therefore be viewed as a kind of Bayesian
model averaging. Although Gaussian responses are covered by the general frame-
work, the method is particularly useful for fundamentally non-Gaussian responses,
where less alternatives are available. We illustrate the approach with a thorough
application to two data sets analyzed previously in the literature: the kyphosis data
set with a binary response and survival data from the Veteran’s Administration

lung cancer trial.

Keywords: B-spline basis; knot selection; non—Gaussian response; non— and

semiparametric regression; reversible jump Markov chain Monte Carlo.



1 Introduction

Generalized linear models (GLM, see McCullagh and Nelder, 1989) and extensions pro-
vide a unified framework for exploring the relation between a response variate y; and
a vector x; = (21,...,x;) of covariates observed for ¢ = 1,...,n individuals. They
relate the expectation p; = E(y;|z;) to a predictor n; through the relation p; = h(n;),
where h is a response function. Classical parametric GLM’s assume a linear predictor
M = Ti1P1 + ...+ xipBy. Various non— and semiparametric extensions have been proposed
to generalize parametric GLM’s. Varying—coefficient models (VCM, Hastie and Tibshi-
rani, 1993) comprise many other models as special cases. They are defined by a predictor

of the form
n; = xﬂfl(m) +...+ xipfp(rip)a (1)

where 71, ..., 7;, are metrical covariates and fi, ..., f, are unspecified functions to be esti-
mated nonparametrically. The covariates 71, ..., r;, can be interpreted as effect modifiers,
since the effects of x;1,...,x;, vary through the functions fi,..., f,. Semiparametric or

partially linear models
mi = fi(ri) + b2 + .+ 20 (2)

and generalized additive models (Hastie and Tibshirani, 1990)

ni = fi(ri) + ..+ fo(rip)- (3)

are obtained as special cases.

For the modeling and estimation of the functions f; there exist some alternatives.
Hastie and Tibshirani (1993) consider a penalized log-likelihood approach, where the
smoothness of the f; is controlled by a penalty term using a separate smoothness param-
eter for each f;. The simultaneous data-driven selection of the smoothing parameters
is so time consuming for more than one or two functions f;, that usually it is not done.
Instead, the smoothness is determined by the degree of freedom of the smoothing matrices
(see Hastie and Tibshirani, 1990 and 1993). The estimates f] of this approach are given
as weighted cubic smoothing splines. An alternative mentioned in Hastie and Tibshirani
(1993) as good choice for modeling the varying effects f; are regression splines, which are
defined as a linear combination of a vector of unknown basis coefficients and a vector of

known basis functions. These basis functions are defined by a vector of knots, that lie



within the support of the respective effect modifier r;;. The shape and smoothness of f;
here only is determined by the number and the location of these knots. There are some
advantages of regression splines when compared to smoothing splines. First, regression
splines need only few knots and also only few unknown basis coefficients, for example 5 to
10, while smoothing splines are defined with one knot for each distinct value of the effect
modifier 7;;, resulting in a large number of unknown parameters. Another advantage is
the fact that regression splines define an ordinary linear predictor, so that all standard
inferential tools for GLM’s can be used. However, one obstacle with regression splines has
been the choice of the number and the location of the knots. Only minor changes in these
parameters may cause major differences in the fitted functions f] Eubank (1988, Section
7.2) pointed out that finding the right number and location of knots by visual inspec-
tion of the data is impossible in most cases. Therefore data—driven methods for adaptive
knot placement are needed for (in some sense) nearly optimal estimators fj. Frequentist
approaches (see e.g. Friedman and Silverman, 1989, or Stone, Hansen, Kooperberg and
Truong, 1997) use first forward steps to add knots which are optimal with respect to some
chosen criterion (for example Rao statistics) and afterwards delete knots in backward steps
using another criterion (for example the AIC criterion). The results of these approaches
are only optimal with respect to the chosen selection criterions. Bayesian approaches
using Markov chain Monte Carlo (MCMC) techniques, however, are more general. Dur-
ing all iterations both the number and the location of the knots may vary. Hence, the
uncertainty in the knot placement is taken into consideration and the estimation of the
regression splines in each iteration of the algorithm is based on different knot settings.
The final estimator then is built as the mean of the estimators in each iteration resulting
in a great flexibility of the estimated spline function. Smith and Kohn (1996) proposed a
Bayesian approach for univariate curve fitting and additive models with normal response
using Gibbs sampling. In each iteration of their algorithm significant knots are chosen
from a set of candidate knots by Bayesian variable selection. A Bayesian approach for
univariate curve fitting with normal response using reversible jump Markov chain Monte
Carlo (RIMCMC, see Green, 1995) is presented by Denison, Mallick and Smith (1998).
They suggest a kind of hybrid algorithm: In each iteration they choose the set of knots by
RJMCMC methods, but given these knots the unknown function is estimated by the usual



least squares approach. They also extend this approach to additive models, but due to the
use of the least squares method they need backfitting in each iteration. Mallick, Denison
and Smith (2000) proposed Bayesian multivariate adaptive regression splines (BMARS)
for the GLM. They emphasize that “the Bayesian MARS method is just an extension
in many dimensions of the Bayesian curve fitting methodology given in Denison et al.
(1998).” For the extension to the GLM they use a simple Metropolis—Hastings proposal.
No example of the convergence properties of the method is given, but they state that the
sampler has slow convergence. A fully Bayesian approach for the semiparametric gen-
eralized linear model (2) also using RIMCMC for knot selection was presented in Biller
(2000). In contrast to Denison et al. (1998), this approach was generally defined for re-
sponses from the exponential family, and for estimation of the regression spline given the
knots MCMC techniques are used instead of least squares. The approach showed good
convergence properties of the reversible jump technique in choosing both the number and
location of the knots. A conceptually different type of Bayesian nonparametric inference
is based on smoothness priors for unknown functions as a stochastic generalization of
penalized likelihood approaches, see Hastie and Tibshirani (2000) or Fahrmeir and Lang
(1999) for recent work.

In this paper we present an extension of the adaptive Bayesian regression spline ap-
proach for semiparametric GLM’s in Biller (2000) to a Bayesian version of the VCM (1).
Due to the use of MCMC techniques to estimate the spline given the knot placement,
such an extension is possible without the need for backfitting in each iteration as in Deni-
son et al. (1998). This fully Bayesian approach via MCMC has several advantages: First,
RJMCMC is tailor-made for adaptive regression splines. Second, different building blocks
are easier to combine or to extend, as the extension of the approach of Biller (2000) in this
paper shows. Other possibilities are mentioned in the conclusions, e.g., the incorporation
of random effects. Further, we do not need to rely on asymptotics. For example to define
confidence regions of the splines, we only have to compute the 0.05 and the 0.95 quantiles
of the generated sample of a function f; to get a 90% confidence region for that f;. In a
similar way, any functionals of the model may be estimated. These functionals are simply
computed in each iteration of the algorithm to create samples of the functionals. From

these samples any probability statements of interest can be estimated. Also, the complete



MCMC output is available for model diagnostics.

The paper is organized as follows: The Bayesian varying—coefficient model is defined
in Section 2. Section 3 describes, together with a brief introduction of MCMC techniques,
the algorithm to estimate this model. In Section 4 the model is applied to known data

sets from the literature. Some concluding remarks follow in Section 5.

2 The Bayesian varying—coefficient model

For the definition of the Bayesian varying—coefficient model (BVCM) we use a formulation,
that directly combines the special cases (2) and (3) of the VCM (1). Additionally to
the covariates z;,...,x;, with effect modifiers 7;1,...,7;, we consider covariates z; =
(i1, - .., 2iq) with fixed effects 5 = (5,...,0,)" on the response. Then the BVCM is
defined as

ni = Zzﬂ + xﬂfl (Til) + ...+ xipfp(rip). (4)

Here we get the classical parametric GLM for p = 0, the semiparametric GLM (2) for
p =1, and the GAM (3) for ¢ =0 and z;; = 1 for all ¢, j.

Each of the varying coefficients f; for j = 1,..., pis defined to lie in the k;~dimensional
space of natural cubic splines. That is, with a vector ¢; = (cj1, .. ., ¢jx;)" of unknown basis
coefficients and a vector B; = (Bj, ..., Bjkj) of basis functions for the space of natural

splines, each f; can be represented as spline

=
<S?

fi(riz) Z ciiBji(rij) Bj(rij)e;. (5)

=1
The known basis functions Bji, ..., Bj, are computed with a kj;—vector of knots ; =
(tj1,...,tjk,) from the support of each effect modifier r;;. An appropriate choice is the
widely used B—spline basis with local support. For details and efficient algorithms for
computing this basis see De Boor (1978), Eubank (1988), Schumaker (1993) or Dierckx
(1993), and especially for natural splines Lyche and Schumaker (1973) or Lyche and Strgm
(1996).

With the basis functions approach for each f; the predictor (4) of the BVCM is given

as GLM
ni = ziff +xiuBi(ri)c + ...+ TipBy(rip)cy, (6)



with constant effects 3, c1, ..., c,. As mentioned, the shape and the smoothness of the
splines (5) is determined by the number k; and the location of the knots ;. An important
distinction is that we assume that both k; and ¢; are unknown and have to be estimated
together with the constant effects of model (6).

For the joint estimation of the knots ¢; and the basis coefficients ¢; defining the spline
fj, for each j = 1,...,p we define the following hierarchical model: The number k; of
knots is from some countable set IC; (which is defined below) and serves as model indicator.
Each value of k; defines a model for the spline f;, that is determined by the parameters ¢;
and ¢;. In such a hierarchical model we define the model parameter 0y, = (;,¢;) € Rk
which is combined with the model indicator k; to build the parameter 0; = (k;,0y;) of
the spline f;.

For the Bayesian approach we need a prior specification for each of the unknown
parameters. Each of the model indicators k; for j = 1,...,p is constrained to lie in a set
KC; = {kjmins kjmint1, - - -» kjmax} C N. Due to the definition of f; as natural spline, k; min
is restricted to kjmin > 4. As in Biller (2000) we propose three different priors for k;: A
Poisson distribution with parameter A, but restricted to the set K;, is a usual and widely
used prior in the reversible jump literature, see for example Green (1995) or Denison et al.
(1998). Alternatives are a discrete uniform distribution on XC; and a negative binomial
prior with parameters m = 1 and p € (0, 1). The probabilities of the last prior are globally
monotonically decreasing in k;, which avoids too complex models resulting from a prior
that favours larger k;. When compared to the Poisson prior, the two latter priors lead
to models with small average numbers k; of knots. As demonstrated by the examples in
Biller (2000) resulting curves are often too smooth. However, in the examples in Section
4 also these two latter priors lead to convincing results.

Given k; for j = 1,...,p we assume the elements 7; and ¢; of the model parameter 6y,
to be independent and treat them separately. The knots ¢; are supposed to lie in a discrete
set of candidate knots Tjo = {tjo,1, tjo,2, - -+ Ljo,kjmee ;- Which may consist of the sorted
distinct values of the effect modifier r;;. An alternative, that is used in the applications in
Section 4, is to distribute ¢;o1,. .. s 150k max €quidistantly over the interval ["min,j» "'max,j]-

The prior of ¢; is defined by assuming that all possible samples ¢; = (¢;1,...,%;;) out of



T;o have equal probability

k'max ! k'!(k',max_k')!
e I 7
j j,max-

Hence, this prior depends only on k; and kjmax. For the basis coefficients ¢; we use a
multivariate normal prior distribution c;|k; ~ Ny, (0,%,;), where the covariance matrix is
defined as ¥, = o7 I, with a scalar o .

The fixed effects 5 are also assumed to be multivariate normal, that is 3 ~ N, (0, X3).
Here possible correlations between the coefficients 5 = (f1, ..., ;)" are modeled by defin-
ing X3 = 03 R with a scalar 03 and a g-dimensional correlation matrix Rg.

All the parameters 6,,...,0, and 3 are assumed to be pairwise independent and are
combined to the joint unknown parameter § = (f3,0y,...,6,). For the estimation of 6 we
consider the joint posterior distribution

p

p(0ly) o< p(y10) p(B) [ [ p(Ok, k;)p(k;) (8)

j=1
neglecting the covariates for ease of presentation. The factor p(y|f) denotes the likelihood

of the response y = (y1, ..., Yn)-

3 MCMC estimation techniques

The estimation of the joint unknown parameter 6 is done by simulating the posterior (8)
with MCMC techniques. They are based on samples from a Markov chain with the distri-
bution of interest as its stationary limiting distribution. Thus, these stochastic simulation
methods avoid the necessity of a complete knowledge of the interesting distribution. This
allows to simulate from very complex distributions in hierarchical Bayesian models as the
posterior (8). The Metropolis—Hastings algorithm (the most general MCMC technique,
see for example Gilks, Richardson and Spiegelhalter, 1996) ensures the convergence of the
Markov chain against the considered distribution. Here one has to choose an appropriate
proposal density ¢(6,6'), from which a new value 6’ can be drawn given the current state
f of the Markov chain. Since this proposal density usually does not agree with the dis-
tribution of interest (8), the proposal value #' is only accepted with a certain probability

a(0,0") as new state of the Markov chain. For more informations about MCMC techniques



see Tierney (1994), Besag, Green, Higdon and Mengersen (1995), Gilks, Richardson and
Spiegelhalter (1996), or Gamerman (1997b).

The Metropolis—Hastings algorithm is defined for models with known and fixed dimen-
sion of the parameter. However, such an algorithm is not suitable, when the dimension of
the interesting parameters is also unknown. This is the case for the posterior (8), where
for each spline f; the model indicator k; is not known (for j = 1,...,p). The reversible
jump MCMC algorithm of Green (1995) extends the Metropolis—Hastings technique to
such problems with unknown and varying dimensions. Here the model indicators k; are
defined to vary during the iterations leading to different state spaces of the Markov chain
with different dimensions, since with k; the dimension of the model parameter 6y, varies.
For state transitions without a change in dimension, i.e., when k; does not vary and the
transitions take place within one state space, the ordinary Metropolis—Hastings algorithm
mentioned above is applicable. For transitions between different state spaces, the method
of Green (1995) proposes steps for increasing and reducing k;. These “birth” and “death”
steps have to be defined as related pair of steps, where birth is the reversal of death
and vice versa (this feature is called “dimension matching”). For a birth step, that is
a transition from 0; = (k;,0k;) to 0; = (k; + 1,0} ;) with an increase of k; by 1, we
have to create both one new knot and one new basis coefficient. This is done by drawing
a two-dimensional random vector up independent of 6; and setting the new proposal
0; by an appropriately chosen invertible deterministic function ¢’(6;,up). The reverse
death step from 6} to ; is accomplished by using the inverse transformation leading to a
deterministic proposal.

For the simulation of the joint posterior given in (8) it follows that we have to design
different reversible jump steps for the different parts of # both with and without a change
in the dimension of the state space of the Markov chain, leading to a hybrid MCMC
algorithm.

For each spline f; both the number k; and the location of the k; knots ¢; have to be
chosen, what can be done separately for j = 1,...,p by the move types birth and death
of a knot and the movement of a knot to another position as proposed by Biller (2000) for
the semiparametric model (2) with only one spline. Given the placement of the knots, the

estimation of the remaining parameters 3, ci,..., ¢, can be done by a standard MCMC



technology for Bayesian GLM’s due to the representation (6) of the model. Each iteration

of the reversible jump algorithm then consists in the following steps:

(a) Update the fixed effects 5 by the method of Gamerman (1997a) for GLM’s adapted
to blocks of fixed effects.

(b) Update the splines f; separately for j =1,...,p:
1. Position change: Move a given knot ¢;; to another position (without change
in k).
2. Dimension change: Birth or death of one knot ¢;;, that is, adding or deleting
a tj41 with changing k; by 1 and corresponding changes in ¢;; the choice

between birth and death is done randomly.

3. Update of basis coefficients: Update the basis coefficients ¢; by the method
of Gamerman (1997a) for GLM’s adapted to blocks of fixed effects (without

change in k;).

Details of the update of the fixed effects 3 and the basis coefficients ¢4, ..., c, are given
in Appendix A. For details of the reversible jump moves position change and dimension

change we refer to Biller (2000), Sections 3.3 and 3.4, which are applied separately to each

fiforg=1,...,p.

4 Applications

This section illustrates the BVCM with two data sets from the literature: the kypho-
sis data set presented in Hastie and Tibshirani (1990), and the data of the Veteran’s
Administration lung cancer trial, given in Kalbfleisch and Prentice (1980).

For each data set we used the three alternative prior distributions for the model
indicators k; mentioned in Section 2. The results in Biller (2000) indicate that the prior
of k; has minor influence on the smoothness of f; provided that there is enough information
in the data. However, the prior had influence on the estimation of k;, where a reasonable
convergence and mixing of the chain only was achievable with a Poisson prior (with
parameter A between about 20 and 35), whereas the discrete uniform and the negative

binomial (or geometric) prior led to inadequate convergence with small acceptance rates.



In contrast to these results the discrete uniform and the geometric prior with p € (0,1)
lead to a reasonable convergence and mixing of the Markov chains in the applications
below. Since with the Poisson and the geometric prior the chosen average number of
knots k; depends on the choice of the hyperparameters A and p, respectively, we use the
discrete uniform prior for k; for the applications, where no hyperparameter has to be
specified. Only for the first example with the kyphosis data we compare the results for
the three alternative prior distributions. The results for the second example are similar.

In both examples we compare several models with the deviance information criterion
(DIC) defined by Spiegelhalter, Best and Carlin (1998) measuring the fit and the com-
plexity of each model. For the Bernoulli distributed response of the following examples

the saturated deviance

D(¢) = 2;;: [yilog (Z—) + (1~ y;)log G:zﬂ

i
is used (see McCullagh and Nelder, 1989, page 34). With the parameter ¢ = (5, ¢y, ..., ¢,)
only the GLM (6) given the knot placement can be considered. The fit of the respective
model is measured by the posterior expectation D = Ey, (D) of the deviance. The
complexity is given by the effective number of parameters pp that is defined by the
difference of the expected posterior deviance D and the deviance computed at the posterior
expectation ¢ = Egy(¢) of the parameter, i.e., pp = D — D(¢). Hence, pp is a penalty
term that penalizes a better fit by greater complexity. The DIC then is defined as

DIC = D + pp. (9)

The algorithm is implemented and performed in C++ on a Windows N'T 4.0 personal
computer with a 333 MHz Intel Pentium II processor. Based each on 10000 iterations
after a burn—in of 5000 iterations the algorithm ran for about 7 and 40 minutes in the
applications in Sections 4.1 and 4.2, respectively. The plotted graphs show the median of

each sample together with pointwise 90% Bayesian credible regions.

4.1 Kyphosis data

The binary response of the kyphosis data is given as presence (1) or absence (0) of kypho-
sis, a postoperative deformation that follows a corrective spinal surgery commonly per-

formed in children for tumor and congenital or developmental abnormalities. Kyphosis is
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Model D D(9) D DIC
(1) mi = Bo+ fa(A) + fn(Ny) + fs(S;) | 56.08 45.99  10.08 66.16
(2)  mi= B0+ ABa+ fn(N;) + fs(S;) || 60.84 52.65 819  69.03
(3)  mi=Bo+ fn(Ni) + fs(Si) 64.53 56.97  7.56 72.08
(4)  m = Bo+ fa(Ai) + NiBnw + fs(S5) 56.69 49.14  7.54  64.23
(5) = Bo+ fa(Ai) + fs(Si) 58.38  50.79  7.59  65.96
(6) i = Bo+ fa(Ai) + fn(N;) + SiBBs 59.88 51.86  8.02 67.89
(7)) mi = Bo+ fa(Ai) + fn(N:) 69.22 6222  7.00 76.22

Table 1: Models for analyzing the kyphosis data together with DIC.

defined as forward flexion of the spine of at least 40 degrees from vertical. The data set
contains 81 patients of which 17 had kyphosis after the surgery. The available predictors
are age in month at time of operation (A), the starting range of vertebrae levels involved
in the operation (5), and the number of levels involved (N). A frequentist analysis of the
data based on splines is described in Hastie and Tibshirani (1990, Section 10.2).

To analyze the influence of the covariates on the response we fit the seven generalized
additive logistic models shown in Table 1. Model 1 uses a regression spline f; for each of
the three predictors, together with an intercept term Jy. In the models 2 to 7 separately
for each of the three covariates we either replace the respective nonparametric covariate
effect by a linear parametric term or we completely leave it out.

Figure 1 shows the estimates of the nonparametric functions f4, fs and fy for model
1. The plots for the predictors age A and start S have striking nonlinear features, while
the effect of number N perhaps also could be modeled by a parametric term with fixed

covariate effect.

2 0 2 4 6

0 50 100 150 200 2 4 6 8 10 5 10 15

Figure 1: Estimates of splines with 90% Bayesian credible intervals for model 1.
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To compare the seven models, Table 1 additionally shows the value of DIC for each
model. Similar to the results of Hastie and Tibshirani (1990, Section 10.2, Table 10.1),
linearizing or leaving out the covariates age A or start S (models 2, 3, 6 and 7) leads
to a worse fit by increasing the DIC' when compared to model 1. Hastie and Tibshirani
(1990) state that only age and start seem to be important, for which reason they leave
number N completely out. Inspection of the deviances given in their analysis leads to the
conclusion that a linear effect of covariate N yields the best model. Due to the smallest
value of DIC' for model 4, this result can also be seen in Table 1 of our analysis, while
model 5 with leaving out the covariate N shows the second best fit.

The plots of f4 and fg for model 4 are very similar to the respective plots of model 1
in Figure 1 and therefore are not shown, while the linear effect of number /N in model 4
has median 0.3547 with the 90% Bayesian credible region (0.0600,0.7078).

As example for estimating the model indicators k;, Figure 2 gives some details of the
sample of kg for estimating the spline fg of covariate start S in model 1. The left part of
Figure 2 shows the sample kg with values between 4 and 19. With an acceptance rate of
0.34 for the steps birth and death the mixing over kg is good. In the middle of Figure 2
there is the frequency of the accepted values of kg. The mode is at kg = 4, and we see,
that in more than one third of the iterations we use a spline fg with four knots. The right
part of Figure 2 depicts the cumulative occupancy fractions p(ks < jly) for the different
values of kg against the number of iterations, what is a useful check on the stationarity of
ks. After the burn-in phase these cumulative occupancy fractions stay on a stable level
speaking for an adequate length of the burn-in. The samples of the model indicators k4

and ky for the splines f4 and fy behave similar and hence are not shown.

—————
ol e |
o
= 38 pk=61y)
<2l N
~ g T p(k=5ly)
S g8 B3|
S p(k=4ly)
i ‘ ‘ ; o i ‘ ‘ ‘
0 5000 10000 15000 46 8 10 12 14 16 18 0 5000 10000 15000

Sample k Sample
Figure 2: Sample path (left), frequencies (middle) and cumulative occupancy fractions
(right) for the samples of the model indicator kg for estimating the spline fg of covariate

start in model 1.
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Figure 3: Frequencies of the model indicator kg in model 1, when using the negative
binomial prior with p = 0.7 (a) and p = 0.3 (b), and the Poisson prior with A = 10 (c)
and A = 30 (d).

To compare the results of different priors for the model indicators, Figure 3 again
exemplarily shows the frequencies of the samples of ks in model 1, when using the negative
binomial prior with p = 0.7 (a) and p = 0.3 (b), and the Poisson prior with A = 10 (c)
and A = 30 (d). Prior (a) has a mode at ks = 4, while reducing the parameter p, for
example to p = 0.3 as in prior (b), leads to an increase in the mode of kg to 6. A greater
dependence from choosing the hyperparameter is given with the Poisson prior. With
A = 10 in prior (¢) we have a mode of kg = 5, while A = 30 yields a mode kg = 12
(d). In the estimation of the splines f; the first three priors (a) to (c) lead to curves
that are very similar to the estimates in Figure 1 for the discrete uniform prior, while the
Poisson prior (d) with large hyperparameter A = 30 leads to more rough and unsmooth
estimates, see also the comments in Biller (2000) regarding the choice of the prior of
the model indicators. Regarding the sample paths of ks and the cumulative occupancy
fractions, the four priors (a) to (d) yield very similar behaviours as given in Figure 2 for
the discrete uniform prior. Due to the dependence on the hyperparameters of the negative
binomial and the Poisson prior, we propose to use the discrete uniform prior for the model
indicators k;, where no hyperparameter has to be chosen by the user and hence is the

most objective choice.

4.2 Veteran’s Administration lung cancer trial

The Veteran’s Administration lung cancer data are from a clinical trial to compare a
standard and a test chemotherapy (see Kalbfleisch and Prentice, 1980, Appendix 1). The

data set consists of the censored survival times of n = 137 male patients. The observed
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G Treatment group (randomized):

1 = standard chemotherapy, 0 = new test chemotherapy.

K Performance status of patient (Karnofsky scale), dummy coded in three categories:
K, scale 10-30, completely hospitalized,
Ky scale 40-60, partial confinement,

K3 scale 70-90, able to care for self.
Age in years: 34 to 81 years.
Time in months from diagnosis to randomization: 1 to 87 months.

Prior therapy: 1 = yes, 0 = no.

T v oz o

Histological type of tumor, dummy coded in four categories:
H, squamous,

Hy  small cell,

H; adeno,

H, large cell.

Table 2: Covariates of the Veteran’s Administration lung cancer data.

event is the death of a patient and only 9 of the 137 times are censored. To consider
the possibility of existing heterogeneity between patients, a number of covariates was
measured, see Table 2. With progressing observation time the number of patients at risk
decreases strongly. For example, after about 8 months only 10 patients are at risk in each
therapy group, while beyond month 20 no patient with standard chemotherapy is under
observation. Therefore we group the survival time (originally given in days) into months.
Hence, for each patient : = 1,...,n the survival time is measured at discrete time points
t; with maximal time T},,, = 34 months. Since splines are very sensitive to data situations
with very sparse data at the end of the observation period, we additionally reduce the
influence of the sparse data following a proposal of Grambsch and Therneau (1994) by
using the monotonous transformation L; = log(t) of the original time scale ¢.

To analyze the survival of patients in dependence of the covariates z; given in Ta-
ble 2 at survival time ¢t = 1,..., Ti,ax, we consider the discrete hazard rate A(t|z;) =
P(T = t|T > t,x;). This is the conditional probability for the death of a patient at

time t given the patient has survived up to that time. To analyze the hazard rate

14



within the framework of the GLM and especially the BVCM presented in this paper,
the discrete survival data have to be transformed in the following way: For each patient
1 =1,...,n and each time point t = 1,...,t; we define binary event indicators by y;; = 1,
if patient ¢ dies at the discrete time point ¢, otherwise y; = 0. With the covariates
zy = (Ly, Gy, K1y Koy Ajy My, Py Hyyy Hoiy H3p) of patient i at time ¢ and the histories y; |
and x; of event indicators and covariates of all patients up to time ¢ —1 and ¢, respectively,
the distributional assumption y;|y;_;,z; ~ B(1, ;) holds, and the discrete hazard rate

of patient ¢ at time £,
Atwi) = Py = yi_1, o, yin = oo = Yigo1 = 0) = pag,

is modeled within the framework of the GLM as A(t|z;;) = h(n;) with the logistic distri-
bution function h. For details on discrete survival models see Fahrmeir and Tutz (1997).

Model 1 considers all covariates and is defined by the predictor

(1) ny = Bo+ folLy) + G fa(Ly) + Ku; fre, (L) + Ko fre,(Lt) + Py fp(Ly)
+ Hyi fu,(Le) + Hos fry (Le) + Hs; fry(Le) + fa(Ai) + far(M;).

The effects of the binary covariates G;, Ky;, Ko;, Hy;, Ho;, H3; and P; are modeled by
coefficients that vary over the transformed time L;, while the functions f4 and f, vary
over the metrical variables A; and M;.

Figure 4 shows the estimates of the varying coefficients together with 90% Bayesian
credible intervals. The effect of therapy in graph (a) is negative at the beginning, after
5 months the zero line is intersected, and then it stays positive. This implies that at the
beginning the classical therapy is better for surviving, while from month 5 on the new test
therapy is better. As in Kalbfleisch and Prentice (1980) with a pure parametric approach,
or Mau (1986) with time varying coefficients, the effect of therapy may be considered as
non-significant, since the zero line is included in the credible region for almost the whole
observation period. The effect of Karnofsky scale 10-30 in graph (b) starts at value 4.4
and then decreases monotonously. Near month 20 it is approximately zero. A similar
behaviour is seen for Karnofsky scale 40-60 in graph (c) which starts at value 2.2 and
intersects the zero line after 4 months. This implies that the patients with Karnofsky scale
10-30 have the greatest risk of death in the first 8 months of treatment when compared to
patients with Karnofsky scale 70-90 (the reference category). After month 8, the effect is
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Figure 4: Estimates of varying coefficients with 90% Bayesian credible intervals (model 1).

non-significant, since the credible region includes the zero line. Patients with Karnofsky
scale 40-60 have a greater risk of death in the first 4 months when compared to patients
with Karnofsky scale 70-90. Notice however that this risk is below the one of patients
with Karnofsky scale 10-30. From month 4 forward this effect is non-significant, since
the credible region includes the zero line. The effect of age in graph (d) shows different
risks for different age groups. The lowest risk can be seen for patients with age about 50
years. The effect of time in months from diagnosis to randomization in graph (e) varies
about a horizontal line, and hence could be considered as being non-significant. Graph
(f) depicts the effect of a prior therapy which monotonously falls until about month 24.
Here the credible region includes the zero line over almost the whole observation period.
Hence, this effect may be considered to be non—significant. The graphs (g) to (i) give the
effects of the dummy variates of tumor type with reference category “large cell”. The
effect of tumor type “squamous” may be considered as non-significant, since again the

credible region includes the zero line for almost the whole observation time. However, the
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tumor type “small cell” is significantly positive up to month 4, after that time there is
no effect. The effect of tumor type “adeno” is positive over the whole observation period,
and approximates at the end to zero. We see that the effect could also be modeled by
a straight line. When compared to the reference category tumor type “large cell”, this
results indicate that patients with type “small cell” and “adeno” have (at least in the first
8 to 10 months) a greater risk of death, whereby the risk of type “adeno” is above the
risk of type “small cell”.

To discover the covariates that are relevant for the survival of patients, we fit the

following reduced models, which are compared by the deviance information criterion (9):

2) me = Bo+ folLe) + Gi fa(Le) + Kui fr, (Le) + Kai fio (Le) + Py fp(Ly)
+ Hyi fi, (L) + Hyi fr, (Le) + Hai fu,(Le) + Aifa + M;Bu,

(3) me = Bo+ folle) +Gifa(Le) + Kui fre, (L) + Ko ficy (Le) + P fr(Le)
+ Hyi fm, (L) + Hy; fr,(Le) + Ha;i fuy (L),

4) me = Bo+ folLe) + Gi fa(Le) + Kui fre, (Le) + Koi fry (L)
+ Hy; fi, (Le) + Hai i, (Le) + Hai i, (Le),

(5) i = Bo+ fo(Le) +Gi fa(L) + Kui fre, (Le) + Koi fie, (L)
+ Hy; fu, (Ly) + Hay; fu,(Ly) + HsiBm,,

(6) mie = Bo+ fo(Le) + Kui fre, (L) + Kai fro(Lt)

+ Hy; fu, (Lt) + Hoi fr, (Lt) + Hsi B,

When compared to model 1 in model 2 only the effects of age A and time in months
from diagnosis to randomization M are modeled as fixed, while these two covariates are
completely left out in model 3. Model 4 results from model 3 by leaving out the covariate
prior therapy P. In model 5 additionally the effect of tumor type “adeno” Hj is considered
to be constant over time. Model 6 finally results from model 5 by leaving out the effect
of the covariate treatment group G (that was considered as being non—significant).
Table 3 shows the model fit of models 1 to 6 computed with the deviance information
criterion (DIC) (9). With the greatest value of DIC model 1 has the worst model fit
resulting from the greatest complexity pp. Modeling the effects of A and M as constant

in model 2 yields a greater D but a much smaller pp, resulting altogether in a clearly
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Model D D@®)  pp DIC
(1) 545.93 504.74 41.19 587.12
(2) 546.39 518.24 28.14 574.53
(3) 54454 51822 26.32 570.86
(4) 545.79 522.04 23.75 569.54
(5)
(6)

D 545.24 522.66 22.58 567.81
6 047.40 526.89 20.52 567.92

Table 3: Model fit of models 1 to 6 computed with the deviance information criterion

(DIC).

better fit by DIC. The estimates of these constant effects, BA = —0.0028 and BM =
—0.0052, are almost zero. With the 90% Bayesian credible regions (—0.0212,0.0150) and
(—0.0340,0.0246) these two effects are non—significant. The omission of the covariates A
and M in model 3 yields a further clear improvement of the fit by a smaller DIC. Also
the omission of covariate prior therapy P in model 4 results in a somewhat better fit.
We mentioned above, that the effect of tumor type “squamous” could be considered as
non-significant. But both leaving out this covariate and modeling the effect as constant
yields a greater value of DIC and hence a worse fit (this result is not shown in Table 3).
However, we yield a better fit, if in model 5 the effect of tumor type “adeno” is modeled as
constant over time with estimate y, = 1.3073 and 90% credible region (0.5950, 2.0824).
This results both in a smaller deviance D and in a smaller complexity pp when compared
to model 4. If the covariate tumor type with its dummies H;, H, and H3 would be
left completely out, corresponding to the results of Mau (1986) where only the covariate
Karnofsky scale is considered as significant, we would yield a very bad model fit, which
would be worse than that of model 1 (also this result is not shown in Table 3). A similar
model fit as with model 5 results if we additionally leave out the covariate treatment
group G' (model 6). This corresponds to the results of Kalbfleisch and Prentice (1980)
and Mau (1986), where the treatment group is not significant for the survival of patients.

The presented results indicate, that the Veteran’s Administration lung cancer data
are best described by model 5 with the covariates treatment group, Karnofsky scale and

histological type of tumor.
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Figure 5: Sample path (left), frequencies (middle) and cumulative occupancy fractions
(right) for the samples of the model indicator kg for estimating the varying effect fg of

covariate treatment group in model 5.

As an example of the samples of the model indicators k;, Figure 5 gives details for
the sample of kg for estimating the varying effect fs of the covariate treatment group
in model 5. The left part of Figure 5 shows the sample of ks with values between 4
and 14. With an acceptance rate of 0.31 for the steps birth and death, the mixing over
ke is good. In the middle of Figure 5 there is the frequency of the accepted values of
ke with mode at kg = 4. The right part of Figure 5 depicts the cumulative occupancy
fractions p(kg < jly) for the different values of ks against the number of iterations. After
the burn—in phase these cumulative occupancy fractions stay on a stable level speaking
for an adequate length of the burn—-in. The samples of the other model indicators k; for

j €10, Ky, Ky, Hy, Hy} of model 5 behave similar and hence are not shown.

5 Conclusions

As we demonstrated in the last section, Bayesian non— and semiparametric regression
is a valuable tool for practical data analysis. MCMC techniques provide a rich output
for inference, prediction and model comparison. No approximations based on asymptotic
arguments have to be made, and data—driven choice of smoothing or tuning parameters
is incorporated as part of the model.

The main advantage of Bayesian modeling and inference with modern Monte Carlo
techniques is the modular structure. This allows to generalize and to modify the existing
approach in a conceptually straightforward way. Some future extensions are: inclusion
of basis functions which admit edges or jumps, two-dimensional basis functions such
as tensor products of B-splines, and incorporation of random effects for longitudinal or

spatial data.
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Appendix A: Update of fixed effects

With this move type both the fixed effects 3 and the basis coefficients ¢i,...,c, are
updated by a method for GLM’s with fixed effects. Since the dimensions k; of the coeffi-
cients ¢; are varying from iteration to iteration, here we need a more sophisticated MCMC
technology that avoids tuning of the parameters of the proposal distribution. Suitable
approaches are the adaptive rejection Metropolis sampler of Gilks, Best and Tan (1995)
or the approach of Gamerman (1997a), the so—called weighted least squares proposal. As
mentioned in Biller (2000), the latter approach has some advantages regarding computing
time and provides the incorporation of correlations between the fixed effects 5. Another
advantage is the possibility to adapt this method in a straightforward way to GLM’s
where the vector of fixed effects is split up in several blocks, which have to be simulated
separately as in the BVCM (6).

For this adaptation of the approach of Gamerman (1997a) we consider a GLM with
fixed effects a = (0/(1), . .,azpﬂ))’ split up in p + 1 blocks «y;) yielding the predictor
N = Zi)aq) + .. + Zip41)Qps1)- The BVCM (6) then is given by 2y = 2, apqy = f
and z;(j11y = x4 B;(r35), a1y = ¢j for j =1,...,p. The blocks o;) are assumed to be a
priori independent and multivariate normal N(a(jo), Xa;,). For each j =1,...,p+1 we
consider the full conditional p(oy;)|a(—jy,y) of block ay;), where a(_;y denotes the vector
a without agj). In a single Fisher scoring step this full conditional now is maximized with
regard to ay;), resulting in a MAP (maximum a posteriori) estimate 772(;) of a(;y and the
inverse of the expected Fisher information C’(j) = ﬁ’(;)l. Details are given in Gamerman
(1997a).

For the separate simulation of each block a(;), the two estimates 7 ;) and C’(j) are
computed in each iteration of the algorithm by a single Fisher scoring step, given the
estimate of a(;y of the preceding iteration. The new proposal for a(;y then is drawn from
the multivariate normal proposal distribution N (1;), C’(j)). This procedure incorporates

the structure of the observational model in the proposal distribution, leading to a very

efficient algorithm with good convergence and mixing properties.
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