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Abstract

Parametric multicategorical models are an established tool in statistical
data analysis. Alternative semi-parametric models are introduced where
part of the explanatory variables is still linearly parametrized and the
rest is given as a sum of unspecified functions of the explanatory variables.
The modelling approach distinguishes between global and category specific
variables, in contrast to global variables the latter may have different values
for differing categories of the response. Estimation procedures are derived
which make use of an expansion in basis functions which are localized on a
grid of values of the explanatory variables. Regularization of the estimates
is obtained by penalization.

1 Introduction

In generalized linear models (Nelder & Wedderburn, 1972) the mean of a response
variable y is related to a vector of covariates by

g(p) =2"p

where ¢ is a specified link function. Various extensions of the model have been
given in order to avoid the restrictive parametric form of the predictor. An
extension which still has additive structure is the generalized additive model
(Hastie & Tibshirani, 1990) where the linear predictor is replaced by an additive
term yielding

g(ﬂ) = [ + ’Y(l)(xl) +...+ ’Y(p)(xp)
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with zy,..., 2, being the components in 27 = (x1,...,1,) and ~;, are unspe-

cified unknown functions. Partially linear models may be treated as a special
case where part of the covariates, say x1,...,z,, have linear form. These types
of models are given by

p1 p
g(w) = Bo+ > _ziBi+ Y ().
i=1

Jj=p1+1

While these models are in wide use there have been relatively few extensions
to the multivariate case. Yee & Wild (1996) considered a multivariate addit-
ive model using smoothing spline methodology with estimation based on the
backfitting algorithm. In the neural network literature multivariate models are
treated extensively, however, without constraints on the form of the predictor
(e.g. Bishop, 1995). Thus in neural networks one assumes a multi-dimensional
unspecified function of the covariates. However, the estimated functions do not
allow to determine the influence of specific covariates which is a central issue
in statistical analysis. New developments are found in marketing where multic-
ategorical models are an established tool to model the choice of brands. Abe
(1999) develops a multicategorical model which is based on penalized likelihood
whereas Hruschka (1998), Hruschka et al. (1999) base their brand choice models
on artificial networks.

The models considered here are differing from these approaches in several re-
spects. While Yee & Wild (1996) consider only global variables i.e. variables
which do not vary across response categories, in the marketing literature only
the other type of covariates, namely brand-specific variables which do vary across
categories are used. Here both types of variables are included. In addition we
use a simple way for estimating smooth functions which allows to embed the
estimation into the framework of multivariate generalized linear models.

In the following multivariate response means multicategorical response. In sec-
tion 2 first we consider the parametric multinomial model as a special case of a
multivariate generalized model. The underlying maximization of random utilities
will be considered as a basic tool for the construction of semi-parametric exten-
sions. In section 3 estimation of the general model is derived. The method used
assumes that the unspecified functions may be approximated by a finite number
of basis functions which in the estimation procedure are penalized with reference
to the localization of the basis functions. In section 4 the methodology is applied
to the preferences for political parties in Germany.



2 Semiparametric models

2.1 The multinomial logit model and latent utilities

Let Y denote the response variable with possible values 1, ..., k with the numbers
representing only labels for categories on a nominal scale. In probabilistic choice
theory it is often assumed that the response categories are linked to unobserved
utilities. Let more generally U, be a latent variable which has the form

Ur:ur+5r

where u, is a fixed value associated with the rth response category and e, ..., &y
are iid random variables with distribution function F' which represent the noise.
The principle of mazimum random wtility links the observable response Y to the
latent variables Uy, ..., U in the form

Y =r&U = max Uj.
j=1,...k

It is well known (McFadden, 1973, McFadden, 1981) that the assumption of the
extreme (maximal) value distribution

F(x) = exp(—exp(—z))

yields the multinominal logit model

. exp(uy)
PY =r)= B EE—
> exp(uy)
s=1
However, only differences between the latent utilities uq, ..., u, are identifiable.

By choosing a reference category, which in the following is k£ one obtains
) exp(u, — u) B exp(n,)

- q - q
1+ Z exp(us —ug) 1+ Z exp(n;)
s=1 s=1

where 1, = u, — uy, is the identifiable difference between the rth fixed utility and
the utility of the reference category k and ¢ =k — 1.

In parametric models the utilities u, and 7, are specified as known functions
of the explanatory variables, most often they have linear form. It is useful to
distinguish between two types of variables namely global variables which only
characterize the respondent, e.g. age in the choice of transportation mode or
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the choice of brands, and category-specific variables which are specific for the
alternatives 1,...,k, e.g. the price of the alternatives. Let the data at hand be
given by (Y, z;, wi, ..., wig), i = 1,...,n, where Y; € {1,...,k} is the response
variable, x; is a vector of global variables and w;y, . . ., w; is a set of vector-valued
variables which are connected to the alternatives 1,...,k. An often used linear
specification is given by

Uir = For + 2] Yp +wha, r=1,...,k
which yields the differences

Mir = Uir — Uik
Yor + 27 Y + (WE —wh)a, r=1,...k—1,

where Yo, = Yor — Yok, Vr = Y — Yk- The resulting multinomial logistic model
has the form

exp(Yor + ] + (wir — wir) )
q
1+ Z exp(7os + xz-Tfys + (wis — wik)Toz)

s=1

P(Y; = rl|zi, {w;}) =

or

log <P(Y,- = 1|z, {wi;})

= Nir = Yor + sz’Yr + (wir - wik)Ta-
P(Y; = k|, {wij})>

The model may be written in the form of a multivariate generalized model

g(m) = Z;8 or m = h(Z;B)

where 7 = (71, ..., 7Tiq), ¢ = k—1, is the vector of the response probabilities with
components 7, = P(Y; = r|x;, {w;;}), ¢ is a link function, the inverse function
h = g~ ! is the response function, 57 = (yo1,...,%¢, Vs -, 74, a”) is the vector

of parameters and Z; is a design matrix composed from x;, {w;;}, ¢ =1,...,n
which has the form

1 | = | wir — wi
1 i | Wig — Wik
Thus the vector valued predictor n] = (11, ... ,7;,) has the linear form n; = Z,.

For details see Fahrmeir & Tutz (2000).



2.2 The semiparametric multinomial logit model

Instead of assuming a known parametrized function for u; as in the common
multinomial model here the form is an unspecified additive function. The utility
is determined by the variables =] = (z,..., %) and w] = (wirr, ..., Wip,y) in
the form

= Yor + Z i) (i) Z o) (Wijr)
j=1

yielding the predictor for observation ¢ and response category r

m

Nir = Ujp — Ui = Yor + Z YG) xzy) + Z Of(j),?"(wijr) = Qh),k (wljk) (1)
7j=1 7j=1

where o, = Jor — Yor and Yy (®ij) = V) (Ti;) — F)k(wi;). Thus the logits
log(7iy /mik), m =1,...,q have an additive form with ;) ,(x;;) being the effect of
the jth global variable and ayj), (wij) — o)k (wiji) being the effect of category
specific covariates. A simpler version of (1) follows from the assumption that the
response-specific variables have identical influence upon the response categories.
Thus one assumes o) (w) = ag)(w) for » = 1,... ,¢q. This type of model has
been considered for brand choice by Abe (1999).

The parametric multinomial model results as the special case where

Yoy (Tig) = TigVirs
g (Wijr) = wijra;.

If the predictor has the form (1) each explanatory variable is given as a smooth
function. However, if some of the explanatory variables are categorical a smooth
function is not appropriate. Thus a slightly more general semiparametric model
is considered in which some of the explanatory variables have a linear form and
some are given as unknown functions. In the general model the predictor has the
form

Nir = ’70r+zx1]7]r+ Z YG) ng

Jj=p1+1

waaﬁ Wijk Qg + Z r(Wijr) — e p(Wige).- (2)
] mi1+1



3 Estimation by penalized basis functions

3.1 Basis functions

In the following the smooth functions are specified as a finite number of basis
functions which are characterized by knots or anchor points. A well known ap-
proach of this type is based on smoothing splines where the basis functions are for
example B-splines and the knots are given by the observations. Alternative func-
tions have been used in the neural network community in the form of so-called
radial basis functions. A radial basis function has the form

G(x|x0) = @ ([[x — mol])

where ® is some unidimensional function. Functions which have been used are
the Gaussian kernel, thin-plate spline functions ®(z) = 2*log(z), as well as the
linear function ®(x) = x (see e.g. Bishop, 1995). The basis function G is centered
around the anchor point xy which determines the location of the basis function.
In contrast to the thin-plate spline function the Gaussian kernel is local in the
sense that ®(y) — 0 as |y| — oc.

In the following it is assumed that the smooth functions are given by

P
’Y(j),r(x) = Z’ersts(x)a (3)
s=1

M;
agye(w) =Y s Ajs(w), (4)
s=1

where Gj,(7) = G(x|w))), Ajs(w) = A(w|w;)) are basis functions which are
linked to knots zj(), w;(s) which characterize the location of the basis function.
The knots xj(, are chosen on a grid from the range of the jth global variable,
the knots wj,) are from the range of the jth category-specific variable. In the
following it is assumed that the knots are ordered, i.e. xjq) < --- < xjp;) and
winy < -+ < Wjwy)- Since basis functions are linked to these knots one obtains
an ordering of the basis functions. Each basis function is considered as linked
to just one knot, for kernel functions this may be the mode of the kernel, for
B-splines which have several knots the knot which is linked to the basis function
can be chosen for example as the leftmost knot at which the B-spline starts to
become nonzero.

Although usually the basis functions will be of the same type different functions
could be used for different components. The semiparametric model (2) follows
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simply by specifying for the variables which have linear form the identity function
as basis function and the number of basis functions as one. With G;1(z) = = and
P;j=1,75=1,...,p;, one obtains

Vi (ig) = VG (@) = virwig, J=1,...,p1,
where v, = ;1.

The essential advantage in using basis functions is that the resulting model may
be embedded into the framework of parametric generalized linear models. Use of
(3) and (4) yields the linear predictor

J

Mir = Tor + eryﬂ"s VE] ng + ZZQJTSAJS wzyr Zajks s wzyk

Jlsl j=1 s=1

- ,70’[' + E ’y]rC’L] + § a]TaZ]T - ]ka"‘]k

where
%’Tr (Vjrts - ,erpj),
¢y = (Gulwy), ..., Gip(wiy)),
Ochr = (1,5 aerj),
ag, = (Aj(wigr), .- Ajug (wigy).
Thus the vector valued predictor of the multivariate model n! = (mi1, ..., 7i) 18
given by
p m
N ="+ Z Cijvs + ZAijOéj — Aijrer, = Zip
=1 =1
where
%= (Y155 Y00)s
Cij = Diag(c]; Ua )y = (Ve
A = Diag(al; ij1s - - .,aiqu), a]T = (Ochl, ,a%),
A = (g, - agr)"

The corresponding design matrix Z; is a collection of these parts, i.e. with [
denoting the unit matrix one has

Zi - (]7 Cil; SR Cip; Ail; Ailk; cee aAima Azmk)
ﬁT = (’VOT)’Y?: : "77;17170‘/{704{/67"'7&27&516)'

The resulting model p; = h(Z;3) can be estimated as a generalized linear model.
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3.2 Regularization by penalization

The expansion of the unspecified functions of explanatory variables may be based
on quite different basis functions. One might use the orthonormal Fourier basis
or the truncated power series basis which is used within the regression spline
approach. Here the basis functions are always localized meaning that they are
linked to an anchor point or knot and have essentially local support. For example
the Gaussian kernel has no local support in a strict sense but the kernel is de-
creasing with increasing distance from its mode, thus it is localized around its
mode. For basis functions of this type it is still a question which knots to select.
If few knots are selected the number of parameters to be estimated remains low
but the range of functions which may be approximated is severely limited. An
alternative approach which we will pursue here has been outlined by Eilers &
Marx (1996) for the B-spline basis within the framework of univariate general-
ized linear models. The basic idea is to use many basis functions linked to an
equidistant grid of knots. Thus the number of parameters is increased but the
estimates may adapt very flexible to a whole range of functions. The high number
of parameters to be estimated is restricted by penalizing the variation of weights
which correspond to adjacent basis functions. However, since many parameters
have to be estimated some regularization is useful in order to obtain smooth es-
timates. Therefore we consider penalized likelihood estimation where the penalty
is given as finite differences of the coefficients of adjacent basis functions.

The penalized log-likelihood which is to be maximized is given by

pl(B) = Zli(yi,m)

1 p q P; 1 m k M; .
—52 N 2 (A= 53 R N D (Aay)?
=1 r=1 s=d;,+1 j=1 r=1 s=dS, +1

where [;(y;, n;) is the log-likelihood contribution of the model with predictor 7;
and A is the difference operator operating on adjacent coefficients of the basis
functions, Le. A’ers = Yjrs — Vir,s—15 A2’ers = A(’)’jrs - ’er,s—l) etc., and )\jr; /\gr
are smoothing parameters for the global and category-specific variables which
determine the smoothness of the estimated functions.

The difference operator may be given as a matrix D¢ where D is a contrast
matrix containing —1,1 in each row. With K; = (D%)”(D%) one obtains in
matrix notation

q m k
Z Z )\jﬂjTrdeT’er - % Z Z /\§r@;€ﬂKd§T04jr (5)

j=1r=1 7j=1 r=1

DO | =

pl(ﬁ) = Zli(yiani) -



where dj,, dj, are the degrees of differences for the effect of the jth variable on

category r which may vary across variables and categories.

Maximization of the penalized log-likelihood is obtained by solving the gener-
alized estimation equation ps(f) = 9l(3)/0p = 0. It may be performed by a
version of Fisher scoring which has the form

B = 59 1 F(30)  ps(3¥)

where F(3) = F() + AK is the Pseudo-Fisher matrix and ps(f3) is the pseudo-
score function given by ps(3) = ZT DT(8) X71(3) (y — u) — AK 3 (see Appendix).

If the underlying smooth functions may be represented by sums of basis functions
with the specified number of knots P,,..., P,, M;,... , M, for fixed smoothing
parameters A;., A7, the usual asymptotic results hold under standard assumptions
if n — 00, A;,./n, A%, /n — 0. In this case estimates of variances may be computed

~ ~ ~

by cov(3) = F1(B) or éov(f) = F1(f3) with the same asymptotic behaviour.
The multivariate analog to the sandwich estimator which has been used by Marx
& Eilers (1998) in the univariate case is given by

cov(B) = F B F(B)F (D). (6)

The sandwich estimator may be motivated by considering the case of an univariate
normally distributed response with the identity link. In this case the estimator
becomes 3 = (F(3) + AK) 1 ZT S Y(3)y with F(8) = ZT ¥ }(3) Z and one
obtains (6) as the exact formula for the covariance. Thus it may be a better
approximation if the conditions for asymptotics are not fulfilled. The essential
condition for asymptotic considerations is that the number of knots and the
penalties as represented by the smoothing parameters are fixed. In practice a
moderate number of knots which is a fraction of the sample size works pretty
well.

4 Example

We consider data on preferences for political parties which have been collected in
the German socio-economic panel. The data set comprises 1913 individuals who
were asked if they prefer the christian-democratic party (CDU/CSU, Y = 1), the
liberal party (FDP, Y = 2) or the social-democratic party (SPD, Y = 3). The
covariates were gender and age and an indicator for the area with AREA= 1
if the individual lives in the former western part of Germany and AREA= 0
otherwise. The highest degree of education for all individuals was secondary
school (Hauptschule).



We consider the parametric model

log(m,/m,) = ~or + GENDER * 76, + AREA % yar, + AGE * 74,
+ AGE? % 742, + AGE? % 743, (7)

Table 1 shows the parameter estimates for model (7). Among the categorical
variables only area seems to have a significant fact upon the preference of category
1 over category 3.

Yo s(50) Ya s(¥a) Yar s(¥ar)
category 1 (CDU/CSU) | 0.02 0.13 -0.14 0.10 -0.29 0.13
category 2 (FDP) -3.16  0.44 -0.14 0.36 -0.38 0.44

Ya  s(9a) Yaz $(¥a2) Y a3 $(Ya3)
category 1 (CDU/CSU) | 0.02  0.11 5-107° 2.107% -8.10=7 1-107°
category 2 (FDP) 028 0.63 —3-10% 1-1002 8-10% 8-10°5

Table 1: Effects of gender and area preference for parties for the parametric model

Alternatively the smooth model
log(m, /7)) = vor + GENDER * 76, + AREA * var, + 7 (AGE)

is considered where the form of age is unspecified. In a first step the smoothing
parameters have been chosen in order to give good visualization.

A Yo o s(5o)  de¢  s(he)  Har  s(Yar)
0.3 | category 1 (CDU/CSU) 0.025 0.128 -0.142 0.096 -0.295 0.129
category 2 (FDP) -3.259 0.446 -0.136 0.357 -0.376  0.442

1.0 | category 1 (CDU/CSU) 0.025 0.128 -0.140 0.095 -0.293 0.129
category 2 (FDP) -3.199 0.441 -0.140 0.356 -0.364 0.441

12.2 | category 1 (CDU/CSU) 0.028 0.127 -0.139 0.095 -0.295 0.128
category 2 (FDP) -3.086 0.431 -0.158 0.355 -0.401 0.439

54.6 | category 1 (CDU/CSU) 0.034 0.127 -0.144 0.095 -0.298 0.127
category 2 (FDP) -3.022 0.427 -0.174 0.355 -0.448 0.437

Table 2: Effects of gender and area upon preference for parties for the semipara-
metric model

For comparison the estimated effects of categorical variables are shown in Table 2
for a wide range of smoothing parameters and B-spline basis functions for 20

10



equidistant knots. It is seen that for category 1 which is the only one which
shows significance, the estimates are quite stable, varying smoothing parameters
yield rather similar estimates. In Figure 1 the estimated probabilities are given
for smoothing parameter A = 54.6. It is seen that the preference for the christian-
democratic party is increasing across age with the effect that for eastern countries
the overall preference for this party is stronger than for the social-democratic
party if people are above 60 years of age. The preference for the liberal party is
very low for all subpopulation and age groups.
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Figure 1. Estimated probabilities plotted against age, squares show preference
for CDU, crosses for SPD and triangles for FDP. The subpopulations are western
countries, women (top left), western countries, men (top right), eastern countries,
women (bottom left), eastern countries, men (bottom right).
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Appendix

The penalized log-likelihood has the form

Z l Yi, 771 Z Z )\]r'Y]rKdJT’Y]r - Z Z )\]r ]rKdC a]r

317“1 jlrl

or equivalently

Zl Yis 1) Z% A Ky — Z o NS Ko + Ny Kae, o
j:l

where
Kj == Diag(del, ceey deq),

A] = diag(/\jl]-Gja"'7)\jq]'Gj)’
K¢ = Diag(Kd§1,...,ch)

AJ]C- = diag(Af;1usy, -, A lagy)-
One obtains with D; = a(ni)’ wi = h(Z;3)
opl(B) /0 = zn:DiTEil(yi — 1)
i=1
Ipl(B)/0y; = z“: CEDIS (Y — i) — NG
i=1

apl(B)/da; = ZATDTE Ny — ) — AoK Sy

opl(B)/0aj, = ZAZ.TMD;[E;I(% — i) — A B ac, i

=1

The Pseudo-Fisher matrix is given by

- 0*pl(B) 2
F — E — — F r=0,...,p+2m
< agagT) (Fro) r=gemmiam
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> DIs'p;

1=1

i

n

Y CIDIS'D;, r=1,...,p

=1

ZA’L?;D;TEZ'_IDZ') r=p+20-1,1=1,....,m,

=1
n

ZAg;kDiTEi_lDia r=p+2,1l=1....m

i=1

n

S CIDISI DG, + MK, s=1,...p

i=1
n

ZA%DZ-TE;IDZ-AU + AN K,

i=1
n

N ALDIS DAy + XKy, s=p+2l, l=1,...,m

i=1

Z CyDy ' DiCi,
i—1

ZAgDiTzleiCisa

=1

ZAngiTzleiCis;
-1
> AIDIS DAy,

i=1

ZAngiTzleiAitk,

i=1

ZAg;kDiTz;lDiAita

i=1

ZAg;DiTEi_IDiAitka

i=1

r=2,....p, 0<s<r
r=p+20-1,1=1,...,m,
0<s<p

r=p+2,1=1,...,m,
0<s<p,

r=p+20—-1,1=2,...,m,
s=p+2t—1,t=1,...,1—1

r=p+2,1=2...,m,
s=p+2, t=1...,1-1

r=p+2,1=1,...,m,
s=p2—1,t=1,...,1

r=p+20—-1,1=2,...,m,
s=p+2t t=1,...1-1
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In closed form one has

ps() = U =S ZIDE() 7 (9) (- ) - AR

= Z'D"(B)T N (B) (y— p) — AKp

F(B) = F(B)+AK,

where
F(B) = > ZIDI(B) % (8) Di(B) Zi = 2" D" (8)71(8) D(B) 2

is the usual Fisher matrix with D,(8) = 0h(n,)/0n, ,(8) = cov(y,), D =
Diag(D,(5)). & = Diag(%;(5)) and

A = Diag(0,A,,... , A, A5, ... A%,
K = Diag(0,K,,... K, K{,... ,K)

m
represent the penalty term.

One obtains a version of the Fisher scoring in the form

B = 56 4 F(50) 1 ps(5%)
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