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Abstract

We present two methodologies for Bayesian model choice and averaging

in Gaussian directed acyclic graphs �dags�� In both cases model determina�

tion is carried out by implementing a reversible jump Markov Chain Monte

Carlo sampler� The dimension�changing move involves adding or dropping a

�directed� edge from the graph� The �rst methodology extends the results in

Giudici and Green �	


�� by excluding all non�moralized dags and searching

in the space of their essential graphs� The second methodology employs the

results in Geiger and Heckerman �	


� and searches directly in the space of

all dags� To achieve this aim we rely on the concept of adjacency matrices�

which provides a relatively inexpensive check for acyclicity� The performance

of our procedure is illustrated by means of two simulated datasets�

Keywords� Adjacency matrix� Bayesian model selection� Gaussian dag models�

inverse Wishart distribution� reversible jump Markov Chain Monte Carlo�

� Introduction

Model selection by reversible jump �rj� MCMC has been recently developed by

Giudici and Green ������ for pure continous variables and by Giudici� Green� and

Tarantola ������ for the pure discrete case� Both approaches consider only undi	

rected decomposable models �udg� which allow a factorization by cliques and sepa	

rators and thereby also local computations�

Factorization is possible also dealing with Gaussian directed acyclic graphs �dags�

and using a Normal
Wishart distribution as a prior� as shown for instance in Geiger

�



and Heckerman ������� They propose a method for the construction of the prior

distribution in dag models which allows a simple derivation of the marginal likelihood

for every model� A problem which arises in the directed case is the possible Markov

equivalence of di�erent dags� Andersson� Madigan� and Perlman �����a� have shown

that any class of equivalent dags can be represented by a single chain graph� the

so
called essential graph� Another result of the authors �Andersson� Madigan� and

Perlman� ����b� says that the undirected decomposable graphs are equivalent to the

essential graphs of all moralized dags� which means all dags without immoralities�

We shall present two reversible jump algorithms for model selection for directed

acyclic graphs� The rst one considers the equivalence classes by excluding all non


moralized dags and searching in the space of their essential graphs� This algorithm

corresponds essentially to the above mentioned algorithm of Giudici and Green� It

has been extended to allow for a mean parameter di�erent from zero� Our long	term

objective is to develop an algorithm that moves in the space of the essential graphs

of all dags� This would decrease the huge search space enormously� But this calls

for further discussions and careful graph
theoretical considerations and it therefore

requires further research�

The second algorithm� which makes use of the results in Geiger and Heckerman

������� searches directly in the space of all dags� without accounting for the equiva	

lence classes� The representation of a graph in this algorithm relies on the concept

of adjacency matrices which is well known in graph theory� This representation

also provides a relatively inexpensive check for acyclicity� The algorithm is incor	

porated into the software package BayesX� which is available for public use under

http���www�stat�uni	muenchen�de��lang� �see also Lang and Brezger �����

We compare the results obtained from application of these two methods by simulated

datasets� In order to have another criterion for the comparison of the algorithms we

also perform exact calculations for a trivial simulated example with three variables

and compare them with the corresponding results obtained from the simulations�

� Gaussian UDG Models

In this section we extend the �undirected� Bayesian graphical Gaussian model pro	

posed by Giudici and Green ������ by allowing for the presence of a mean parameter

�� Let X � �X�� � � � Xk�
� be a vector of p � � random variables� such that

�X j ���� � Np�����

with � � � a positive denite matrix� We assume that for a given undirected graph

g�

X j ���� g � Np������

�



� j �� g � Np���
�

��
���

� j g � HIW ������

where HIW ��� indicates a hyper inverse Wishart distribution� We remark that the

above is� in the terminology of Giudici and Green ������� a non
hierarchical model�

one may want to take ����� � ����� and ��� ��� � ������

Finally� supposing that there exist G possible decomposable undirected models�

which� in the absence of subject
matter information� have all the same probability�

we get a discrete uniform distribution for g�

p�g� � ��G�

Given a complete sample X� the joint distribution of all random quantities results

in

p�g�����X� � p�g� p��jg� p��j�� g� p�Xj���� g�

�

Q
C�C det��

C������jCj��� expf��
�
tr��C��C����gQ

S�S det��
S������jSj��� expf��

�
tr��S��S����g

� det������� expf�
��

�
��� ����������� ��g

�

Q
C�C det��

C��n�� expf��
�
tr�SC��

C����gQ
S�S det��

S��n�� expf��
�
tr�SS��

S����g

�
�

G
�

where C and S denote a clique respectively a separator� while C and S represent

the sets of cliques and separators� Furthermore �C is the part of the covariance

matrix corresponding to the clique C� analogously �S the one corresponding to the

separator S�

� Gaussian DAG Models

A Gaussian dag model d can be represented as a regression model for each variable

Xi� i � �� � � � � p� given the parents of Xi� denoted by Xpa�i��

Xi j xpa�i���ijpa�i�� �
�
ijpa�i�� d � N�	i� �

X
xl�pa�xi�

	ilxl� �
�
ijpa�i��

and the joint distribution of all variables X � �X�� � � � � Xp�
� is then given by

p�x j ���� � p�x j ����� �
pY

i��

p�xi j xpa�i���ijpa�i�� �
�
ijpa�i���

where �ijpa�i� is the jpa�i�j��
dimensional vector of the intercept 	i� and the jpa�i�j

regression coe�cients of Xi� Furthermore� �
�
ijpa�i� is the partial variance of Xi given

�



its parents xpa�i�� Let � � ��
�
�jpa���� � � � ��

�
pjpa�p��

� denote the vector of the �ijpa�i��s

and accordingly �� � ����jpa���� � � � � �
�
pjpa�p��

� the vector of the conditional variances

��ijpa�i��

As the dag model is Gaussian� when d is complete the joint distribution ofX is a p


dimensional normal distribution with mean � and covariance matrix �� Therefore

one could work equivalently with the ����� parametrization� See for instance Geiger

and Heckerman ������ or Schachter and Kenley ������� We prefer to work with

the former� however� when comparing results with the undirected ones we shall

indeed make use of this reparametrisation� We remark the well
known connection

��ijpa�i� � ��ii��i�pa�i��
��
pa�i��pa�i��i between the partitioned covariance matrices of ��

�i�pa�i�� and the partial variances of the i
th regression model� Let in addition n

denote the number of observations�

The vector �ijpa�i� is assumed to be normally distributed with mean bijpa�i� and

covariance matrix �
�i
��ijpa�i�I� where �i is a known scaling factor� For the sake of

simplicity� we shall assume �i � �� which gives

�ijpa�i� j �
�
ijpa�i�� d � Njpa�i�j��

�
bijpa�i��

�

�
��ijpa�i�I

�
�

This implies that the coe�cients of a regression model are assumed to be mutually

independent� For the partial variance ��ijpa�i� we use an inverse gamma distribution

with parameters 
ijpa�i� and �ijpa�i��

��ijpa�i� j d � IG
�

ijpa�i�� �ijpa�i�

�
�

Finally� supposing that there exist D possible dags� which� in the absence of subject


matter information� have all the same probability� we get a discrete uniform distri	

bution for d�

p�d� � ��D�

Taking advantage of the well
known factorization property of the joint distribu	

tion in ��� and the �global parameter independence� in ��� and ��� �for a detailed

description see Geiger and Heckerman� ����� i�e��

p�x j ����� d� �
pY

i��

p�xi j xpa�i���ijpa�i�� �
�
ijpa�i��� ���

p�� j ��� d� �
pY

i��

p��ijpa�i� j �
�
ijpa�i��� ���

p��� j d� �
pY

i��

p���ijpa�i��� ���

we get for the joint distribution�

�



p�x������ d�

� p�x j ����� d� p�� j ��� d� p��� j d� p�d�

�
pY

i��

p�xi j xpa�i���ijpa�i�� �
�
ijpa�i��

pY
i��

p��ijpa�i� j �
�
ijpa�i��

pY
i��

p���ijpa�i�� p�d�

�
pY

i��

�����ijpa�i��
�n

� exp

��
��

�

���ijpa�i�

nX
l��

�xli � 	i� � �ijpa�i�xpa�i��
�

	

�

�
pY

i��

���
�

�
��ijpa�i��

� �
� exp

��
��

�

���ijpa�i�
��ijpa�i� � bijpa�i��

���ijpa�i� � bijpa�i��

	

�

�
pY

i��

�
�ijpa�i�
ijpa�i�

��
ijpa�i��
���ijpa�i��

�ijpa�i��� exp���ijpa�i���
�
ijpa�i��

�
�

D
� ���

� On the Representation of DAGs

This section deals with the problem of representing a directed acyclic graph and on

how to test for acyclicity exploiting the concept of adjacency matrices�

De�nition� Let G � �V�E� be a graph with jV j � p� The adjacency matrix of G is

dened as the �p� p�
matrix A� �A�ij � aij� with

aij �

��
�
�� if �vi� vj� � E

�� if �vi� vj� �� E�

All three types of graphs �undirected� directed and chain graph� can be uniquely

represented by the corresponding adjacency matrix� The following corollary allows

to develop an algorithm to test for acyclicity in a directed graph�

Corollary� The �i� j�
th entry a�l�ij of the l
th power of A� A
l � Al��A� is equal to

the number of directed paths of length l from i to j and a
�l�
ij �

Pp
k�� a

�l���
ik akj�

Since a cycle is dened as a path from a vertex i to itself� an entry di�erent from zero

of the i
th diagonal element of Al corresponds to a cycle of length l containing the

vertex i� As a cycle in G � �V�E� has maximal length jV j � p� all diagonal elements

a
�l�
ii have to be zero for l � �� � � � �min�p� jEj� and i � �� � � � � p to ensure acyclicity�

�



Making use of the fact that for a cycle of length l there are at least l diagonal ele	

ments of Al di�erent from zero� only the rst p� l�� diagonal elements have to be

checked� Our proposed algorithm uses this fact as the numbers of executions of the

inner loop decreases with every execution of the outer one� The algorithm starts

with the variable no cycle � TRUE and returns no cycle � FALSE if a cycle is

discovered�

Algorithm ��	� Test for acyclicity

�� Initialize variable no cycle with no cycle � TRUE

�� For all powers l � �� � � � �min�p� jEj� DO

For i � �� � � � � p� l � � DO

i� Calculate the i
th row of Al by a
�l�
ij �

pP
k��

a
�l���
ik akj� j � �� � � � � p

ii� If aii �� �� RETURN no cycle � FALSE

RETURN no cycle � TRUE

In order to examplify the algorithm� consider the graph in Figure �� its adjacency

matrix A and the rst two powers of A� A� and A�� In the latter� the cycle of the

three vertices �� � and � is indicated by the rst three diagonal elements of A� which

are di�erent from zero� namely one�

u
x�

u
x�

u
x�

u
x	

� ��
�

�
��I �

A �

�
BBB

 	  

  	 

	   	

   

�
CCCA A� �

�
BBB

  	 

	   	

 	  

   

�
CCCA A� �

�
BBB

	   	

 	  

  	 

   

�
CCCA

Figure �� A directed graph containing a cycle of length three� the corresponding
adjacency matrix A and the rst two powers of A� A� and A��

� Reversible Jump MCMC for Learning in DAGs

In the following� we describe a reversible jump MCMC algorithm to estimate the

posterior probability ��d������� j x� and� therefore� the required marginals� such

as ��d j x�� to be employed for structural learning� First a very brief version of this

�



algorithm that summarizes the main steps is given below� Then the di�erent steps

are developed and presented in detail� For a general introduction to MCMC see� for

instance� Brooks ������� The reversible jump algorithm was proposed and described

by Greeen ������� it allows MCMC to sample simultaneously from parameter spaces

of di�erent dimensions�

Model Selection for Gaussian DAGs by RJMCMC

The state space of the Markov chain is made up by the vector of unknowns

�d������� We shall consider a random scan between the following p� � moves�

�� Updating the dag d by adding� switching or deleting a directed edge� remaining

always in the class of directed acyclic graphs� When adding or deleting an edge

this move involves a change in dimensionality of the parameter space�

�� Updating �ijpa�i� and �
�
ijpa�i� of the i
th regression model� i � �� � � � � p�

Updating of d� At rst it has to be decided which kind of step �a birth� a death

or a switch step� has to be performed� For this purpose� an edge �i� j� is randomly

chosen� If it is already contained in the actual graph d �aij � ��� the deletion of

this edge will be proposed �death step�� If there already exists an edge from j to i

�aji � ��� the direction of this edge will be changed in the proposed new graph d
�

�switch step�� The third possibility is that there is no edge from i to j and vice versa

�aij � � 	 aji � ��� In this case adding of �i� j� will be proposed �birth step�� If the

step is not allowed because of a cycle in d�� detected by algorithm ���� another pair

�i� j� is randomly drawn� This is repeated until an allowed change of an edge �i� j�

is chosen� We now describe in detail each of these steps �birth� death and switch��

which are the only possible ones�

Birth step� After having proposed to add the edge �i� j� we check if the resulting

new graph d� is acyclic� Only if this is the case the birth step is continued� Suppose

this is the case and d� contains no cycles� By adding the edge �i� j� the parenthood

structure of d� changes� as the variable j has one more parent than in d� namely i�

It follows that one more regression coe�cient arises� namely 	 �ji�

The proposal distribution of this new coe�cient� q���� is chosen as Gaussian with

zero mean and variance ��� Making use of the available graph factorizations the

posterior ratio R is thus given by�

R �
p�xj j xpa��j���jjpa��j�� �

�
jjpa��j�� p��jjpa��j� j �

�
jjpa��j��

p�xj j xpa�j���jjpa�j�� �
�
jjpa�j�� p��jjpa�j� j �

�
jjpa�j��

�

The Jacobian matrix J of the mapping g � �ijpa�i� 
�� ��ijpa�i�� 	
�
ji� � ��

ijpa�i� is

equal to one� Consider now the proposal ratio r�d�jd�
r�djd��q�u�

where r�d� j d� is the

�



probability to propose the new edge �i� j� in d�� providing that there will be no

cycles produced by this� Looking only at this kind of moves it is obvious that

r�d� j d� � r�d j d�� � �
n�n���

� so they cancel out in the proposal ratio� If the

additional edge �i� j� is proposed� the acceptance probability AB of the new dag d
�

is given by

AB � min

��
���

p�xj j xpa��j���jjpa��j�� �
�
jjpa��j�� p��jjpa��j� j �

�
jjpa��j��

q�	 �ji� p�xj j xpa�j���jjpa�j�� �
�
jjpa�j�� p��jjpa�j� j �

�
jjpa�j��

	

� �

Death step� As the deletion of an edge �i� j� cannot induce a cycle� acyclicity

has not to be checked in this case� Again the number of parents of j changes� in

fact it decreases because in the proposed dag d� the variable i is not a parent of

j anymore� The corresponding regression coe�cient 	ij vanishes� the dimension of

the vector �ijpa�i� decreases by one� The acceptance probability AD is given as the

the reciprocal of the corresponding birth step from dag d� to d� which is

AD � min

��
���

q�	ji� p�xj j xpa��j���jjpa��j�� �
�
jjpa��j�� p��jjpa��j� j �

�
jjpa��j��

p�xj j xpa�j���jjpa�j�� �
�
jjpa�j�� p��jjpa�j� j �

�
jjpa�j��

	

� �

Switch step� Note that this step� where only the direction of an existing edge is

changed� is of special importance to move from a dag to an equivalent one� Like in

the birth step rst of all the acyclicity of the proposed new graph has to be veried�

A switch step implies no changes in dimension as the original dag d and the proposed

one d� di�er only in the direction of an edge� By switching the edge �j� i� into �i� j�

the number of parents of i is changing as those of j� While i looses j as parent and�

therefore� the corresponding regression coe�cient 	ij vanishes from �ijpa�i�� j gets i

as a new parent and �jjpa�j� increases by 	
�
ji� To achieve a high acceptance rate we

propose to assign new values for all parameters of the two regression models for i

and j proposed� This is emphasized by using twice the prime symbol in the notation�

which denotes that a new value has been proposed� but not yet accepted� in the

index for the new structure of the parents and for the parameter vectors �ijpa�i��

�jjpa�j� as well as for the partial variances �
�
ijpa�i� and �

�
jjpa�j�� This makes clear that

really none of the old values of the two considered regression models is being kept�

Let us rst look at the regression model of the variable i� Proposals ���
ijpa��i�� �

��
ijpa��i��

are sampled from p���
ijpa��i�� �

��
ijpa��i� j xi�Xpa�i�� without considering the prior infor	

mation for ��
ijpa��i� and �

��
ijpa��i�� Following Gelman et al� ������ the proposal distri	

bution q���� of �
��
ijpa��i� is then given by

���ijpa��i� j xi�Xpa��i� � Inv
��n� jpa��i�j� s���� ���

s�� � �
n�jpa��i�j

�xi �Xpa��i�
������xi �Xpa��i�

���� and ��� � �X �
pa��i�Xpa��i��

��X �
pa��i�xi�

The scaled inverse � form in ��� can also be expressed by an inverse gamma distribu	

tion with parameters n�jpa�i��j
�

and n�jpa�i��j
�

s�� Furthermore� the proposal distribution

�



of ��
ijpa��i�� q����� is a normal distribution� namely

��
ijpa��i� j �

��
ijpa��i��xi�Xpa��i� � N� ���� ���ijpa��i�V

��

with V � � �X �
pa��i�Xpa��i��

�� and again ��� as dened above� The proposals ��
jjpa��j�

and ���jjpa��j� for the j
th regression model are derived analogously� The proposed

dag d� is then accepted with probability�

AS � min

��
���

p�xj j xpa��j���jjpa��j�� �
�
jjpa��j��p��jjpa��j� j �

�
jjpa��j�� p��

�
jjpa��j��

p�xj j xpa�j���jjpa�j�� �
�
jjpa�j�� p��jjpa�j� j �

�
jjpa�j�� p��

�
jjpa�j��

�
p�xi j xpa��i���ijpa��i�� �

�
ijpa��i�� p��ijpa��i� j �

�
ijpa��i�� p��

�
ijpa��i��

p�xi j xpa�i���ijpa�i�� �
�
ijpa�i�� p��ijpa�i� j �

�
ijpa�i�� p��

�
ijpa�i��

�
q���jjpa�j� j �

�
jjpa�j��xj�Xpa�j�� q���

�
jjpa�j� j xj�Xpa�j��

q���
�
jjpa��j� j �

��
jjpa��j��xj�Xpa��j�� q�����jjpa��j� j xj�Xpa��j��

�
q���ijpa�i� j �

�
ijpa�i��xi�Xpa�i�� q���

�
ijpa�i� j xi�Xpa�i��

q���
�
ijpa��i� j �

��
ijpa��i��xi�Xpa��i�� q�����ijpa��i� j xi�Xpa��i��

	

� �

Updating of �ijpa�i�� When updating the vector of regression coe�cients of the

i
th regression model the new vector ��
ijpa�i� can be drawn directly from its full

conditional distribution which is again normal with covariance matrix

�i full � ��ijpa�i��X
�
pa�i�Xpa�i� � �I���

and mean mi full � �i full�
�

��ijpa�i�
X �

pa�i�xi �
�

��ijpa�i�
bi��

Note thatXpa�i� denotes the �n�jpa�i�j�
design matrix of the i
th regression model�

which means that the rst column contains only ��s and the other ones correspond

to the observations of the respective parent�

Updating of ��ijpa�i�� Again it is possible to draw ���ijpa�i� directly from its full

conditional distribution which is an inverse gamma distribution with parameters


i full � 
ijpa�i� � ����n� p�

and �i full � �ijpa�i� � ���
�
�xi �Xpa�i��ijpa�i��

��xi �Xpa�i��ijpa�i��

� ��ijpa�i� � bijpa�i��
���ijpa�i� � bijpa�i��

�
�

� Simulations

To validate the algorithms we rst consider two di�erent situations with three vari	

ables being simulated� The rst one describes the marginal independence � � ��

�
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Figure �� The situation of the marginal independence � � � is given in a�� The
conditional independence � � � j � can be expressed by the three Markov equivalent
dags in c�� d� � and e�� Their essential graph is given in b��

the second one the conditional independence � � � j �� As it is shown in Figure �

the rst one can be represented by only one dag� and the second by three Markov

equivalent dags� While in the former case the essential graph is the dag itself� in

the latter case the essential graph is undirected and decomposable� We simulate ���

data� by specifying the covariance matrix C in the marginal independence and the

concentration matrix K in the conditional independence case with

C �

�
BB
� � �

� � �

� � �

�
CCA and K �

�
BB
� � ��

� � ��

�� �� �

�
CCA

with � set to be ��� or ���� Thus� the �partial� correlation of the variables which are

connected by an edge in the graphs is equal to �� Furthermore� we take the mean

� di�erent from zero� in fact � � ��� �� ����

To compare fairly the two approaches proposed here� consistent hyperparameters

of the priors have to be chosen� In our case� we set � � ��� �� ���� �� � �� � � ��

and � � I in the reversible jump algorithm for undirected decomposable graphs�

Thus� we have to take b � ��� �� ���� � � �� 
ijpa�i� � ���� and �ijpa�i� � � in the

algorithm for directed acyclic graphs� Both algorithms run for �� ��� iterations of

which the rst ���� are regarded as burn
in time� The chain is thinned out every

��
th observation�

We calculate the posterior probabilities of each model� both over the dag and the udg

space� Given the simple example considered� we calculate such probabilities not only

by means of the reversible jump MCMC algorithm� but also by exact computations�

This allows for evaluating the accuracy of the MCMC approximations� Notice that

��
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Table �� The table shows the probabilities of the models � � �� � � � j �� the
complete model case and the sum of all other possible models� The results are
obtained from rj
algorithms for undirected decomposable models �rj udg� and for
dags �rj dag�� and also from exact calculations for the former �cal udg� and the
latter �cal dag��

to make the two algorithms comparable we sum up the probabilities of the Markov

equivalent dags� which turn out to be nearly equal in all cases� Of course� there

remains an incomparability due to the three possible dags corresponding to marginal

independences which are not Markov equivalent to any udg� Some of the results of

our analysis are presented in Table �� It can be seen that both algorithms very

well approximate the exact posterior probabilities� Of course� as the udg model

space is smaller� the MCMC algorithm over the udg space performs slightly better

than the algorithm over the dag space� If the underlying model is that of marginal

independence� there is no udg model equivalent to this� As a result� the complete

saturated model turns out to be the best model� when correlations are stronger

�i�e� � � ���� and the second one when correlations are weaker �i�e� � � ����� In

this latter case� the conditional independence model is the most supported� In both

cases an algorithm over the dag space �which is the appropriate one to consider��

either exact or MCMC based� captures well the true model�

A more complex situation with eight variables is described by the dag depicted in

Figure �� The dag in Figure � contains conditional as well as marginal independences

and� therefore� the variables can not be sampled directly via the concentration or co	

variance matrix of the joint distribution� as it was the case for the previous example�

��



x	

x�

x�

x
�

x
�

x�

x�

x�

HHHHHj

�

��
��

�	

�
��

��
�	

�
HHHHHj

Figure �� The complex model considered which has no further Markov equivalent
dag�

Instead we have used the following recursion�

Xi� � f��i� Xi� � f��i� Xi� � f��i�

Xi	 � Xi� �Xi� �Xi� � �i	

Xi
 � Xi	 � f��i


Xi� � Xi
 � f��i� Xi� � Xi
 � f��i� Xi � Xi
 � f��i�

where �ij � N��� ��� i � �� � � � � n and j � �� � � � � �� We now consider two versions

of this model� named �a and �b� In �a� the factors fk� k � �� �� �� are always equal

to one� so the edges � � �� � � �� and � � � represent the same strength of

association� The same holds for �� �� �� �� and �� �� In the second version the

variance of the noise term �ij is in�uenced by di�erent factors fk� in fact f� � ����

f� � � and f� � ��

The search space is extremely large� disregarding equivalences and acyclicity there

are �
n�n���

� possible graphs� Therefore� exact calculations of the posterior probabili	

ties are obviously not possible� The reversible jump algorithm on this data leads to

a posterior probability of only about � for the best model� It is thus more reason	

able to consider the conditional independence graph obtained from inspecting the

adjacency matrices� averaged over the Markov chain� Here� we consider a reversible

jump MCMC algorithm over the dag space with ������ iterations� of which the rst

�� ��� are burned
in� The averaged adjacency matrix is given in Table �� For a

sample size of n � ���� or even n � ��� the edges present in the true underlying

graph have a probability of presence of at least �� � in general more than �� �

Ignoring the orientation of the edges and looking only at the skeleton graph� the

true edges appear in all the most probable dags� These results mean that the true

model is clearly recognized� Of course� for a smaller sample size of n � ��� the

results become less clear�
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Table �� The averaged adjacency matrices of the more complex models with equal
noise ��a	top� or with varying noise ��b	bottom�� The rst number outside the
parentheses gives the estimated probability of an edge for a sample size of ����
observations� the following two in parentheses for sample sizes of ��� and ��� ob	
servations�
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It it also striking that some additional edges have a surprisingly high frequency�

e�g� for n � ���� the variables X� and X are connected with a probability of �����

That means that they are regarded as conditionally dependent in more than half

of the cases� In the second simulation �b� which again describes noisier data� the

just mentioned tendencies become even clearer� As one would expect� edges with

a higher partial correlation are detected more easily than those with a lower one�

In any case summarizing inspection of the mean adjacency matrix from �b it can

be stated that the algorithms do not recognize the marginal independence of X��

X�� and X� and the partial independence of X�� X�� and X from the data� The

separating role of X	 and X
 is� however� well detected�

For further comparison of the two approaches� we focuse again on the case illustrated

in �a with n � ���� ���� ����� Both algorithms run for ������ iterations� of which

���� are burned
in� Like before� we use consistent priors as in the rst example�

The results are summarized in Table �� Note that both algorithms well detect the

true underlying skeleton if data are su�ciently informative as e�g� for n � �����

Furthermore� in the undirected case� edges are added to moralize the immoralities

present in Figure �� It is remarkable that the two reversible jump approximations are

rather similar in terms of estimated edge presence probability� although the number

of MCMC iterations considered is indeed lower than the number of possible models�

For smaller sample sizes �e�g� ��� or ���� more edges are estimated to be present

with a high probability�

� Concluding remarks

We have presented a novel reversible jump MCMC algorithm that allows to perform

both quantitative and structural learning in Gaussian directed graphical models

and have compared it with the approach proposed in Giudici and Green ������ for

Gaussian undirected graphical models which was therefore slightly extended to a

mean di�erent from zero� This comparison constitutes a rst step towards MCMC

model selection for dag models in the space of essential graphs� For this purpose�

however� more graph theoretical research is still needed�

We have tested our algorithms with articial data� and the results are quite satis	

factory� The two algorithms give very similar results and both approximate well the

exact probabilities� if they can be calculated�

Besides extending our method to the general space of all essential graphs� we be	

lieve further research has to be carried out in terms of applications of the present

approaches to real data� This would additionally call for appropriate convergence

diagnostics of the algorithms�
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Table �� Posterior probabilities of the di�erent egdes in the case of the complex
model with equal noise for the two reversible jump algorithms� The rst number
outside the parentheses gives the estimated probability of an edge for a sample size
of ���� observations� the following two in parentheses at sample sizes for ��� and
��� observations�
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