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Abstract-Human observers were trained to criterion in classifying compound Gabor signals with sym- 
metry relationships, and were then tested with each of 18 blob-only versions of the learning set. General- 
ization to dark-only and light-only blob versions of the learning signals, as well as to dark-and-light blob 
versions was found to be excellent, thus implying virtually perfect generalization of the ability to classify 
mirror-image signals. The hypothesis that the learning signals are internally represented in terms of a 
'blob code' with explicit labelling of contrast polarities was tested by predicting observed generalization 
behaviour in terms of various types of signal representations (pixelwise, Laplacian pyramid, curvature 
pyramid, ON/OFF, local maxima of Laplacian and curvature operators) and a minimum-distance rule. 
Most representations could explain generalization for dark-only and light-only blob patterns but not for 
the high-thresholded versions thereof. This led to the proposal of a structure-oriented blob-code. Whether 
such a code could be used in conjunction with simple classifiers or should be transformed into a propo- 
sitional scheme of representation operated upon by a rule-based classification process remains an open 
question. 

1. INTRODUCTION 

In a series of experiments we have investigated to what extent human observers 

classify signals composed of compound Gabor waveforms according to evident phys- 
ical signal representations (Fourier descriptors) and conventional pattern-classification 
strategies (Caelli et al., 1987; Rentschler et al., 1994; Jüttner and Rentschler, 1996; 
Rentschler et al., in preparation). Our results have demonstrated, that internal repre- 
sentations used by human observers for such Gaussian modulated grating patterns do 
not always fit with obvious physical feature states. This is particularly true when sym- 
metry relationships between patterns (Rentschler et al., in preparation) or extrafoveal 

viewing conditions (Jüttner and Rentschler, 1995) are involved. 

*A preliminary version of this paper was presented at the 16th Conference on Visual Perception (ECVP), 
held at the University of Edinburgh, UK, 25 August-29 August, 1993 (1993, Perception 22 (Suppl.): 46). 
†E-mail: ingo@imp.med.uni-muenchen.de 
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To account for such deviations between human and formal classification perfor- 
mance, we adopted the view that behavioural data reflect the operation of a (formal) 
classifier on some internal signal representation rather than on the physical input sig- 
nals per se (Rentschler et al., 1994). Clearly, this concept hinges on the assumptions 
made for formally relating the physical and internal signal representations. So far, 
we have used linear filter operations for feature extraction (evenness and oddness 

pattern components), and we have assumed that the perceptual process of internal 
feature measurement gives rise to the occurrence of additive stochastic error signals. 
The corresponding random variables describe the additional degrees of freedom of 
bias and variance within the framework of a parametric Bayesian classifier. Esti- 
mates of internal feature states can then be obtained by using standard techniques 
of applied optimal estimation (Gauss, 1809; Gelb, 1974). Resulting class means or 
covariance matrices, the so-called virtual prototypes, provide insight into the structure 
and dimensionality of internal signal representations. 

Virtual prototype analysis treats physical feature states as a given and models human 
classification behaviour via the variation of pattern proximity in feature space. The 

proximity can be measured as Euclidean distance in the case of the (least squares) 
Minimum Distance Classifier (e.g. Duda and Hart, 1973; see also Caelli et al., 1987), 
or be defined in terms of the scatter of samples around class means (Mahalanobis 
distance; e.g. Duda and Hart, 1973, Chapter 2; see also Jiittner and Rentschler, 1996). 
This approach is consistent with Shepard's proposal of a monotonic relationship be- 
tween distance in some multidimensional vector space and stimulus similarity, i.e. the 

principle of multidimensional scaling (Shepard, 1962a, b). The probabilistic version 
of this corresponds to the underlying principle of Thurstonian scaling (Thurstone, 
1927). 

However, the nature of our previous approach is linear in the sense that the feature 

representation of the signals is obtained from linear filtering, and linear superposition 
of the signal statistics and of the stochastic components of the process of internal 
feature measurement is being employed. Thus we are to expect, that there exist 

problems in human visual pattern recognition which are too complex to be solved in 
this way. 

One such problem is that of mirror-image forms, which are perceptually more 
similar than they should be according to their distance in feature space. In foveal 

vision, mirror-image compound gratings (Rentschler and Treutwein, 1985) and com- 

pound Gabor signals (Caelli et al., 1986; Rentschler et al., 1988) are more difficult 
to distinguish than nonsymmetric signals, whereas they are virtually indistinguish- 
able both in extrafoveal vision (Rentschler and Treutwein, 1985; Bennett and Banks, 

1987) and in texture perception (Caelli et al., 1986; Rentschler et al., 1988). Simi- 
lar results have been obtained with mirror-image edge-only patterns (Saarinen, 1987, 

1988). For classifying mirror-image compound Gabor signals, observers rely almost 

entirely on evenness (bar type) features, whereas oddness features (left or right edge) 
can only be appreciated by learning more sophisticated neural processing strategies 
(Rentschler et al., in preparation). The functional characteristics of the latter have 
not been revealed by applying virtual prototype analysis. We have argued, however, 
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that the discrimination and classification of mirror-symmetric signals cannot be un- 
derstood in terms of linear systems analysis (Caelli et al., 1986; Zetzsche et al., in 

preparation), and this view is shared by Bennett and Banks (1991). We have further 

shown, that nonlinear transducer functions applied to multi-channel systems are like- 

wise insufficient, and nonlinear interactions of channels, i.e. in scale space, are to be 

invoked (Zetzsche et al., in preparation). 
Thus it appears that there exist visual tasks which human observers solve by relying 

on internal representations more complex than those obtained from linear filtering. 
We examined the latter by training observers in classifying the samples of a learning 
set of signals with mutual symmetry relationships, and then testing their ability to 

generalize to 'blob' versions thereof. Our study was motivated by the observation, that 
in texture perception observers seem to encode compound Gabor signals in terms of 
the occurrence of specific blobs or parts of the patterns defined by size, shape, contrast 

parameters such as light and dark polarity, and (relative) position (see Caelli et al., 

1986). Related coding schemes have been considered by several authors (Koenderink, 
1984; Watt and Morgan, 1985). If blob structures were indeed 'building blocks' of 
the visual quality of form, generalization to blob-only transformed patterns should be 

relatively easy. This possibility was under investigation here. 

2. METHODS 

2.1. Stimuli 

Compound Gabor signals were generated on a 128 x 128 pixel format with a linear 

gray-level to luminance function. Intensity profiles were defined by 

where Lo determines the mean luminance, a the space constant of the Gaussian 

aperture, a the amplitude of the fundamental, b that of the third harmonic, and 0 the 

phase angle of the latter. Thus the two-dimensional images consisted of a fundamental 

cosine waveform and its third harmonic modulated by an isotropic Gaussian aperture 
which decayed to 1 /e in 32 pixels. 

Signal variation was restricted to b and 0. This allowed the use of a two-dimensional 

feature space with the Cartesian coordinates ? = b cos 0 ('evenness') and 1] = b sin 0 

('oddness'). Due to the fixation of the fundamental waveform in cosine phase (sym- 
metry with respect to the Gaussian window), a symmetric position of signals about the 

evenness axis implied mirror-symmetric modulation waveforms. Symmetric position 
about the oddness axis implied contrast inversion of the 3 fo component. 

The Gabor signals were displayed on a raster monitor linked to a digital image 
processing system (Barco TVM 3/3.2, P4 phosphor; Videograph, LSI 11/73). Space 
average luminance (DC) was kept constant at 60 cd m-2. The stimulus patterns sub- 
tended a visual angle of 1.6 deg at a viewing distance of 165 cm, and the fundamental 

spatial frequency was 2.5 cyc deg-1. 
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2.2. Set of learning signals 

The set of learning signals consisted of 12 compound Gabor signals (Fig. 1), which 
were clustered in the evenness-oddness feature space in groups of three signals about 

the corners of a square (Fig. 2). This square was centred on the origin, with the sides 
of the square being parallel to the feature axes. The coordinates of the individual 

signals were chosen in such a way that for each signal there existed a mirror-image 

signal (inflection of the oddness coordinate) and a signal with inverted contrast of the 

Figure 1. The learning set of 12 signals (originals). 
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Figure 2. The learning set as defined in the evenness- and oddness-feature space. 

third harmonic (inflection of the evenness coordinate). These latter two signals had 
the same Euclidean distance from the former. This implied that 8 of the 12 learning 
signals had the same lower image power, whereas four signals had the same slightly 
higher power. 

2.3. Eighteen sets of test signals 

Novel test signals were generated by means of gray-level modification of the learning 
set. The nonlinear image distortions consisted of dividing the range of 256 gray- 
levels into three regions, which were arranged symmetrically around DC. The width 
of the middle range ways ±10, 20 or 40 gray-levels. Within one or two of the re- 

sulting regions, all gray-levels were set to 127 (i.e. DC), whereas they remained 
untouched elsewhere (Fig. 3). This resulted in 3 x 6 = 18 different sets of learn- 

ing signals. Thus we obtained 18 blob versions for each of the 12 original patterns. 
The appearance of these blob-only patterns can be seen in Fig. 4, where the 18 blob 
versions corresponding to the first signal of the learning set are shown. The arrange- 
ment of the 6 lines corresponds to the six types of blob transformations shown in 

Fig. 3. 
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Figure 3. Definition of the 6 distortion types. The width of the gray-level interval around DC (i.e. 
level 127) was t 10, 20, and 40 leading to the 18 test signals shown in Fig. 4 (for details see text). 
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Figure 4. The 18 distorted versions of the first original (shown in Fig. I top left). 
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2.4. Psychophysical procedure 

The procedure of supervised learning and classification consisted of a variable number 
of learning units and employed the learning set of 12 original compound Gabor 

signals. The latter was partitioned into four classes of three signals each. One learning 
unit contained three subsequent presentations, in random order, of the learning set with 
a 200 ms exposure duration for each pattern. Following each presentation, a number 
was displayed for 1 s with an ISI of 500 ms, specifying the class to which the pattern 
belonged. Each learning unit ended with a test of how well the subject was able 
to classify the 12 learning signals. Only one exposure per sample was used here. 

Viewing was always binocular. 

The learning procedure continued until the subject had achieved an error-free (100% 
correct) classification in one learning unit. Following the initial learning stage, the 

subject was then tested with the first test set. Each pattern of this test set occurred 
50 times in random sequence and was classified according to the previously learned 
classes. Thereafter subjects were re-trained to 100% correct with the learning set, 
and were tested 50 times with each sample of the second test set. This procedure of 

alternating units of re-learning and testing was continued until the subjects had been 
tested with each of the 18 test sets. 

To complete this program, a subject had to undergo an average number of 120 

learning units, each consisting of 3 x 12 = 36 signal presentations with instruction 

plus 12 classification decisions, and a total 10 800 test decisions. The program was 
fulfilled during 20 to 30 experimental sessions, which were distributed over a period 
of about 3 months. 

2.5. Subjects 

Six paid subjects participated in the experiments, 3 females (G.A., P.E. and R.B.) 
and 3 males (J.N., H.S. and M.A.). Their ages ranged between 20 and 35 yr, and 

they had normal or corrected-to-normal vision. Three subjects (J.N., H.S. and R.B.) 
had participated in the earlier experiments on supervised learning and classification 
of mirror-image signals reported by Rentschler et al. (in preparation), whereas the 

remaining three had never participated in psychophysical experiments before. 

3. RESULTS 

Generalization results for the 18 test sets are shown in Fig. 5 with the relative classi- 
fication frequencies ('classification probabilities') being plotted against the numbers 
of the twelve test images. Only cumulative data over the group of six observers are 

shown, although the latter were not entirely consistent in their judgments. The reason 
for this restriction is our interest in more general aspects of generalization behaviour, 
against which details of individual characteristics will be neglected. However, in- 
dividual classification strategies are being considered in another study focusing on 
the possible applicability of recognition-by-parts strategies from machine intelligence 
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Figure 5. Psychophysically measured generalization performance for the 18 sets of test signals pooled 
over six observers. 
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Figure 6. Same results as shown in Fig. 5 but plotted as grey-level matrices as defined in Fig. 2. 

(Jüttner et al., 1996). The data on supervised learning of the original signal con- 

figuration (learning set) are not shown either. We simply state that subjects were to 

classify a given set of test signals once they had reached a criterion of 100% correct 
in classifying the learning set. 

For judging the observed generalization performance of our six observers, it is im- 

portant to note that the 18 types of blob transformations enacted on the learning signals 
are pairwise complementary with respect to the light and dark contrast polarities. The 
three blob transformations characterized in rows 1 of Fig. 3 and Fig. 4 removed nar- 
row ranges of gray-levels around DC, whereas those of rows 6 exclusively preserved 
the same ranges. Thus it can be said, that, in an informal sense, these transformations 
removed or preserved 'zero-crossings' (although a low-resolution Laplacian operator 

might have the same zero crossings when applied to the patterns in row 1 ). The three 
transformations characterized in rows 2 removed the upper ranges of gray-levels (light 

image components) plus some range around DC. Those of rows 3 removed the lower 

ranges of gray-levels (dark image components) plus the same range around DC. The 

three transformations of rows 5 differ from those of rows 2, in that they preserved the 

gray-level ranges around DC. The same difference exists between the transformations 
of rows 3 and 4 of Fig. 3 and Fig. 4. Briefly, both pairs of rows 2 and 5, as well as 

3 and 4, correspond to light and dark image blob transformations, respectively, with 
the transformations 4 and 5 preserving the 'background' of gray levels around DC, 
i.e. the range of zero-crossings. 

The overall conclusion from the psychophysical data shown in the same sort of array 
in Figs 5 and 6 is, that the subjects did surprisingly well in classifying the test signals 

although the latter resulted from rather drastic image distortions. Scrutiny of the 
classification data, however, reveals some interesting characteristics of classification 

behaviour. 
A comparison of the respective classification performances corresponding to the 

'no zero-crossings' and the 'zero-crossings only' conditions (rows 1 and 6 of Fig. 5) 
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suggests that the processing of light and dark image components (blobs) is particularly 

important for the generalization of classification performance. However, it is also 

clear, that the latter decreased the more image gray-levels are lost from the range 
around DC (Fig. 5, row 1, rightmost graph, and row 6, leftmost graph). 

The test patterns employed for obtaining the data shown in rows 2 or 3 of Fig. 5 

contained dark or light blob configurations only (see rows 2 and 3 of Fig. 4). The 

resulting classification performance is good, with a somewhat better performance for 

test patterns with dark (row 2) blobs. The classification data shown in rows 4 and 5 

are again equivalent with respect to contrast polarity but are generally somewhat 

better than those depicted in rows 2 and 3. The latter superiority obviously stems 

from the additional image information provided by preserving the gray-level ranges 
of zero-crossings in the test signals. 

Furthermore, there is virtually no confusion of mirror-image test signals, as would 

be expected from the observers' difficulty to learn the symmetry relationships present 
within the configuration of learning signals (Rentschler et al., in preparation; see 

also Introduction). A weakness of the generalization to test patterns with symme- 

try relationships would show up in a specific pattern of generalization probabilities 
(see Fig. 7), which cannot be discerned in Fig. 6. This reveals a particularly in- 

teresting aspect of the generalization process. Our observers 'rectified' via learning 
the anisotropy of perceptual similarities between mirror-image and non-mirror-image 

learning signals of same Euclidean distance in feature space. Surprisingly enough, 
this enabled them to correctly classify even mirror-image test signals. Whether this 

should be considered as a strong form of pattern generalization or rather constitutes, 

psychologically speaking, a case of concept (of symmetry) formation is not easy to 

say. 
Summarizing we note three surprising properties of the set of generalization data 

plotted in Figs 5 and 6. First, generalization performance to blob-only versions of 

the learning signals was, with a few exceptions, excellent. Second, generalization 

performance was equally good with test patterns with bipolar blob structure (dark 
and light blobs), with dark blobs only, and with light blobs only. Third, the abil- 

ity of classifying mirror-image signals was acquired through learning and could be 

generalized to the test signals. 
As such, these results are not sufficient for drawing direct conclusions about the 

nature of the visual representations involved. However, the first result is clearly com- 

patible with our hypothesis that compound Gabor signals are encoded in terms of their 

blob structure. The second result implies that dark or light blob pattern components 

Figure 7. Schematic illustration of the distance pattern that would result in a representation in which the 

symmetric patterns are closer. 
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are sufficient for the classification of compound Gabor signals. Hence it is compatible 
with the hypothesis that the learning and test patterns are internally represented with 

'labelled' contrast polarity of blobs. Yet it could also be that the patterns are contained 
in two different subsystems subserving the representation of the dark and light struc- 

tures, respectively. This stronger view receives support from the introspective reports 
of our subjects and from individual classification data, which show that subjects tend 

to rely for generalization on only one polarity (cf. also Treisman and Gelade, 1980). 
Neither labelled nor separate ON/OFF representations can be explained within the 

theoretical framework of linear systems (e.g. Gaskill, 1978), as will be shown in the 

following section. The third result suggests that generalization is obtained from the 

same combination of pattern representation and classification rule that has been build 

up via learning of the original pattern configuration. 
Taken together, we have reason to assume that the classification of compound Gabor 

signals in a general context cannot be modelled in terms of the virtual prototype 

approach in its present linear form: one factor is the conjecture that such signals may 
be internally encoded in terms of blob structures; another is that it also seems that dark 

and light blob structures of compound Gabor signals are separately encoded. In the 

following section we discuss ways of dealing with these difficulties. The inability of 

linear systems to capture symmetry relationships between patterns and pattern classes, 

however, will be dealt with in a separate study (Zetzsche et al., in preparation). 

4. COMPUTATIONAL ASPECTS OF PATTERN GENERALIZATION 

4.I. Classification and generalization criteria 

A straightforward assumption about pattern classification and generalization is that 

learning and test patterns can be represented in one and the same vector space. The 

basic but certainly not sufficient criterion for classification is then that learning patterns 
are separable, that is, can be distinguished at all. If generalization is possible, it 
can further be inferred that the test patterns are located within the class boundaries 
established through learning (Generalization Criterion G) though the discriminant 
function may be arbitrarily complex (nonlinear). 

In technical pattern recognition, the use of linear discriminant functions (sets of hy- 
perplanes) is common, and forms the basis of minimum-distance-based classification 
schemes (e.g. Duda and Hart, 1973). This restriction (Generalization Criterion G 1 ) 
delimits the range of suitable pattern configurations considerably, but does not imply 
an intra-class clustering of learning and test patterns. The distance between test and 

learning signals of a given class may be much larger than both the intra- and the inter- 
class distances of the learning patterns, provided the former is less than the between 

(inter-class) distances of the test signals of a given class and the learning signals of all 
other classes. The simplest model for the description of our data would thus consist of 
a single visual representation followed by a minimum distance classifier. Provided a 
suitable representation has been found, such a model would account both for the fact 



71 

that the test signals appear perceptually quite remote from (dissimilar to) the learning 
set, and for the result that they can be classified correctly. 

In our view, however, an even stronger restriction (Generalization Criterion G2) 

appears reasonable as a basis of human generalization capabilities, namely that the 

learning and test patterns of each class are conjointly clustered. This implies that 

the intra-class distances between learning and test patterns are comparable to the 

intra-class distances between the individual learning signals of the class, while the 

inter-class distances to all other patterns are substantially greater. Simply stated, the 

existence of a visual representation wherein the test and the learning patterns are 

more similar to each other than they are to any pattern of the other classes is here 

assumed. The separability of classes via linear discriminant functions is then obvious. 

However, it is also clear that the global perceptual dissimilarity between learning and 

test patterns must then be accounted for by assuming a further representation (or 

metric) which makes this property explicit. 
To explore the extent, to which such restrictions apply, it seems reasonable to begin 

with the computation of distances between all the patterns involved and consider rela- 

tionships between distances. Various distance measures are possible, but with respect 
to the following it is irrelevant whether Euclidean distances, correlations, or angles 
(correlations normalized by vector length) between pattern vectors are considered. 

We can then proceed to consider how different types of pattern representations 
(metric feature spaces) conform with the criteria established above. From a technical 

viewpoint the consideration of Euclidean distances in signal space is a first step. The 

results of corresponding computations are shown in Fig. 8 (left), where for each of 

the 18 sets of test patterns the Euclidean distances between the 12 test signals and 

the original pattern classes (mean pattern vectors or prototypes) are plotted. A gray- 
level code is used to visualize the distances, whereby increasing darkness indicates 

decreasing distance, that is, proximity between test patterns and learned prototypes. 
A comparison of behavioural classification data and such simulated distances is 

not trivial. In particular, a full specification of the classification scheme and of 

the noise sources within the system would be necessary in order to enable a direct 

comparison (see Rentschler et al., 1994). To keep the computations manageable 
we have restricted ourselves to two kinds of first-order approximations. First, we 

computed distance matrices like the ones shown in Fig. 8 for all representations. The 

values in these matrices do not directly correspond to experimentally obtained percent- 
correct values (as illustrated in Fig. 6) but are related to the latter as follows: a strong 

diagonal structure in the distance matrices (as in some matrices in Fig. 8, left) indicates 

clustering, and thereby, linear separability (G2, and thereby G 1, will be satisfied). 
This is compatible with the occurrence of strong diagonals in the percent-correct 
matrices (Fig. 6), indicating almost perfect classification performance of the subjects. 
It should be noted, however, that this relation is not one-to-one, that is, perfect linear 

separability may well be possible without the emergence of such dominant diagonal 
structures. To take this into account, we have also computed the correct classifications 

obtained with a linear classifier being optimal with respect to the learning patterns. 
The results of these simulations will be discussed in the following section. 
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Already the simple computation of Euclidean distances seems to be a satisfactory 
model, since the diagonal structures in Fig. 8 (left) compare reasonably well with 

the behavioural data (Fig. 6), even with respect to the strong clustering criterion G2. 

Thus it is also possible to satisfy Gl, i.e. to find hyperplanes in signal space, which 

delimit the four classes defined by the clustering of the 12 original patterns in such 

a way, that all but two blob versions (indicated in Fig. 8, left, by means of a frame) 
can be classified perfectly. 

The direct visual comparison, however, of test and prototype images via zero-shift 

cross-correlation is an unlikely assumption for the assessment of pattern similarity. 
The full cross-correlation information is needed to represent human performance in 

image matching (alignment; Caelli and Rentschler, 1986), and this suggests the use 

of maximum correlation (minimum distance with respect to shift-operations) as a be- 

haviourally more realistic distance measure (Fig. 8, right). Switching to this measure 

changes the situation, in that the patterns shown in the third column and those shown 

in the sixth row of Fig. 4 are clearly no longer consistent with the proposed strong gen- 
eralization criterion G2. Evaluation according to the minimum distance rule reveals, 
that there is even a considerable violation of the weaker criterion G1. The greatest 
violation occurs for the dark-blob patterns in column 3, row 2, which are classified 

with 58% correct only. The experimental data (Fig. 6, the means are shown in the 

last column of Table 1) show no such steep decrease in performance (73% correct are 

obtained for this distortion type). We conclude that the simple cross-correlation model 

accounts for basic aspects, like the good generalization of the moderately thresholded 

dark-only and light-only blob patterns. It does not predict, however, behavioural per- 
formance for the extremely thresholded blob versions, which require the use of thin 

line elements for correct classification (right column of Fig. 4). 
A further assumption, specific to the present context, would be that the visual 

system performs operations which are similar to the operations by which the test sets 

themselves were generated. Suppose that we chose one of the distortion types shown 

in Figs 3 and 4 as a model for the preprocessing of all the patterns. It can then be 

seen that a proper subset of the set of test patterns could be mapped on identical 

'representations', such that the strong criterion G2 is satisfied. Our simulations show, 

however, that the results of such operations depend critically on the precise value 

of the gray-level thresholds used. The implementation of this type of algorithm in 

biological vision systems is also not plausible. 

4.2. Visual representations 

We thus proceed to consider biologically more realistic visual representations. Based 

on standard assumptions about the function of early visual pathways, we have cho- 

sen two representative types of isotropic image representations since there exist no 

differences in orientation between the patterns employed here. The first one is a Lapla- 
cian pyramid (LAP) representation (Burt and Adelson, 1983), which corresponds to 

the simple centre-surround mechanisms of visual neurophysiology (see Fig. 12 in 

the Appendix). The second one is a 2D pyramid based on the clipped-eigenvalues 
(CEV) operator as introduced in our previous work (Zetzsche and Barth, 1990a, b; 
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Barth et al., 1993a). It provides a model of the function of end-stopped neurons. 
A brief description of the latter formalism, which again uses different levels of reso- 

lution, is found in the Appendix (see also Fig. 12). 
Based on these representations we added two further computational elements of vi- 

sual processing. The first one is the ON/OFF separation as motivated in Section 4.3 
which leads to the LON/LOFF, CON/COFF representations as described in Fig. 10 

(the ON/OFF representations and later the MAX/MIN representations are used in 
combination with a switching circuit for choosing the appropriate representation with 

respect to the polarity of the input). The second one is related to the concepts of 

gain control and local phase (a ratio of even and odd measures) implemented here 

as the CEVG and LAPG operators (with the ON/OFF versions CONG/COFFG, 

LONG/LOFFG) defined in the Appendix. The 'G' refers to 'gradient' since the 
difference between the CEV and CEVG (and equally between LAP and LAPG) oper- 
ators is that the former were divided by the gradient of image intensity. In the present 
context such an operation reduces the differences between blobs of different size and 
contrast. 

Furthermore, we considered representations, where the local maxima of the Lapla- 
cian and of the CEV-operator are extracted (so-called MAXLAP and MAXCEV repre- 
sentations which will be described in more detail in Section 4.3). To obtain a distance 
measure for patterns in these representations, the positions of the maxima in scale 

space were correlated (after slight low-pass-filtering). 
For all the representations listed above, we computed and plotted the distance pat- 

terns in the same way as shown in Fig. 8 (right), that is, under the assumption of 

maximum cross-correlation or minimum distance (to reduce computational complex- 

ity, we computed the full transforms of the 128 by 128 pixel images but then extracted 

only the mid row of the transforms before computing the distances). An overview 
of thc rcsults is given in Table 1 for the 18 test sets (in the arrangement of Fig. 4) 
and the representations specified. The numbers in the table denote the percentage 
of patterns of a given test set (of 12 patterns), which would be classified correctly 
according to the minimum-distance rule. In the last column the mean behavioural 

data are included, again with the caveat, that they cannot be compared directly with 

the simulation results (see Section 4.1). 
The analysis of distance structures summarized in Table I failed to yield unequiv- 

ocal results. In general, most representations can account for the basic effects, such 

as the good generalization of the dark-only and light-only blob patterns with low 

and medium thresholds (Fig. 4, left and mid columns). Furthermore, some difficul- 

ties observed with the pixelwise representation and Euclidean distances, such as the 

pronounced drop-off of correct classification for the extremely thresholded test pat- 
terns (see Section 2.3 and Fig. 4, right column) could be ameliorated by employing 

biologically more plausible representations. However, some representations, espe- 

cially MAXCEV/MINCEV, seem to perform worse than the pixelwise representation 
according to the minimum-distance rule used here for the simulations. 

Still, many representations predict better classification for light-blobs only (row 3) 
than dark-blobs only (row 2) whereas the behavioural performance is rather better 

for dark blobs, and, in addition, it is higher for the test set in row 6, column 3, than 
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Table 1. 
Simulated classification results for different representations and mean behavioural performance (in % 
correct) 

for both the light-only and dark-only blobs. Further, many representations show a 

greater variability across test pattern types than was observed with the behavioural 
results. Whether the above arguments can be used to judge the usefulness of the 

representations, depends on the full statistical model used for the decision process. 
We conclude that the present predictions neither provide clear hints as to the nature of 
the visual representation(s) underlying generalization, nor answer the question as to 
the decision strategies employed by our observers (minimum-distance rule or others). 

4.3. Towards more abstract codes 

The previous results are less surprising, given the possibility that both our assumptions 
on the nature of visual representations and of decision rules (classifier types) underly- 
ing the generalization of form are too simplistic to accommodate all aspects of human 

performance. Yet it seems reasonable to assume that the formidable power of biolog- 
ical pattern recognition originates predominantly from the brain's ability to construct 
and modify internal representations via learning of pattern structure while relatively 
simple decision rules are being maintained. The fact, that expertise in sophisticated 
recognition tasks (e.g. face recognition with foreign ethnicities, radiological diagno- 
sis, plant classification) depends on long learning pcriods but thereafter allows rapid 
decision making, seems to support this view. The above-mentioned 'rectification' 
of the internal representation of mirror-symmetric patterns through learning and the 

resulting ease of generalization to blob-only versions thereof may be another exam- 

ple of this. Furthermore, this notion follows classical theories of perceptual learning 
(Gibson, 1969), according to which the learning process involves the development of 
a structural pattern representation in terms of distinctive features and feature relations. 
Our further treatment of the generalization problem will thus emphasize the issue of 
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pattern structure as revealed in different representations, while the formal nature of 
decision behaviour will not be further pursued. 

Accordingly, we shall now proceed to reassess the representations under consid- 
eration. In particular, we will consider basic neurophysiological and computational 

aspects, and will refer to the introspective reports of our subjects concerning their 

recognition strategies. Based on the earlier hypothesis, that the subjects' 'internal 
code' consisted of a relatively abstract description of the patterns, seemingly involv- 

ing light and dark blob elements with explicit positional relationships ('blob algebra', 
see Caelli et al., 1986, for an analysis in the context of texture perception), we suggest 
that the location of blob features in scale space (the MAXCEV representation) pro- 
vides a suitable representational basis for characterizing generalization performance. 

That the treelike configuration of 2D points in scale space could capture the essential 

image structure was first suggested by Zetzsche et al. (1993). Subsequent experimental 
and theoretical investigations of this hypothesis revealed that the maxima of curvature 
do indeed yield a consistent tree-structure in scale space (Barth et al., 1993b, c). 
The algorithm, which we propose for computing multi-scale blob features, bears 

similarities with coding schemes proposed earlier by several authors (Koenderink, 
1984; Watt and Morgan, 1985). We propose that the stability of blob features across 
scale space is the computational basis for determining the similarity of blob structures 

between learned classes and test patterns. Here the argument for the need of a stability 

analysis in scale space is essentially the same as that used by Rosenfeld and Thurston 

( 1971 ) in the context of edge detection, and by Marr and Hildreth (1980) for evaluating 
the location of zero-crossings, namely, the positional uncertainty associated with the 

determination of such descriptors at only one level of resolution. The usefulness of 

'parsing scale space' for stability analysis in the field of object recognition has been 

demonstrated by Bischof and Caelli (1988). 
The determination of local maxima at multiple levels of resolution has the advantage 

that it can account for the more abstract notion of blob algebra in the sense that 

predicates such as the 'existence of a large blob in the centre and a smaller one 
at the right of it' can be formulated consistently, the size of a blob being encoded 

by its position in scale space. For these reasons, we computed the locations of the 

local maxima of the clipped-eigenvalues (CEV) operator for a sequence of different 

resolutions, i.e. 16 scales spanning two octaves (the same frequency range as in 

Fig. 12 with a denser sampling for better illustration). These locations of the blobs 

were plotted for a horizontal cut at half-height through the learning and test images 
as a function of scale. 

The plots of the maxima across scale (Fig. 9, MAXCEV representation) reveal a 

relative invariance with respect to light-blob operations (Fig. 9, from left to right), 
thus providing a basis for the proposed requirement of similarity of form assumed to 

underlie generalization performance. This invariance is closely related to the strong 

generalization criterion G2, which requires a sufficient similarity between the repre- 
sentations of the corresponding training and test patterns. Yet the MAXCEV repre- 
sentation still allows the discrimination between patterns of different classes (Fig. 9, 
from top to bottom). The minima (MINCEV representation) display the same type 
of stability for dark-blob operations. This suggests, that the two representations can 
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Figure 9. Locations of bright blobs plotted as a function of scale are shown below the corresponding 
images. The arrangement is as follows. From top to bottom the pattern number varies (the first patterns 
of each class are shown, i.e. patterns l, 4, 7, and 10-see Fig. 2), and from left to right the distortion type 
(mid patterns of rows 1 and 3 in Fig. 4). The locations of the blobs were obtained in two steps. First, 
we computed the 2D-representations as shown in Fig. 12 on the right (the same range of scales was used 
but with a finer sampling of 16 scales). Second, the middle row of the images were extracted and those 
locations were selected for plotting, for which left and right neighbours were smaller (local maxima). 
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Figure 10. The Laplacian and the CEV operator (for details see Appendix). 'LON' and 'LOFF' denote 
the ON and OFF components as obtained by one-way rectification of the Laplacian. The eccentricity s 
(defined in Eqn (A2)) results from nonlinear inhibition between oriented filters. The resulting 'CON' and 
'COFF' components of the CEV operator differ in two ways from the 'LON' and 'LOFF' components. 
First, they are 2D-operators, i.e. they equal zero for straight patterns, and respond only to curved features 
like corners and line ends. Even more important for the current context, they differ with respect to the 
ON/OFF separation as follows. A 'CON' operator responds only to light-on-dark features, whereas a 
'LON' operator will respond also to dark-on-light features as illustrated for the image shown top left. 

be employed for obtaining a pattern recognition scheme with the required degrees of 
invariance (generalization) and differentiation (discrimination between classes). 

Similar results, but with a reduced invariance to blob operations, can be obtained by 
using the Laplacian for generating representations in scale space (MAXLAP represen- 
tation). This approach has the general problem of insufficient ON/OFF-separation, 
which leads to 'false responses' in the MAXLAP representation of dark patterns 
and in the MINLAP representation of bright patterns (see Fig. 10). The use of the 

2D operator is sufficient to avoid this problem but we do not know yet whether it is 
also necessary here. However, it seems that there exists a relationship between clean 

ON/OFF separation and the suppression of straight patterns, which 2D operators yield 

by definition. An alternative nonlinear method for the construction of separate ON 

and OFF representations would be a model of the MIRAGE-type as proposed by Watt 

and Morgan (1985), which starts with a set of spatial filters, the outputs of which are 
combined in such a way that negative and positive response components are carried 

separately. Whether such a model can also avoid the emergence of 'spurious' blobs 
remains to be investigated. 

According to Fig. 9 the MAXCEV representation has the essential features proposed 
here as a basis of successful generalization: sufficient similarity within classes, as well 
as sufficient dissimilarity between classes. The principle illustrated in Fig. 9 has, of 
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Figure 11. MAXCEV representations (upper half) and MINCEV representations (lower half) for com- 
plete sets of 12 test patterns (arranged as in Fig. 1) and for two blob types with medium and extreme 
thresholds (columns 2 and 3 in Fig. 4). The left column shows the 4 prototypes (class means of the origi- 
nal patterns). The upper 3 by 4 blocks show the MAXCEV representations of the light-only blob patterns 
with medium threshold (left block, corresponding to row 3 column 2 in Fig. 4) and extreme threshold 

(right block, corresponding to row 3 column 2 in Fig. 4). The lower two blocks show the MINCEV 

representations of the dark-only blob patterns, again with medium and extreme thresholds. The locations 
of maxima are here not illustrated by plotting circles (as in the previous two figures) but by setting pixels 
to one or zero, depending on whether they correspond to maxima or not, and then low-pass filtering 
the resulting binary images (the images shown here have been used to obtain the distance measures in 
Table 1 ). The first column of the upper left 3 by 4 block shows the same maxima as the right column in 
Fig. 9. 

course, its limits. Figure 11 shows the MAXCEV and the MINCEV representations 
for all 12 patterns of a given blob type including the most critical blob operations 
for which the similarity of the representations decreases. Nevertheless, we assume 

that there still is sufficient similarity within classes, as well as sufficient dissimilarity 
across classes to allow for a better agreement between data and predictions than 

obtained by the other representations in Table 1. 

However, the above mentioned features cannot be taken advantage of by applying 
a simple correlation and minimum-distance rule (see again Table 1). One possible 
way of taking account of this difficulty is to develop a notion of similarity based on 

the explicit structural properties of the patterns. Accordingly, future research should 
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investigate more abstract codes that can be derived from the MINCEV/MAXCEV 

representation. Such codes may, for example, explicitly represent both attributes 
of individual blobs (e.g. position or size) and relational attributes of pairs of blobs 

(e.g. distance or size ratio). It may then be possible that relatively simple classifier 

structures acting on this representation could account for the experimental data. 

Alternatively, such structure-oriented codes may be used for a propositional scheme 

of representation operated upon by a rule-based classification process. Indeed, Jut- 

tner et al. (1996) demonstrated that such an approach could predict basic aspects of 

both the individual and group performance in learning and generalizing the patterns 
in the present experiment. Their study, however, is based on the decomposition of 

patterns into parts defined in the image domain, thus avoiding assumptions about 

stimulus encoding in terms of known filter properties of the visual system. Hence the 

present study and that by Juttner et al. (1996) are complementary in the sense that 

their emphasis is more on aspects of early vision and cognition, respectively. Which 

aspects of these two concepts have to be combined to provide a more realistic scheme 

of visual classification and generalization is a question for future research. 

5. DISCUSSION 

We examined the extent to which human observers are able to generalize classification 

performance learned with compound Gabor signals that are pairwise mirror-symmetric 
to each other. The test signals used were blob-only (gray-scale thresholded) versions 

of the learning signals. Subjects were trained to criterion in classifying the learning 

signals, and then tested with the learning sets one at a time. We found that gen- 
eralization was possible to a remarkably large extent. Without further learning, our 

subjects showed excellent classification capabilities for bipolar blob-only versions of 

the learning signals (i.e. patterns containing both light and dark blob information), as 

well as for test patterns with light blobs or dark blobs only. Likewise, the ability to 

recognize symmetry relationships was readily generalized. 
These psychophysical findings suggest that the learning signals are internally rep- 

resented in a way which is similar to the distorted test signals. Briefly, the signals 
seem to be internally represented in terms of a 'blob code', as has been conjectured by 
Caelli et al. (1986) in the context of texture discrimination. Furthermore, the observed 

equivalence for generalization performance of dark-only and light-only blob codes, 
taken together with the introspective reports of our subjects, suggests that labelled or 

even separate representations exist for the two types of contrast polarities. 

Assuming separate encoding processes for dark and light pattern components is 

consistent with neurophysiological results concerning the existence of two functionally 

separate neural subsystems. Indeed, a 'darkness' (OFF) system and a 'lightness' (ON) 

system have been discussed by neurophysiologists in an attempt to find correlates for 

the perception of darkness and brightness (for reviews see Fiorentini et al., 1990; 

Schiller, 1992). These channels have been related previously to the visual tasks of 

detecting and discriminating light increments and decrements. Our results suggest 
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that ON- and OFF-type subsystems may be functional even at the level of spatial 
visual representations underlying pattern recognition, i.e. cognitive functions. 

As a first step in our computational analysis we investigated whether our data 
can be described within the standard framework for technical pattern recognition. 
Since distances in feature space are the essential values required for the application 
of minimum-distance classifier schemes, we started with the evaluation of distance 
measures with respect to the image pixel configurations and with respect to different 
visual representations (Laplacian and CEV operators including ON/OFF separation 
and gradient normalization). The results of our simulations showed that all repre- 
sentations can basically capture the generalization of the light-only and dark-only 
blob patterns but fail to predict human performance for the extreme blob operations. 
We concluded that both the assumptions about representation and classifier are in- 

sufficient for adequately characterizing human strategies of pattern classification and 

generalization. 
This situation led us to reconsider the structural properties of possible representa- 

tions with respect to basic neurophysiological and computational aspects as well as 

the introspective reports of our subjects. We found that, mainly due to the consis- 
tent separation of ON and OFF signals, the MINCEV/MAXCEV representation best 

matches the notion of an ideal blob-code which accommodates the proposed require- 
ment of pattern similarity assumed to underlie the generalization of form. Thus it 

is important to note that the suggested representation is introduced not in an ad-hoc 

fashion for this special context but in accordance with the views of several authors 

regarding general aspects of human pattern recognition (Marr and Hildreth, 1980; 
Watt and Morgan, 1985; Bischof and Caelli, 1988; Zetzsche et al., 1993). 

However, the ability to establish pattern similarities must be complemented by 

pattern discrimination, since subjects can distinguish between learning and the test 

patterns. This complementarity is already explicit in Pavlovian conditioning. On the 

one hand, a subject will give a conditioned response to the conditioned stimulus but, 
to some extent, to similar stimuli as well. On the other hand, a subject can also 

be trained to discriminate stimuli by pairing the conditioned and the unconditioned 

stimuli, while similar stimuli are presented unpaired (see Brown and Herrnstein, 1975, 

Chapter 3). Similarly, Marr and Nishihara (1978, p. 272) list 'stability and sensitivity' 

among the criteria for judging the effectiveness of shape recognition systems: 'To be 
useful for recognition, the degree of similarity between two shapes must be reflected 
in their descriptions but at the same time even subtle differences must be expressible. 
These opposing conditions can be satisfied only if it is possible to decouple stable 
information that captures more general and less varying properties of shape, from 
information that is sensitive to the finer distinctions between shapes.' A possible 
neurophysiological basis of this functional complementarity has recently be found 

by Fujita et al. (1992) in the columnar structure of the infero-temporal cortex of the 

macaque. In this context, we suggest that the structure of maxima across scale captures 
the 'stable information' whereas the full representation allows for 'finer distinctions' 

between learning and test patterns. 
Further, we have argued that the locations of maxima in scale space are an adequate 

basis for more abstract codes which would involve the extraction of more explicit 
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structural properties of such representations. Whether the resulting representations 
can then already be handled by relatively simple classifier schemes, or whether they 
require a more complicated subsequent elaboration of a propositional scheme operated 
upon by a rule-based classification process, as suggested by Jiittner et al. (1996), 
remains a topic for future research. 
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APPENDIX 

1. Representations of blob-patterns are shown in Fig. 12 (Laplacian pyramid on the 

left and 2D-pyramid on the right). 

2. The clipped-eigenvalues operator is defined as follows. The dot-responsive cell 

model as introduced by Zetzsche and Barth (1990a) starts from the determinant of 
the Hessian, which can be written as 

where l(x, y) denotes image intensity at position (x, y). 
The Laplacian and eccentricity £ determine the eigenvalues of the Hessian: 

The clipped-eigenvalues operator is then defined as 

where the clipping operation d::1::. takes the positive and negative values respectively 
(one-way rectification). Note that CEV equals the Laplacian for isotropic patches 
wheres = 0. The eccentricity E can be written as 

where the coordinates (u, v) are rotated relative to (x, y) by 45°. Thus, the eccentric- 

ity can be seen as resulting from four oriented filters lxx, 1,.,., luu, lvv with vertical, 

horizontal, and oblique orientations-see Fig. 10. The operator CEV has been de- 

scribed and generalized in Zetzsche and Barth (1990b) and Barth et al. (1993a), and 

their relationships to other curvature estimates have been discussed there. The multi- 

scale version of CEV is obtained by blurring the intensity l (x, y) with a Gaussian 
kernel. Equivalently, one could use blurred convolution kernels for computing the 
derivatives. 
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Figure 12. Laplacian-pyramid (left) and 2D-pyramid (clipped-eigenvalues operator as defined by 
Eqn (Al)) representations (right) on three different scales for 6 distorted versions of the first original 
pattern (these distortions are shown in the mid column of Fig. 4). The representations include a threshold 
of 5% of the maximum and are the basis for the computation of the predicted classification results shown 
in Table I and the local maxima shown in Fig. 9. Note that the blobs extracted by the CEV operator, 
as opposed to the Laplacian, correspond to those which an observer extracts by inspection and verbal 
description. This is due to the LON/LOFF versus CON/COFF difference shown in Fig. 10. 
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3. The CEVG and LAPG operators are defined as 

and 

with the value of the constant c chosen as 10% of the maximum of 12 x + l2. 
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