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SUMMARY

In this paper binary state space mixed models of Czado and Song (2001) are applied to
construct individual risk profiles based on a daily dairy of a migraine headache sufferer. These
models allow for the modeling of a dynamic structure together with parametric covariate effects.
Since the analysis is based on posterior inference using Markov Chain Monte Carlo (MCMCQ)
methods, Bayesian model fit and model selection criteria are adapted to these binary state space
mixed models. It is shown how they can be used to select an appropriate model, for which the
probability of a headache today given the occurrence or nonoccurrence of a headache yesterday
in dependency on weather conditions such as windchill and humidity can be estimated. This can
provide the basis for pain management of such patients.

Some key words: Binary time series, longitudinal data, Markov chain Monte Carlo, probit, regression,
state space models, model fit and selection.

1. INTRODUCTION

About half of all migraine patients believe that weather is a trigger for their headaches (Raskin
1988). Weather conditions such as cold, heat, bright sunshine, changes in pressure, warm dry
winds and others have been suggested to increase the probability of a headache. However,
many studies investigating these suggestions have been negative or inconclusive. Wilkinson and
Woodrow (1979) and Diamond et. al. (1990) found no correlation between headache frequency
and adverse weather conditions in London, England and Chicago, U.S.A., respectively. In con-
trast, Cull (1982) found that a sharp rise in barometric pressure in Scotland reduced the frequency
of migraine attacks. On the other hand, the studies of Schulman et. al. (1980) in Boston, U.S.A.
and of Nursall (1981) in southern Ontario, Canada, showed no relationship between migraine and
pressure. Nursall (1981) however showed that the headache frequency increased as temperature
and humidity increased. These studies are commonly based on daily patient diaries reporting on
the occurrence or nonoccurrence of a migraine headache. However, more recently the presence of
Chinook winds of the Canadian Rockies has been identified as a trigger for migraine headaches
(Piorecky et. al. (1996) and Cooke et. al. (2000)) in some patient groups. One possible expla-
nation of these results might be that the influence of weather conditions on migraine headaches
varies from individual to individual. Therefore it is of interest to construct patient specific risk
profiles from an individual patient dairy, which is the focus of this paper.

As an example of such data, we investigate in this paper the headache dairy of a 52 year old
female, who is working part-time in a clerical position. She recorded daily between February
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25 until November 30, 1995, if she experienced a headache that day or not. On 98 days out
of the 279 recorded days she recorded a headache. She suffers from migraines without aura
for 15 years. Since she believes that her headache is triggered by weather conditions, weather
related information on a daily basis was also collected. These included information on humidity,
windchill, temperature and pressure changes, wind direction, precipitation and cloud cover. Since
she is working part-time a cyclical occurrence of migraine attacks can be suspected. The general
problem of recursivity is considered by Cugini et. al. (1990). The data is part of a larger study
on determinants of migraine headaches collected by the psychologist T. Kostecki-Dillon, York
University, Toronto, Canada.

Early analyses ignored the correlation of multiple measurements on the same patient, while
Piorecky et. al. (1996) utilized a generalized estimating approach (GEE) introduced by Zeger and
Liang (1986) to adjust for this dependency. For the collected long time series, we prefer a model
that allows for evolution over time and is likelihood based to investigate the influence of weather
conditions on the frequency of migraine attacks. For this task we are looking for a model which
can accommodate time dependent covariates such as given by the weather conditions together
with a dynamic mechanism which models the dependency between successive days. Such models
were introduced and studied by Czado and Song (2001), which use a threshold approach together
with a state space approach.

While state space models are first studied for gaussian dynamic systems (e.g. West and
Harrison (1989), Jones (1993)), they have become more popular for non gaussian dynamic systems
(see for example Fahrmeir (1992), Carlin and Polson (1992) and Song (2000)). While Carlin
and Polson (1992) also use a threshold approach, they do not allow for parametric covariate
effects. For longitudinal count data state space models with parametric covariate effects have
been considered by Zeger (1988), Chan and Ledolter (1995) and Jorgensen et. al (1999).

In this paper we utilize the binary state space mixed models as introduced and studied by
Czado and Song (2001) for the headache dairy. We consider several model specifications for
this data set and use Markov Chain Monte Carlo (MCMC) methods to facilitate the statistical
inference. We also apply some Bayesian model selection criteria such as the Bayesian deviance
information criteria by Spiegelhalter et. al (1998) and posterior predictive simulations (see for
example Gelman and Meng (1996) and Gelman et. al (1996)) to help to assess model fit and to
discriminate between models.

The analysis of the headache dairy of this patient reveals the presence of strong day effects
together with weather effects. The presence of severe windchill increases the probability of a
headache, while the effect of humidity is less severe. It is also shown that the presence or absence
of a headache on the previous day also influences the presence or absence of a headache today.
Patient specific risk profiles are constructed, which might help the patient to manage her migraine
attacks more precisely.

The paper is organized as follows: Section 2 gives a short review of binary state space mixed
models, while Section 3 discusses Bayesian model fit and model selection criteria. Section 4
presents the analysis of the headache data set. Conclusions and discussions are presented in
Section 5.

2. BINARY STATE SPACE MIXED MODELS

For a binary longitudinal data (Y;,X;),t = 1,...,T, Czado and Song (2001) adopted the so-
called threshold approach (e.g. Albert and Chib, 1993) to model the serial dependence for the
binary response vector Y4 = (Y1,---,Yr)". They assume that the unobservable latent threshold
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variable vector Z% = (Zy,---, Zy)" allows for the following linear state space formulation

Zt:—Xia—0t+ut,t:1,~-~,T, (21)
9t=79t—1 + €, t:]-a"'aTa

where a is a p-dimensional regression parameter and {6;,t = 0,---,T } denotes the collection

of state variables. It is further assumed that wu, idd. N(0,1) and idd. N(0,0?), where

N(p,0?) denotes a normal distribution with mean p and variance 2. The variance parameters
{62 > 0,t = 1,---,T} in the state equation (2.2) are assumed to be unknown, time-varying,
and bounded. Therefore the state process governed by (2.2) may accommodate more flexible
patterns of variation for the data than a stationary AR(1) process that is a special case of (2.2)
with the o7 fixed constant. In addition, we require mutual independence between two sets of
innovations {u;,t =1,---,T} and {€;,t = 1,---,T}. This implies that given 6;, Z; is conditionally
independent of the other Z;’s and 6;’s. As initial condition we assume 6y ~ N(0,03)- Finally
the latent threshold variables Z; are related to the observed binary responses Y; through the
following latent variable representation:

Vi=le=2,<0,t=1,---,T- (2.3)

Representation (2.3) ensures that the marginal distribution of Y; given both state variable 6; and
covariate vector X; follows a probit model, i.e., p, = P(Y; = 1|6;,X;) = (X} + 6;) where @(-)
denotes the cumulative distribution function of N(0,1). The corresponding history vectors will
be denoted by YZ = (}/17 T 7Y;5)IJ Z;Ek = (Zh T 7Zt)la 0; = (007 T 7915), and U?* = (0’%, B 'U?)I'
For the Bayesian approach, independent prior distributions for the parameters («, 8%, 0%%,7),
indicated in a joint density of the form 7(w, 8%, 03", v) = w(a) x 7(0%) x w(03*) x w(vy) are
assumed.

Czado and Song (2001) followed Tanner and Wong’s (1987) Gibbs Sampling approach with
data augmentation. They showed that the conditional distributions of [Z%|Y%, a, 0%, 0%F, 7],
(0] Y5, 25,0503 . 05 Y 5. 27 0,03 7). (03 Y5, Zi, @, 03.,7] and [1]Y5, 25, 05, 0% . o] are
tractable when appropriate prior distributions are chosen. We give now these conditional dis-
tributions for the binary response case, derivation and details can be found in Czado and Song
(2001). The binomial response case is also considered there.

Latent Variable Update:

The conditional distribution of the latent variables given the remaining parameters is given by

T
[Z7|Y 7, 0,05, 07,7] = [[12eY7, e, 64],

t=1

where [Z;]Y}, «, 8] is independent univariate N (—X7 a—6;,1) distributed truncated to [—oo, 0]([0, oc])
for ¥; = 1(Y; = 0)

Regressions Parameter Update:

Let 6%, = (f1,---,07) and assume a multivariate N,(a,,%,) prior for @, the conditional
distribution of [a|Y7.Z%., 07%] is multivariate normal with expectation vector

am = —(X' X + 377 H(S ey + X (25 + 077))

and covariance matrix
Ym = (E;l + X X)*l-
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State Variable Update:
Czado und Song (2001) showed that [04.|Y%, Z%., a,0%%,7] is (T+1) dimensional normally
distributed with expectation vector

Yo (Ir + AS, ,A) Y25 + Xa)

and covariance matrix
E%U - E%UA (IT + AE%UA )71A2%0:

where ¥, , = P, D, 1Pt with

1 =y 0 - 0 ‘752 0O --- 0
0 1 —y -+ 0 0 o7 -~ 0
Pfy: . . . . . 7D0': . . . .
0 0 0 1 0 0 o5’
and

0 -1 0 0 0

o 0 -1 --- 0 ©0
A= . . .. | erTT.

o o 0 -0 -1

Alternatively to the joint update of the state variables, individual updates are also possible,
however Czado and Song (2001) showed that this leads to poor mixing. Further, ¥, , can be
computed recursively.

State Variance Update:

Assuming an inverse gamma prior IG(ay, b;) for [0?] given by

1
2 .
= V5T - th a¢, by > 0
m(o7) T (ag) (07 )L exp( bta,%) WIth @, 0 > D,
it follows that [07]0;,0:—1,7] ~ 1G(a},b;) with

1 (6 —6i_1)?
a;:at+-5andb;:[b—+%]‘l-
t

In the case where prior information about o, is sparse, we assume o; = o. It follows that for a flat
—1

prior for o2, the conditional [02|65,7] ~ IG(Z — 1, {% +iE (0 - 7015,1)2} ). In the case
of a uniform(l,u) prior for o2,[0?|6%, 7] is inverse gamma distributed with the same parameters
as above but truncated to [l,u]. A truncation might be considered to avoid domination of the
dynamic term.

State Correlation Update:

A uniform prior on [—1,1] is used for . This implies that [y|0%., 03*] is univariate normally
distributed with mean p, and variance o2 truncated to [-1,1], where

ey
0}

i 0/, e [z 9] |
_ : _ i
[y 67, /07] !
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3. BAYESIAN GOODNESS OF FIT AND MODEL SELECTION

After one has obtained posterior estimates of parameters or quantities of interest through
MCMC, one is interested in assessing first the goodness of fit and secondly comparing several
models with regard to model fit and model complexity.

We consider the problem of assessing the goodness of fit in a model first. For this we utilize
posterior predictive distributions, which were introduced by Guttman (1967) and Rubin (1981,
1984). In contrast to the classical approach these measures can depend on unknown parameters.
Meng (1994) uses posterior p-values for testing hypotheses of parameters within a given model,
while Gelman et. al. (1996) concentrate on discrepancy measures which are not traditional
test statistics. Gelman and Meng (1996) showed how these can be facilitated in an MCMC
framework by posterior predictive simulation. For this, one chooses appropriate discrepancy
measures, which measure the fit of the model. For our data example, we chose classical measures
such as the Pearson x? statistics or the deviance given by

D, (a,07,,Y7) 3.1

@ (e 071, Y7 ;pta—pt (3.1)
T

Daev(a, 071, Y7) = =2 [Vilog(py) + (1= Y3) log(1 = p1)] (3.2)
t=1

where p, = ®(Xjo + 6;). Note that given the state variables independence is assumed. To
conduct the posterior predictive simulation, we draw regression parameter estimates a” and
state variable estimates ] ,¢t =0,---,T forr =m+1,---, R as an approximate sample from the
posterior. Here, m is an appropriately chosen burnin. Given these parameter estimates a” and
6;,t =0,---,T, we generate hypothetical data Y;" from the corresponding binary state space
mixed model. If the model fits adequately, we expect the distributions of Y" and the observed
data Y7 to be similar. In particular we expect the corresponding discrepancy measures (3.1) and

(3.2) to be close. Therefore we determine the estimated posterior predictive p-values

R
1
S Z LD o(0,05,,Y5)<D 2 (005, Y57)} (3.3)

r=m-+1
R

1
Pdev = 5 Z IiDgey (0,02, Y2)<Daeu(a,03,,Y2")} (3.4)

r=m-+1

We expect an estimated posterior predictive p-value of around .5, if the model fits adequately.

We now turn to the problem of model selection. Model comparison in a classical framework
usually assumes a measure of model fit together with a measure of model complexity. Since
increasing complexity of model results in a better model fit, models are compared by trading
these two quantities off. Likelihood ratio tests and Akaike’s information criterion (Akaike 1973)
are such measures. Spiegelhalter et al. (1998) propose the deviance information criterion (DIC)
to use for model selection within the MCMC framework. For this, they use the deviance for
measuring the goodness of fit. As in Dempster (1974), Spiegelhalter et. al. consider the posterior
distribution of the saturated deviance given by (3.2) in binary state space mixed models. They
suggest to use the posterior mean of the saturated deviance as summary of the model fit. For
the binary state mixed models this is given by:

D= Ea,@;l,%azlY; (Ddev (aa 9}1 ) Y;))
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Table 1. Potentially important covariates identified by
ordinary probit analyses

WCD Windchill index when present, 0 otherwise
HDXD Humidity index when present, 0 otherwise
WC.IND 1 if WCD present, 0 otherwise

S.SE South-Southeast Wind Indicator

TMND1P Mean temperature change from previous day
WDAY Weekday

As measure of model complexity Spiegelhalter et. al (1998) propose to use the effective number
of parameters pp, defined as difference between the posterior mean of the deviance and the
deviance evaluated at the posterior expectations of the model parameters. For the binary state
space mixed model pp is given by

P = Eqp: .02y (Ddeo(@, 071, Y7)) — Daeo(Eajvz (@), Egs vz (071),Y7))-
Finally, the deviance information criterion is defined as
DIC =D + pp-

Spiegelhalter et al. showed that DIC can be considered a natural generalization of Akaike’s
information criterion.

4. BAYESIAN ANALYSIS OF THE HEADACHE DATA

For the headache data we define

v, = 1 headache on day t
P71 0 otherwise

for t = Feb. 25, ---, Nov. 30, 1995. This gives a total of 279 binary observations. An initial
exploratory analysis using ordinary probit models, thus ignoring the dependency identified po-
tentially important covariates given in Table 1. In particular, the effect of pressure and pressure
changes was not identified as significant in this explanatory analysis.

For our analysis we assume the following binary state space mixed model

Y; = 1{Zt§0};t =1,---,279
Zy = —np — 0 + ug,ug ~ N(0,1) independent
0; = v0;_1 + €, ~ N(0,07) independent
u; and €; are independent for all t
together with the following two mean specifications:
Model 1:
= ag + awecpWCDy + awe.gnpWC-IN Dy (4.1)
+agpxpHDXD; + arypsTUES; + awgpW ED;
+ argurTHUR; + apriFRI; + asarSAT: + as.s5S-SE;
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Model 2:

M = ag + asarSAT; + asyn SUNy + apyon MON; (4.2)
+ arypsTUES; + awgpW ED; + argurT HU Ry
+ armunpipTMNDIP; + as.s5S-SE,
+ asar«rMND1PSAT * TMND1P; + asun«tuNp1pSUNy x TM N D1P;
+ aponsTMND1PMONy * TMNDI1P; + arvesstuNp1ipTUES * TM N D1P;
+ awepsrmNnD1PWEDy * TMNDI1P; + argursrmNp1pTHURy x TMND1P;

The deviance in the standard probit analysis of Model 1 (Model 2) results in 326.36 (316.89)
with 268 (264) degrees of freedom.

Following the experience gained from comparing different MCMC algorithms in Czado and
Song (2001), we utilize the MCMC algorithm with a flat noninformative prior for the regression
parameters and a uniform prior on the state variance 0? = ¢7. As truncation interval for 0 we
chose [0-1,1] and [0-1,10]. 10000 iterations were run, with every 10th iteration recorded. The
time sequence plots of the parameters show that a burnin of 50 recorded iterations is sufficient.

Figures 1 and 2 present posterior mean estimates of the regression parameters together with
90% credible intervals for mean specifications (4.1) and (4.2) for different prior choices for o2. For
comparison we also include probit estimates together with 90% confidence intervals. They show
that the data shows evidence that strong weekday effects are present, while the effects of windchill
and humidity indices are less pronounced. The presence of south-southeast winds reduces the
headache probability. This is consistent with weather pattern for southwestern Ontario indicated
in Nursall and Phillip (1980) and Nursall (1981), who reported that these wind directions are
often related to nice weather. The effect of temperature changes from the previous day interacts
with weekday effects, which might be explained by the part time work schedule of the patient.
For both mean specifications we see that weather conditions have an influence on the occurrence
or nonoccurrence of headache for this patient.

Since the variances of the latent variables Z; vary, it might be appropriate to consider scaled
regression parameters. In particular, Czado and Song showed that

0}1 ~ NT(07 2170)7

where X1, = (X4¢)t,5=1...,7- Using the recursion formulas given in Czado and Song (2001), it
follows that

1— 2(t+1)

Var(Z) =1+ 021i772 (4.3)
1— 2(s+1)

Cov(Zy, Zs) = Ugyt_sryi, s <t (4.4)

1—72
We can approximate Var(Z;) by 1+ 13—2 therefore it makes sense to consider scaled regression

’72 bl
parameters a; defined by
a

V1t 52

Posterior mean estimates of these scaled regression parameters are given in Figures 3 and 4.
They show that the credible intervals are larger than the corresponding confidence intervals of
the probit estimates, which is to be expected when dependency is not ignored. Further we see

Qg =
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S.SE

SUN -

SAT —

FRI —

THUR —

WED —

THUES —

HDXD —| 4

WC.IND —

WCD | 7

INTER.

-4 -2 0 2

Fig. 1. Posterior mean estimates with 90% credible intervals for the regression parameters in Model 1 (.

L= problt estimate with 90% CI, - - - - - = posterior estimate with 90% credible interval using a
umform( 1,1) ¢? prior, —— = posterior estimate with 90% credible interval using a uniform(.1,10) o
prior)

that all estimates of the scaled regression parameters are close, thus indicating similar effects
regardless of the o2 prior.

We now investigate the posterior estimates of the parameters determining the dynamic struc-
ture of the model. Posterior density estimates of v and o are presented in Figures 5 and 6,
respectively. The chosen truncation interval influences the posterior estimate of v. A larger
upper bound for o2 reduces the correlation. We also see that the MCMC algorithm wants to fit
larger state variances.

The results for the state variables 8; are given in Figure 7. They indicate similar effects as for
the state correlation. The range of the state variables increases as the upper truncation bound
for o2 prior increases.

Finally we investigate the behavior of posterior mean estimates of the success probabilities
given by

pe=PY; =1) = ®(Xja+6,)
Figure 8 gives posterior mean estimates of the success probabilities together with the observed

successes and failures. From this we see that posterior mean estimates using a uniform(.1,10) o
prior are closer to the observed successes and failures, which indicates a better model fit.
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WED*TMND1P — _
TUES*TMND1P —
THUR*TMND1P — —
SUN*TMND1P — — =
SAT*TMNDIP — —
MON*TMND1P —| — =
S.SE ——
TMND1P | S
wep 4 —mm——m™W—— === e
TUES — : ==
THUR | ‘ ————=
SUN —
SAT —| ——
MON e
INTER — — g
\ T T \
-6 -4 -2 0 2

Fig. 2. Posterior mean estimates with 90% credible intervals for the regression parameters in Model 2 (.

. = probit estimate with 90% CI, - - - - - = posterior estimate with 90% credible interval using a
uniform(.1,1) o2 prior, —— = posterior estimate with 90% credible interval using a uniform(.1,10) o>
prior)

To see if a higher state variance has influence on the covariate proportion explained by the
model, we considered the following quantity:

T

1 Xia
ProPcovariate = T ; ,|7t|

Note that the in the probit model the mean of the latent variable is close to the log odds; for a
marginal logit model equality holds. Therefore it makes sense to consider what proportion of the
log odds is explained on the average by the parametric part and the dynamic part, respectively.
Table 2 gives posterior mean estimates of propeovariate, which shows that the dynamic part of
the model does not dominate the parametric part, even though there is a moderate decline when
a larger upper truncation point for the state variance is used.

We now investigate the model fit and model selection of the two mean specifications and the
two different prior choices. First we present the results of the posterior predictive simulation
using the last 500 recorded iterations of MCMC chain.
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S.SE

SUN —

SATUR — :

FRI —

THUR —

WED —

THUES | *

HDXD —

WC.IND —

WCD - -

INTER.

Fig. 3. Posterior mean estimates with 90% credible intervals for the scaled regression parameters in
Model 1 (. . . . . = probit estimate with 90% CI, - - - - - = posterior estimate with 90% credible
interval using a uniform(.1,1) ¢? prior, = posterior estimate with 90% credible interval using a
uniform(.1,10) ¢? prior)

Table 2. Posterior Mean Estimates of propcovariate

Model 1 Model 2

uniform[.1,1]  uniform[.1,10] uniform[.1,1] uniform[.1,10]

o? prior o? prior o? prior o? prior

.55 .45 .53 .46

Table 3. Estimated p-values from the poste-
rior predictive simulation

Model px2 Pdev
Model 1 (uniform(.1,1) ¢ prior) 32 .24
Model 1 (uniform(.1,10) o? prior) .44 .41
Model 2 (uniform(.1,1) ¢? prior) .23 .18
Model 2 (uniform(.1,10) o2 prior) .45 .44
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WED*TMND1P — e
TUES*TMND1P — =
THUR*TMND1P — e
SUN*TMND1P e s
SAT*TMND1P — el el
MON*TMND1P — =
ssE~-H T e
TMND1P S
WED | ——————————— ===
TS 4 e
™R - e =
SN o T =
SAT 4 e e
MON 4 . EEEeee e =
INTER - e —
\ T T T \
-2.0 -1.5 -1.0 -0.5 0.0 0.5

Fig. 4. Posterior mean estimates with 90% credible intervals for the scaled regression parameters in
Model 2 (. . . . . = probit estimate with 90% CI, - - - - - = posterior estimate with 90% credible
interval using a uniform(.1,1) ¢? prior, = posterior estimate with 90% credible interval using a
uniform(.1,10) ¢? prior)

The results in Table 3 show that using a larger upper truncation limit for the ¢ prior yields
a better fit. The difference between the two mean specifications is moderate with a very slight
preference toward Model 2. The predictive simulations also show that the model fit is adequate
when a larger upper truncation limit for the o2 prior is used.

We now consider density estimates of the posterior deviance which are given in Figure 9. Here
we also can see a lower posterior deviance for the models with a larger upper truncation, while
the difference between the two mean specifications is minimal. It should also be noted that
the posterior mean deviances are considerably lower than the deviances obtained using ordinary
probit, thus indicating an improvement when using binary state mixed models over ordinary
probit analyses.

Finally we present in Table 4 the results using the deviance information criterion. DIC would
select mean specification Model 2 with a uniform(.1,10) prior for 2.

In summary, the model adequacy is achieved when a uniform(.1,10) prior for ¢ is used, while
the difference in the mean specifications is minimal. Therefore we present now predictions using
Model 1 specification, which can be used for the pain management of this patient. To ease
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Fig. 6. Posterior mean estimates of o
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Model 1: 6 (uniform(.1,1) o prior)

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Model 1: 6 (uniform(.1,10) o2 prior)

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Fig. 7. Posterior mean estimates of state variables 6;

Table 4. Model fit D, effective parameters pp and

DIC

Model D pD DIC
Model 1 (uniform(.1,1))  268.29 65.25  333.53
Model 1 (uniform(.1,10)) 111.62 100.05 211.67
Model 2 (uniform(.1,1)) 25295 73.28  326.23
Model 2 (uniform(.1,10)) 104.37 95.38 199.75

presentation we restrict this analysis to Wednesdays for the marginal analysis and to Tuesdays
and Wednesdays for the joint analysis. To obtain prediction of the marginal headache probability
under certain conditions, we utilize now that the Var(Z;) can be approximated by 1 + %,
therefore estimated marginal headache probabilities are given by

X
V1t 52

For example, in Figure 10 we plot estimated marginal headache probabilities for Wednesdays in
dependency of windchill and humidity, respectively. The solid (dotted) lines indicate the presence

pr=®
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Model 1: uniform(.1,1) o2 prior

Feb Mr r May Jun " Dec

Model 2 unlform( 1 l)c prior

1 " Bk e SO
Bk Hox OO

) mmmmm mmmm

Feb Jun Oct

Modelz unlform(llo)c prior

r ALARLE A Au S
Fig. 8. Posterior mean estimates of probabilities p¢

(absence) of south-southeast winds. For this patient windchill influences the headache probability
more severely than humidity. It is interesting to note that an increase in humidity decreases the
headache probability somewhat for this patient.

Since dependency is present, a marginal analysis as above is insufficient. Therefore, we are
interested in determining estimated joint headache probabilities. For this we utilize that according
to (4.4) the correlation between Z; and Z;1; can be approximated by 7. Using the bivariate
normal distribution function, Figures 11 and 12 give contour lines of estimated headache/no
headache probabilities depending on different levels of windchill and humidity values for Tuesdays
and Wednesdays when no south-southeast winds are present on both days, respectively.

Finally, we consider corresponding conditional probabilities, which are given in Figure 13.
From this we see that the effect of a previous day headache influences the headache probability
of the current day considerably. This shows that even a moderate correlation between the state
variables induces a considerable dependency on the conditional probabilities. Thus dependency
cannot be ignored.

5. CONCLUSIONS AND DISCUSSION

This paper investigates the usefulness and applicability of binary state space mixed models to
pain risk management for migraine headache patients. Binary state space mixed models allow
the joint assessment of a dynamic structure to model longitudinal dependency together with time
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Fig. 9. Estimated density of the posterior deviance

dependent covariate effects such as weather conditions for migraine sufferers.

Parameter estimation is facilitated by MCMC. In addition to parameter estimation, the adap-
tation of several model fit and selection for a Bayesian inference using MCMC methods are
presented. They allow for the assessment of mean and prior specifications. For the data set
studied a reasonable model was found, which allows for a patient specific risk assessment.

For the final model selected, estimated risk profiles for suffering headaches are constructed
under possible weather conditions. In addition to a marginal analysis, joint and conditional
analyses are given. They show that even a moderate correlation among the state variables can
induce considerable influence on estimated conditional headache probabilities. For example, the
headache probability for Wednesdays is increased roughly by .10 when a headache was also present
on Tuesday, while the fitted correlation among the state variable was only .25.

The original data set also measured headache severity on a five point scale. Therefore an
extension of the methods presented to mixed state space models with ordinal responses is neces-
sary and is the focus of current research efforts of the author. Another extension is to construct
multivariate binary state space mixed models for the analysis of several patient dairies.
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