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Abstract

P-splines are an attractive approach for modelling nonlinear smooth effects
of covariates within the generalized additive and varying coefficient models
framework. In this paper we propose a Bayesian version for P-splines and
generalize the approach for one dimensional curves to two dimensional sur-
face fitting for modelling interactions between metrical covariates. A Bayesian
approach to P-splines has the advantage of allowing for simultaneous estima-
tion of smooth functions and smoothing parameters. Moreover, it can easily
be extended to more complex formulations, for example to mixed models with
random effects for serially or spatially correlated response. Additionally, the
assumption of constant smoothing parameters can be replaced by allowing
the smoothing parameters to be locally adaptive. This is particularly useful
in situations with changing curvature of the underlying smooth function or
where the function is highly oscillating. Inference is fully Bayesian and uses
recent MCMC techniques for drawing random samples from the posterior. In
a couple of simulation studies the performance of Bayesian P-splines is stud-
ied and compared to other approaches in the literature. We illustrate the
approach by a complex application on rents for flats in Munich.

Keywords: generalized additive models, locally adaptive smoothing param-
eters, MCMC, P-Splines, surface fitting, varying coefficient models

Introduction

Consider the additive model (AM) with predictor

where the mean of a metrical response variable y is assumed to be the sum of
smooth functions f;. The response y is assumed to follow a Gaussian distribution
y ~ N(n,0?). To allow for non-Gaussian responses the AM is extended to gener-
alized additive models (GAM) (Hastie and Tibshirani, 1990) by assuming that the
distribution of the response belongs to an exponential family and that the mean p
is related to the predictor by a response function h(n) = pu. A more general class of
models including the GAM as a special case are varying coefficient models (VCM)
introduced by Hastie and Tibshirani (1993). Here, the effects of additional covari-

ates z = (z1,...,2,) are assumed to vary smoothly over the range of the metrical

E(ylr) =p ="+ fi(z1) + -+ fp(z,) =1

covariates x leading to the predictor

n=" + fil@)z + -+ fp(Tp) 2.



For z; =1, j=1,...,p, the VCM reduces to a GAM.

Several proposals are available for modelling and estimating the smooth functions
f;, see e.g. Hastie and Tibshirani (1990) for an overview. An attractive approach,
based on penalized regression splines (P-splines), has been presented by Eilers and
Marx (1996) for unvariate scatterplot smoothing and has been extended to GAMs
by Marx and Eilers (1998). The approach assumes that the effect f of a covariate x
can be approximated by a polynomial spline written in terms of a linear combination
of B-spline basis functions. The crucial problem with such regression splines is the
choice of the number and the position of the knots. A small number of knots may
result in a function space which is not flexible enough to capture the variability of the
data. A large number of knots may lead to serious overfitting. Similarly, the position
of the knots may potentially have a strong influence on estimation. A remedy can
be based on a roughness penalty approach as proposed by Eilers and Marx (1996).
To ensure enough flexibility a moderate number of equally spaced knots within the
domain of z is chosen. Sufficient smoothness of the fitted curve is achieved through
a difference penalty on adjacent B-spline coefficients. A different approach focuses
on a parsimonious selection of basis functions and a careful selection of the position
of the knots, see e.g. Friedman and Silverman (1989), Friedman (1991) and Stone
et al. (1997).

This paper presents a Bayesian version of the P-splines approach by Eilers and Marx
for GAMs and VCMs. This is achieved by replacing difference penalties by their
stochastic analogues, i.e. Gaussian (intrinsic) random walk priors which serve as
smoothness priors for the unknown regression coefficients. Bayesian P-splines are a
generalization of an approach for GAMs and VCMs presented by Fahrmeir and Lang
(2001a, b) based on simple random walk priors. In a second step we generalize the
P-spline approach for one dimensional curves to two dimensional surface fitting by
assuming that the unknown surface can be approximated by the tensor product of
one dimensional B-splines. Smoothness is now achieved through smoothness priors
common in spatial statistics, e.g. two dimensional generalizations of random walks.
A closely related approach (for one dimensional curve fitting) based on a Bayesian
version of smoothing splines can be found in Hastie and Tibshirani (2000), see also
Carter and Kohn (1994) who use state space representations of smoothing splines for
Bayesian estimation with MCMC using the Kalman filter. Compared to smoothing
splines, in a P-splines approach a more parsimonious parameterization is possible,
which is a particular advantage in a Bayesian approach where inference is based on
MCMC techniques. Other Bayesian approaches for nonparametric regression are
based on adaptive knot selection and are close in spirit to the work by Friedman
and coauthors. Denison et al. (1998) present an approach based on reversible jump
MCMC for univariate curve fitting with metrical response which is extended to
GAMs by Mallick et al. (2000) and Biller (2000). A similar approach avoiding
reversible jump MCMC is followed by Smith and Kohn (1996) for univariate curve
fitting and by Smith and Kohn (1997) for bivariate regression.

One advantage of a Bayesian approach for P-splines, as the one we follow, is that
extensions to more complex situations are comparably easy. For example, there may
be situations where the curvature of an underlying function f is rapidly changing
or the function is highly oscillating. In that case the assumption of a constant



smoothing parameter is inapproriate and must be replaced by a locally adaptive
smoothing parameter. Such situations have attained considerable attention in the
recent literature, see e.g. Fronk and Fahrmeir (1998), Luo and Whaba (1997) and
Ruppert and Carroll (2000). In this paper, locally adaptive smoothing parameters
are incorporated through a hierarchical t-formulation, i.e. the usual Gaussian prior
for the regression parameters is replaced by a t-distribution. Such a prior has been
already used in the context of dynamic models (Knorr-Held, 1996) and for edge
preserving spatial smoothing (e.g. Higdon, 1994, Besag and Higdon, 1999).

The classical GAM or VCM might be inappropriate for longitudinal data if het-
erogeneity among units or clusters is not sufficiently described by covariates. In
that case, the introduction of an additional unit- or cluster specific random effect
to account for heterogeneity is necessary. Such generalized additive mized models
(GAMM) or warying coefficient mized models (VCMM) have been considered in
a Bayesian framework by Hastie and Tibshirani (2000), and Fahrmeir and Lang
(2001a, b) who extend the approach to situations with spatially correlated response.
We will present an application of the GAMM with spatially correlated response in
our data application on rents for flats or apartments in Munich.

Bayesian inference for GAMMs and VCMMs with P-splines is based on recent
MCMC simulation techniques. For Gaussian responses a Gibbs sampler can be
used to update the full conditionals of the regression parameters. Drawing random
numbers from the high dimensional distributions is, however, not trivial and is con-
siderably facilitated by matrix operations for band matrices (Rue, 2000). Updating
of the full conditionals in categorical probit models is facilitated by considering latent
utility representations of such models. In this case, additional drawings from the
latent utilities are necessary but, as an advantage, the full conditionals of the regres-
sion parameters are Gaussian allowing to use the efficient algorithms for updating
regression coefficients for Gaussian responses. The updating schemes for categorical
probit models in this paper are based on Albert and Chib (1993) and particularly
on Fahrmeir and Lang (2001b). For general exponential family distributions we
propose MH-algorithms based on conditional prior proposals (Knorr-Held, 1999 and
Fahrmeir and Lang, 2001a) and on iteratively weighted least squares proposals as
suggested by Gamerman (1997) for generalized linear mixed models.

Software for fitting the models in this paper is included in the program BayesX
for Bayesian inference via MCMC. The program is available via internet under
http://www.stat.uni-muenchen.de/"lang/.

The rest of this paper is organized as follows: Section 2 describes Bayesian GAMMs
and VCMMs with P-splines. Section 3 gives details about MCMC inference for
the proposed models. Section 4 contains a couple of simulation studies in order to
gain more insight into the practicability and the limitations of our approach and to
compare it with other approaches in the literature. In Section 5 the methods of this
paper are applied to a complex dataset on rents for flats in Munich.



2 Bayesian GAMMs and VCMMs based on P-
Splines

2.1 GAMs

Consider regression situations, where observations (y;, x;,v;), ¢ = 1,...,n on a re-
sponse y, a vector of metrical covariates x = (z1,...,1,)" and a vector of further co-
variates v = (vy,...,v,)" are given. Generalized additive models (Hastie, Tibshirani
1990) assume that, given z; and v; the distribution of y; belongs to an exponential

family, i.e.
yi0; — b(ei)

p > c(yi, 0;)

where b(-), ¢(-), 0; and ¢ determine the respective distributions. A list of the most
common exponential family distributions and their parameters can be found in
Fahrmeir and Tutz (2001). The mean pu; = E(y;|z;,v;) is linked to a semipara-
metric additive predictor 7; by

P(yz‘|$i,vi) = €xXp <

pi = h(ni), ni= filwa) +-+ fploy) + vy (1)

Here h is a known response function and fi,. .., f, are unknown smooth functions of
the covariates. The inverse g = h~! of h is called the link function. The linear com-
bination v}y corresponds to the usual parametric part of the predictor. Note that the
mean levels of the unknown functions f; are not identifiable. To ensure identifiability
the functions f; are constrained to have zero means, i.e. 1/range(z;) [ f;j(z;)dz; = 0.
This can be incorporated into estimation via MCMC by centering the functions f;
about their means in every iteration of the sampler. To ensure that the posterior is
not changed the substracted means are added to the intercept.

In the P-splines approach by Eilers and Marx (1996) it is assumed that the unknown
functions f; can be approximated by a spline of degree [ with equally spaced knots
CjO = Tjmin < le < ..o < Cj,r—l < er = Zjmax within the domain of ;. It is
well known that such a spline can be written in terms of a linear combination of
m = 1 + [ B-spline basis functions B;), i.e.

fiz;) = ;ﬂjijp(xj)-

For the ease of notation we assume the same number of knots m for every function
fj- The basis functions B;, are defined only locally in the sense that they are nonzero
only on a domain spanned by 241 knots. It would be beyond the scope of this paper
to go into the details of B-splines and their properties, see De Boor (1978) as a key
reference. By defining the n x m design matrices X;, where the element in row ¢
and column p is given by X,(4,p) = Bj,(xi;), we can rewrite the predictor (1) in
matrix notation as

n=Xi06+ -+ X8+ V. (2)

Here 8; = (Bj1,...,0im)’s j = 1,...,p, correspond to the vectors of unknown re-
gression coefficients. The matrix V' is the usual design matrix for fixed effects. In a



simple regression spline approach the unknown regression coefficients are estimated
using standard maximum likelihood algorithms for generalized linear models. To
overcome the difficulties of regression splines, already mentioned in the introduc-
tion, Eilers and Marx (1996) suggest a moderately large number of knots (usually
between 20 and 40) to ensure enough flexibility, and to define a roughness penalty
based on differences of adjacent B-Spline coefficients to guarantee sufficient smooth-
ness of the fitted curves. This leads to penalized likelihood estimation where the
penalized likelihood

L= l(ya 617 ey ﬁpa ’Y) - )\1 Z (Akﬁll)2 -t )\p Z (Akﬁpl)2 (3)
I=k+1 I=k+1
is maximized with respect to the unknown regression coefficients 3i,..., 3, and .

In this paper we restrict ourselves to penalties based on first and second differences,
i.e. Kk =1or k = 2. Estimation can be carried out with backfitting (Hastie and
Tibshirani, 1990) or by direct maximization of the penalized likelihood (Marx and
Eilers, 1998). The trade off between flexibility and smoothness is determined by the
smoothing parameters \;, j = 1,...,p. Typically "optimal” smoothing parameters
are estimated via cross validation or by minimizing the AIC critertia with respect to
the A\;, 7 =1,...,p. A major problem is, however, that the procedures for choosing
the smoothness parameters often fail in practice since no optimal solutions for the
A; can be found (see also Section 4.1). More severe is the fact that these criteria fail
to work if the number of smooth functions in the model is large as then the compu-
tational effort to compute an optimal solution (if there is any) becomes intractable.
However, a computational efficient algorithm for computing the smoothing param-
eters has been presented recently by Wood (2000), which seems to work at least for
a moderate number of smoothing parameters.

In a Bayesian approach, as considered in this paper, unknown parameters 3;, j =
1,...,p, and ~ are considered as random variables and have to be supplemented
with appropriate prior distributions. We replace the difference penalties in (3) by
their stochastic analogues. First differences correspond to a first order random walk
and second differences to a second order random. Thus, we obtain

Bip = Bip—1 + Wjp, 0 Bjp=205,1— Bjp—2+ ujp (4)

with Gaussian errors u;, ~ N(O,sz) and diffuse priors (j; oc const, or 3;; and
Bj2 o const, for initial values, respectively. Note, that the priors in (4) could have
been equivalently defined by specifying the conditional distributions of a particular
parameter (3;, given the left and right neighbours. Then, the conditional means
may be interpreted as locally linear or quadratic fits at the knot positions (;,. The
amount of smoothness is controlled by the additional variance parameters TjZ, which
correspond to the smoothing parameters A; in the classical approach. The priors
(4) can be equivalently written in the form of a global smoothness prior

1
B;177 o exp <—ﬁﬂ;‘Kjﬁj> (5)
J

with appropriate penalty matrix K;. For example, for a first order random walk the



penalty matrix K is given by

1 -1
K;= ORI : (6)

-1 1

Since K is rank deficient with rank(K;) = m — 1 for a first order random walk and
rank(K;) = m — 2 for a second order random walk, the prior (5) is improper. Note
also that the penalty matrices are not stochastic.

For full Bayesian inference the unknown variance parameters 7']-2 are also considered
as random and estimated simultaneously with the unknown ;. Therefore, hyper-
priors are assigned to them in a further stage of the hierarchy by highly dispersed
(but proper) inverse Gamma priors p(77) ~ IG(ay, b;). The prior for 77 must not be
diffuse in order to obtain a proper posterior for 3;, see Hobert and Casella (1996)
for the case of linear mixed models. Throughout this paper we will set a; = 1 and

b; = 0.005 for the hyperparameters.

In some applications the assumption of global variances 7']-2 (or smoothing parame-

ters) may be inappropriate, e.g. when the underlying functions are highly oscillating.
In such situations we can replace the errors u;, ~ N(0,77) in (4) by u;, ~ N(0, %)
where the weights ¢;, are additional hyperparameters. We assume that the weights
dj, are independent and Gamma distributed d;, ~ G(35,5), v = 1,2,... . This
implies that 3;,|8;,-1 or Bjp|Bip-1, Bjp—2 follow a t-distribution with v degrees of
freedom. We will see in our simulation study in Section 4.2 that the best results
are obtained for ¥ = 1, which corresponds to a Cauchy distribution. In principal,
we could estimate v from the data as well, see Knorr-Held (1996) for an approach.
The penalty matrices are now stochastic, e.g. the corresponding penalty matrix to
(6) is given by

9j —0j2
—0j2 02+ 0j3 —0j3

—0j3 0j3+dj4 —0j4

Kj = )

—0jm—2 Ojm—2+ 0jm-1 —0jm~1
—0jm-1 Ojm—1+0jm —0jm

—0jm  Ojm

A similar approach for locally adaptive smoothing parameters, but with correlated
d;p, is followed by Fronk and Fahrmeir (1998).

2.2 Modelling interactions

The models considered so far are not appropriate for modelling interactions between
covariates. A common way to deal with interactions are varying coefficient models
(VCM) introduced by Hastie and Tibshirani (1993). Here nonlinear terms f;(x;;)
are generalized to f;(z;;)zij, where z; may be a component of x or v or a further
covariate. The predictor (1) is replaced by

ni = fi(zi)zin + -+ fo(Tip)zip + VY.

6



Covariate z; is called the effect modifier of z; because the effect of z; varies smoothly
over the range of z;. Estimation of VCMs poses no further difficulties, since only
the design matrices X; in (2) have to be redefined by multiplying each element in
row ¢ of X; with z;;.

VCMs are particularly useful if the interacting variable z; is categorical. Consider
now situations where both interacting covariates are metrical. In principal, interac-
tions between metrical covariates could be modelled through VCMs as well. Note,
however, that we model a very special kind of interaction since one of both covari-
ates still enters linearly into the predictor. A more flexible approach is based on
(nonparametric) two dimensional surface fitting. In this case the interaction be-
tween two covariates x; and x, is modelled by a two dimensional smooth surface
fis(xj, x5) leading to a predictor of the form

mi =+ fj(@ig) + [s(@is) + fis(@ig, wis) + -+

Here we assume that the unknown surface can be approximated by the tensor prod-
uct of the two one dimensional B-splines, i.e.

fis(xj, ) Z Zﬁjsm’ i0(77) By ().

p=1lv=1

Similar to the one dimensional case additional identifiability constraints have to
be imposed on the functions f;, f; and f;;. Following Chen (1993) we impose the
constraints

fi= m/fj(%)dl‘j =0

- B

fs - range(zs) /fs Tg d.'L's = 0

fjs(xj) = W /fjs zj,s)dxs = 0 for all distinct values of z;,

fjs(xs) = W / fis(xj, x5)dx; = 0 for all distinct values of x,, and
fjs = mnge(a:j)?mnge(ws) //fjs(l'jal's)dmjd{l}s =0.

This is achieved in an MCMC sampling scheme by appropriately centering the func-
tions in every iteration of the sampler. More specifically, we first compute the
centered function f7; by

Fi(@igy wis) = fio(ig, wis) — Fis(xg) — Fio(as) + f

In order to ensure that the posterior is unchanged we proceed by adding fjs(acj) and
fis(xs) to the respective main effects and substracting f; from the intercept. In the
last step the main effects are centered in the same way as described before.

Priors for 8,5 = (Bjs11,- -, Bjsmm) are based on spatial smoothness priors common
in spatial statistics (see e.g. Besag and Kooperberg, 1995). Since there is no natu-
ral ordering of parameters, priors have to be defined by specifying the conditional
distributions of B3;,,, given neighbouring parameters and the variance component
7']25. The most simplest prior specification based on the 4 nearest neighbours can be



defined by

1 -2
ﬂjsplf|' ~ N (Z(ﬁjsﬂ—l,u + ﬁjsp—H,u + ﬁjsﬂ,u—l + ﬁjsﬂ,l/—l—l)a f) (7)
for p,v =2,...,m—1 and appropriate changes for corners and edges. For example,

72
for the upper left corner we obtain fj11]- ~ N(5(Bjs12 + Bjs21), 5). For the left
2

edge we get [Bj51,] ~ N(%(ﬁjﬂ,uﬂ + Bisip—1 + Bjs2n), %i) This prior is a direct
generalization of a first order random walk in one dimension. Its conditional mean
can be interpreted as a least squares locally linear fit at knot position (,, (, given
the neighbouring parameters. Another choice for a prior for 3;, can be based on
the Kronecker product K;;, = K; ® K of penalty matrices of the main effects,
see Clayton (1996) for a justification. We prefer, however, prior (7) because the
priors based on Kronecker products tend to overfitting (at least in the context of
spline smoothing). Note, that all priors for two dimensional smoothing can be easily
brought into the general form (5).

Prior (7) can be generalized to allow for spatially adaptive variance parameters. For
that reason we introduce weights d(,,)(x) with the requirement that d(,)kiy = O(k1)(pv)
and generalize (7) to

N Qont) 5 o .
ﬁjspu| ~ Z S ﬁkla . ( )

(k)eay,, O+ O+

Here, 0,, corresponds to the set of neighouring knots to (,,(, and d,,)4+ denotes
the sum of weights Y (k€D ) Stpvykt)- For Opyky = 1 we obtain (7) as a special
case. Introducing hyperpriors for the weights d(,,)x;) in a further stage of the hi-
erarchy we get a smoothness prior with spatially adaptive variances. In analogy to
the one dimensional case we assume that the d(,,) ;) are independent and Gamma
distributed 5(pu)(lcl) ~ G(%, V).

2

2.3 Unobserved heterogeneity

Suppose now that we have for each individual ¢ repeated observations v, T, vi,
t=1,...,T over time. For simplicity, we assume that we have the same number of
observations for each individual although this is of course not a necessary require-
ment. In such situations we often observe the problem of heterogeneity among units
caused by unobserved covariates. Neglecting unobserved heterogeneity may lead to
considerably biased estimates for the nonlinear and fixed effects. A common ap-
proach to overcome these difficulties is the introduction of additional random effects
bi, © = 1,...,n, into the predictors leading to GAMMs or VCMMs. In a Bayesian
framework we assume that the b;’s are i.i.d. Gaussian, i.e.

by ~ N(0,772). (9)
Formally, the prior for the vector b = (by,...,b,)" can be brought into the general

form (5) by simply setting K = I. For 72, we assume an inverse Gamma prior
72~ IG(Ares bre)-



Another interpretation of the random effects b; is that of an unstructured unsmooth
covariate effect. In fact, we could replace some of the smoothness priors for the
functions f; in GAMMSs or VCMMs by unstructured random effects if the assumption
of a smooth effect is not justified. For a particular covariate x, we simply have to
define parameters b, for every observed covariate value and assign the prior (9) to
them. In VCMMs the b,’s can then be interpreted as random slope parameters.
In some situations it may be even necessary to split up the effect of a particular
covariate = into a smooth and an unsmooth component. Such models have been
used in the context of spatial smoothing by Besag et al. (1991) and Fahrmeir and
Lang (2001b).

There may be also situations with spatially correlated responses. For example, in
our application on rents for flats in Munich the monthly rent for a flat or apartment
considerably depends on the location in the city. In this application, spatially cor-
related random effects based on Markov random field priors as decribed in detail in
Fahrmeir and Lang (2001a, b) are incorporated into the predictor. Additionally, an
unstructured random effect (9) is included.

2.4 Additional prior assumptions

We conclude this section with some additional prior assumptions. For the ease of
notation, we subsume for the rest of this paper two dimensional surfaces f;, into
the functions f;, 7 = 1,...,p, so that a function f; may also be a two dimensional
function of covariates z; and .

i) In the case of Gaussian responses an additional (overall) variance parameter
o? for the errors must be taken into consideration. In analogy to the variance

parameters Tj2 we assign an inverse Gamma prior, i.e. 02 ~ IG(a,, b, ).

ii) For the fixed effects parameters v we assume independent diffuse priors, i.e.
v < const, j=1,...,q.

iii) For given covariates and parameters observations y; (or y;) are conditionally
independent.

iv) Priors p(8;|77), or p(B;]0;,77) in the case of locally adaptive variances, are

conditionally independent. Here, §,; denotes the vector of weights.

v) Priors for fixed and random effects, hyperpriors 77,7 = 1,...,p, 72 and J,
are mutually independent.

3 Posterior inference via MCMC

Bayesian inference is based on the posterior of the model, which is in all cases
analytically intractable. Therefore, inference is carried out by recent Markov Chain
Monte Carlo (MCMC) simulation techniques. We first consider the case of Gaussian
responses:



3.1 Gaussian responses

For the following let oz denote the vector of all parameters appearing in the model.
According to our prior assumptions the posterior is given by

p(a) (8 [;(y, 51; IO ﬁp?f% ba 02)
11 (p(Bi17)p(7)

1T p(0:l72)p(72)p()p(0?)

1=1

(10)

where L(-) denotes the likelihood. By assumption ii) the likelihood is the product
of individual likelihood contributions. If for one of the smooth functions f; a locally
2

adaptive variance parameter is assumed, the term p(ﬁj|7'j2)p(7'j) in the second line

of (10) must be replaced by p(8;|9;, 77)p(d;)p(77). Because the individual weights

are assumed to be independent, the prior p(d;) is a product of Gamma densities.

MCMC simulation is based on drawings from full conditionals of blocks of parame-
ters given the rest and the data. For Gaussian responses it can be shown that the
full conditionals for g, 7 = 1,...,p, b and 7 are multivariate Gaussian. Straight-
forward calculations show that the precision matrix P; and the mean m; of j3;|- is

given by
1 1 41 ~
Pj = —QXJI'XJ‘ + =K, m; =P l_szl‘(y =), (11)
o Tj o

where 77 is the part of the predictor associated with all remaining effects in the
model. Because of the special structure of the design matrices X; and the penalty
matrices K; the posterior precisions P; are bandmatrices. For a one dimensional
P-spline the bandwidth of P; is the maximum between the degree [ of the spline and
the order of the random walk. For a tensor product two dimensional P-spline the
bandwidth is m - { 4+ . Following Rue (2000) drawing random numbers from p(f;]-)
is as follows:

(i) Compute the Cholesky decomposition P; = LL'.

(ii) Solve L'3; = z, where z is a vector of independent standard Gaussians. It
follows that 8; ~ N(0, ;).

(iii) Compute the mean m; by solving Pjm; = %X]’ (y — n). This is achieved by
first solving by forward substitution Ly = X i(y — 1) followed by backward
substitution L'm; = v.

(iv) Set 3; = B; +my, then B; ~ N(m;, Pj_l).

The algorithms involved take advantage of the bandmatrix structure of the posterior

precision P;. A detailed description of the bandmatrix operations used in this paper
can be found in George and Liu (1981).
The precision matrix and the mean of the full conditional for the random effects b

can be formally brought into the form in (11) where 77 is replaced by 77, and K; by

10



the identity matrix I. For the fixed effects parameters v we obtain for the precision
matrix and the mean

1
Py ==V'V, m,=VV)"'V'(y—7). (12)
o
The full conditionals for the variance parameters 77, j = 1,...,p, 77, and o are all
inverse Gamma distributions with parameters
rank(K;) 1
a;- =a; + # and b; = bj + iﬂ;KJﬁj (13)
for 77 and 77%. For 0® we obtain
! n / 1 !
Gy =5+ 5 and ba:b+§ee (14)

where € is the usual vector of residuals. In the case of replicated observations for
each individual, n in (14) must be replaced by n - T. If for some of the functions
f; locally adaptive variances are assumed, we additionally need to compute the full
conditionals for the weights d;,, or d(,) k). For one dimensional P-splines with a
first or second order random walk penalty the full conditionals for the weights ¢;,
are Gamma distributed with parameters

v
b~ 3 + -5 (15)
where u;, is the error term in (4). In the case of a two dimensional P-spline the full
conditionals for the weights 6(,,)x;) are Gamma distributed with

v (ﬂpu - ﬂkl)2'

/ g
Opr)(kl) 9 + 27’31,

A

1
/ — = —
Dnyan 9 + 2 and

(16)
Since all full conditionals involved are known distributions, a simple Gibbs sampler
can be used to successively update the parameters of the model. The resulting
sampling scheme can be summarized as follows:

i) Update 3; (j = 1,...,p) and b by drawing random numbers from the multi-
variate Gaussian distribution with precision matrix and mean given by (11).

ii) Update v by drawing random numbers from a Gaussian distribution with mean
and precision matrix in (12).

iii) Update 72 (j = 1,...,p) and 72 by drawing random numbers from inverse
J re

Gamma full conditionals with parameters given by (13).

iv) Update the weights ¢; (if for f; locally adaptive variances are assumed) by
drawing random numbers from the Gamma distributions with parameters in
(15) for one dimensional P-splines and (16) for two dimensional P-splines.
Recompute the penalty matrix K.

v) Update 0% by drawing random numbers from the inverse Gamma distribution
specified in (14).

11



3.2 Categorical probit models

MCMC inference for a probit model can be considerably facilitated by equivalently
rewriting the model in terms of latent utilities U; (or U;). We illustrate the concept
for cross sectional binary data, i.e. y; takes only the values 0 or 1. Conditional on
the covariates and the parameters, y; follows a Bernoulli distribution y; ~ B(1, p;)
with conditional mean p; = ®(1n;) where ® is the cumulative distribution function
of a standard normal distribution. Introducing latent variables U; ~ N(7;,1) we
define y; = 1 if U; > 0 and y; = 0 if U; < 0. It is easy to show that this corresponds
to a binary probit model for the y;’s. The posterior of the model augmented by the
latent variables depends now on the additional parameters U;. Thus, an additional
sampling step for updating the U,’s is required. Fortunately, sampling the U;’s is
relatively easy and fast because the full conditionals are truncated normal distri-
butions. More specifically, U;|- ~ N(n;,1) truncated at the left by 0 if y; = 1 and
truncated at the right if y; = 0. Efficient algorithms for drawing random numbers
from a truncated normal distribution can be found in Geweke (1991). The advantage
of defining a probit model through the latent variables U; is that the full condition-
als for 3;, b and vy are Gaussian with only slightly modified precison matrices and
means in (11) and (12). Since the variance of U; is one, we have to fix o2 in the
Gibbs sampler and replace it in (11) and (12) by 1. Additionally, y must be replaced
by the current vector of latent variables U. Thus the sampling scheme for Gaussian
responses can used with slight modifications including an additional sampling step
for updating the U;’s. More details on Gibbs sampling for binary probit models can
be found in Albert and Chib (1993).

The concept of MCMC sampling through data augemtation as illustrated for bi-
nary data can be extended to multicategorical probit models. Detailed updating
schemes for the cumulative threshold model and the multinomial probit model with
independent errors can be found in Fahrmeir and Lang (2001b). For these models
an implementation of Bayesian P-splines is already available in BayesX. A further
extension to multinomial probit models with correlated errors can be found in Chen
and Dey (2000). Their approach is, however, restricted to purely parametric pre-
dictors.

3.3 General distributions from an exponential family

For general distributions from an exponential family Fahrmeir and Lang (2001a)
propose an MH-algorithm for updating unknown regression parameters based on
conditional prior proposals. As an advantage this approach is distribution free in
the sense that for updating of parameters only the likelihood is required but no ap-
proximations of characteristics of the posterior (e.g. the mode). For one dimensional
P-splines conditional prior proposals work rather satisfying. For two dimensional
P-splines in some cases the mixing of Markov chains is relatively slow, thus making
rather long MCMC runs necessary.

In the following we focus on iteratively weighted least squares (IWLS) proposals
introduced by Gamerman (1997) in the context of generalized linear mixed models.
Similar proposals have been made by Hastie and Tibshirani (2000) and Rue (2000).
In generalized linear models parameter estimates are obtained by Fisher scoring or
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in other words IWLS (see Fahrmeir and Tutz, 2001). In order to simulate from the
posterior Gamerman suggests to combine IWLS and MH-updating of parameters.
Suppose we want to update the regression coefficients ; of the smooth function
f; with current value (7 of the chain. Then, according to IWLS, a new value o4
is proposed by drawing a random number from the multivariate Gaussian proposal
distribution (3, 37) with precision matrix and mean

¢ 1 - (g n
Py = XjW(B)X; + K, my = P XGW(6)(5 = 7).
J

Here, W(5) = diag(wy, ..., w,) is the usual weight matrix for INLS with weights
wt = b"(0;){g'(1;)}?>. The transformed observations §; are defined by 7; =
n; + (y; — 1) g’ (1) . For simplicity we assumed that the scale parameter ¢ is known.
Thus, we may use again the updating scheme for Gaussian responses with slight
modifications. Steps iii) and iv) remain unchanged, and step v) is completely omit-
ted. In steps i) and ii), however, the proposed new values are not accepted in any
case as for Gaussian responses but with an acceptance propability a. The accep-
tance probability is a ratio of the full conditional and the proposal density at the

current state (7 and the proposed state ﬁ;’ . More specifically, we obtain

EARL ﬁﬁ;))
p(B51-)a(B5, B5) )

In some situations, particulary if 3; is high dimensional, the acceptance probabilities
may be too small to guarantee satisfying mixing properties. Then the parameter
vector (3; must be divided into smaller blocks, see Fahrmeir and Lang (2001a) for
a possible blocking strategy. Random and fixed effects parameters b and - can be
updated in an analogous way.

o5, B7) = min (1,

4 Simulations

In this section we present a couple of simulation studies mainly to compare the pro-
posed methodology with related approaches in the literature. Section 4.1 compares
the Bayesian approach for P-splines with the frequentist version by Eilers and Marx
(1996). In Section 4.2 we compare our approach for estimating highly oscillating
functions with a variety of other recent approaches, particulary with Ruppert and
Carroll (2000). Finally, Section 4.3 compares some surface estimators where we
mainly refer to Smith and Kohn (1997) who compare their approach with the most
common surface estimators.

4.1 Comparison of the Bayesian and the classical approach

In order to compare our Bayesian approach with the frequentist version by Eilers
and Marx (1996), we considered the three functions fi(z) = 0.5z, fo(z) = 2*/3—1.5
and f3(z) = sin(x), i.e. a linear, a quadratic and a sinusoidal one. The values of
x were chosen on an equidistant grid of £ = 100 knots between -3 and 3. We used
the sample sizes n = 100, n = 500 and n = 1000 and simulated 250 replications
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for every model and sample size. For estimation we applied cubic P-splines with 20
and 40 knots. For Bayesian P-splines we used second order random walk penalties
and for the frequentist version the corresponding second order difference penalties.
For the frequentist versions of P-splines estimation was carried out with the GAM
object of S-Plus 4.0 and the P-spline function for GAM objects provided by Brian
Marx. The function is available at http://www.stat.lsu.edu/bmarx/. The smooth-
ing parameters were estimated by cross validation where the optimal smoothing
parameter was chosen on a geometrical grid of 30 knots between 10* and 10~%. The
performance of the estimators was measured by the empirical mean squared error
given by MSE(f) = 1/k =i, (f (1) — f(@:))?

The comparison is restricted to Gaussian responses (with o = 1). We also indended
to compare both approaches for binary probit models but we had too many problems
with S-plus. It was almost impossible to run simulations automatically because the
GAM routine of S-plus occassionally crashed for small smoothing parameters due
to numerical problems (approximately every 50th estimation). We also made the
strange experience that estimation required more and more computing time the
longer S-plus was running.

In general, the differences between the two approaches are relatively small. For
sample sizes of n = 500 and n = 1000 both estimators are more or less unbiased, i.e.
function estimates averaged over the 250 replications are close to the true values.
Also the obtained MSE’s are almost identical. We therefore focus primarily on
results for sample size n = 100.

Figure 1 displays boxplots of log(MSE) for the various estimators. Panel a) refers
to f1, panel b) to f, and panel ¢) to f;. Both estimators perform more or less
equally well with a slightly better performance of the frequentist versions for the
linear function f;. Our fully Bayesian approach performs slightly better for the
sinusoidal function f,. However, inspection of the individual estimates showes some
strange results. Approximately 3-5% of the frequentist estimates are quite unsmooth
because the cross validation score function has no global minimum or because a too
small smoothing parameter was found as the optimum. For the Bayesian version we
never observed these problems. As an example, compare Figure 1 d) which shows for
f3 the classical (dashed line) and the Bayesian estimate (solid line) for a particular
replication. For comparison the true function is additionally included. We should
stress that this is not the most severe example that we found. For sample sizes
n = 500 and n = 1000, however, the problem disappeares.

For Bayesian P-splines we also investigated the coverage of pointwise credible in-
tervals. In a Bayesian approach based on MCMC simulation techniques credible
intervals are estimated by computing the respective quantiles of the sampled func-
tion evaluations. For a nominal level of 80 % the average coverage varies between
80 and 86% for all models and sample sizes. This result holds also for binary probit
models for which the same simulation study was carried out. This implies that the
credible intervals obtained by the fully Bayesian approach are rather conservative.
Similar findings have been obtained in a simulation study on generalized additive
mixed models, see Lang and Fahrmeir (2001).
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Figure 1: Boxplots of log(MSE) for the various estimators. Panel a) refers to the
linear function f1, panel b) refers to the quadratic function fy and panel c) to the
sinusoidal function f3. Panel d) displays the classical (dashed line) and the Bayes
estimator (solid line) for fs for a particular replication where cross validation failed.
For comparison the true function is included.

4.2 Locally adaptive smoothing parameters

In order to compare our approach for estimating highly oscillating curves we mainly
refer to Ruppert and Carroll (2000) who propose P-splines based on a truncated
power series basis and quadratic penalties on the regression coefficients with locally
adaptive smoothing parameters. In their first simulation example they used the

function ( 0-53/5)
. (2w (1427
fa(2) :,/x(l—x)sm( P ) ,

whose spatial variability depends on the additional parameter j. They used j = 3
which corresponds to low spatial variability and j = 6 which corresponds to severe
spatial variability. We simulated 250 replications for both specifications and applied
cubic P-splines with a second order random walk penalty for estimation. We used
both 40 and 80 knots. Besides the estimator with a global variance we applied three
estimators with locally adaptive variance which differ in the degrees of freedom v of
the hierarchical t-formulation. We set v =1, » = 2 and v = 4.

In order to compare results we computed squared errors on a logy scale as Ruppert
and Carroll did. Figure 2 displays boxplots of log;o(MSE). Additionally, Figure 3
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shows, for the case of 40 knots, function estimates averaged over the 250 replications
(dashed lines) together with the true functions (solid lines). From Figures 2 and 3
we can draw the following conclusions:

e For j = 3, i.e. low spatial variability, the estimators with global and locally
adaptive variance perform more or less equally well. Hence, there is no loss of
statistical efficiency when a locally adaptive estimator is used but not needed.

e For 7 = 6, i.e. severe spatial variability, the estimators with locally adap-
tive variance clearly outperform the estimator with global variance. The best
results are obtained for » = 1. This is, however, not surprising because for
growing v the estimators approach more and more the estimator with global
variance.

e The difference between using 40 and 80 knots is more or less negligible.

Similar findings have been reported by Ruppert and Carroll. For j = 3, they
obtained values of approximately -1.5 for the median of logl0(MSE). Both their
global and local penalty estimator perform equally well in this situation. For j = 6,
their local penalty estimator has superior performance compared to their global
penalty estimator with a median value of approximately -1.25 for log,o(M SE). They
claim that their estimator performs slightly better than the Bayesian method of
Smith and Kohn (1996) and the stepwise selection method of Stone et al. (1997).
To our own surprise the Bayesian P-splines approach seems to outperform Ruppert
and Carrolls results by far. Even the estimators with a global variance perform
better than their local penalty approach. An explanation might be that the local
B-spline basis used in this paper is more suitable for the highly oscillating curve
under study than the truncated power series basis they used.

In their second simulation example Ruppert and Carroll used the function
fs(z) = sin(2(4x — 2)) + 2 exp(—16%(x — 0.5)?).

This function has also been considered by Luo and Wahba (1997), who compared
their h-splines approach with smoothing splines, SureShrink of Donoho and John-
stone (1995) and MARS of Friedman (1991). They all used the same value of 0 = 0.3
and sample size n = 256 and used equally spaced z’s on [0,1]. We simulated 250
replications from this model. For estimation we applied cubic P-splines with 40
knots with a global variance and with locally adaptive variance (v = 1). Both
Ruppert and Carroll (2000) and Luo and Wahba (1997) compared their estimators
by the median and the interquartile range of squared errors. The best results were
obtained with the local penalty approach by Ruppert and Carroll with a median
squared error of 0.0053. For the global penalty estimator they obtained a value of
0.0061 for the median squared error which is still smaller or at least equal to the
values reported by Luo and Wahba (1997) for the estimators they compared. Our
results for the median squared errors are comparable to Ruppert and Carroll. We
obtained a value of 0.0062 for P-splines with global variance and a value of 0.0052
for P-splines with locally adaptive variance. The interquartile range of our estima-
tors is, however, slightly smaller. We obtained values of 0.0027 for estimators with
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Figure 2: Boxplots of logio(MSE) for function f, with j =3 (panels a) and b)) and
with j =6 (panels ¢) and d)).

global variance and 0.0023 for estimators with locally adaptive variance. Ruppert
and Carroll reported values of 0.0029 for the global penalty estimator and 0.0035
for the local penalty estimator. Surprisingly, the interquartile range of their local
penalty estimator has a higher interquartile range than the global penalty estimator.

For both simulation examples we also computed the coverage of pointwise credible
intervals. Figure 4 compares the coverage for function f; (j = 6 only) and function
f5 for the estimators with global and locally adaptive variance (¥ = 1). In areas with
strong spatial variability of the functions, the coverage of the estimator with locally
adaptive variance is closer to the nominal level than of the estimator with global
variance. In areas with low spatial variability for both estimators the coverage is
close to the nominal level. This is another demonstration of the superiority of the
estimator with locally adaptive variance.

4.3 Surface fitting

In our last simulation study we compare our approach for surface fitting with re-
lated approaches in the literature. We mainly refer to Smith and Kohn (1997) who
compared their Bayesian subset selection-based procedure with a variety of other
approaches in the literature. In their simulation study they included MARS of
Friedman (1991), Clive Loader’s "locfit” (see Cleveland and Grosse, 1991), bivariate
cubic thin plate splines with a single smoothing parameter, tensor product cubic
smoothing splines with five smoothing parameters, Breiman and Friedman’s (1985)
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a) global, 40 knots, j=3 b) local, nu=1, 40 knots, j=3

c) global, 40 knots, j=6

Figure 3: Average estimates for function fy (dashed lines) with j = 3 (panels a) and
b)) and with j =6 (panels ¢) and d)). For comparison the true curves are added to
the plots (solid lines).

additive basis fitting routine and a parametric linear interaction model. For thin
plate splines and tensor product smoothing splines the smoothing parameters were
estimated by CGV as in Gu et al. (1989). They used the following three examples:

o fo(z1,72) = 1/5exp(—8z%) + 3/5exp(—8x3) where z; and x5 are distributed
independently normal with mean 0.5 and variance 0.1.

e fr(x1,29) = xqsin(4mxy) where zy and x5 are distributed independently uni-
form on [0, 1].

o fs(x1,x9) = x5 where 1 and x4 are bivariate normal with mean 0.5, variance
0.05 and correlation of 0.5.

Function fg represents a model with main effects only, and functions f; and fg
correspond to a model with interactions. The sample size was n = 300 observations
and o = 1/4range(f;). We simulated 250 replications from the three models.

For estimation we considered both a simple bivariate surface estimator without main
effects and a model with main effects and interactions. For the surface estimator we
applied cubic tensor product P-splines on a 12 by 12 knots grid and the smoothness
prior (7). For the main effects (if included) we used cubic P-splines with 20 knots
and a second order random walk penalty with global variance. Additionally, we
considered P-splines with locally adaptive variances, i.e the priors (7) and (4) were
replaced by their locally adaptive variants.
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a) global, 40 knots, j=6 b) local, nu=1, 40 knots, j=6
average coverage: 71.6% average coverage: 75%

c) global, 40 knots d) local, nu=1, 40 knots
average coverage: 80.7% average coverage: 82%

Figure 4: Coverage of pointwise 80 % credible intervals for function f, and j = 6
(panels a) and b)) and function fs (panels ¢) and d)). Left panel: Estimators with
global variance; right panel: Estimators with locally adaptive variance.

Figure 5 shows boxplots of log(MSE) for the various estimators. Panel a) refers to
function fg, panel b) to function f; and panel ¢) to function fs. For function fg
the best results were obtained by the estimators with main effects included which
is not surprising because the true function consists of main effects only. Moreover,
an inspection of single estimates shows that the estimated interaction effects are
more or less zero which makes sense, too. For the functions f; and fs the estimators
without main effects perform slightly better although the differences are small. In
all cases the estimators with global variance and locally adaptive variance perform
almost equally well. An exception is function f; which is the only function under
study with moderate spatial variability. Here the locally adaptive variants perform
slightly better. Compared to the results of Smith and Kohn (1997) our approach
is competitive. For function fg the estimators without main effects are among the
three best in Smith and Kohn’s study. The estimators with main effects included
perform equally well (if not slightly better) than their best estimator for fg which
is the cubic tensor product spline. For f; our estimators are comparable to the
cubic thin plate splines which is the third best estimator. For function fs Smith
and Kohn’s Bayesian subset selection-based procedure cleary outperforms the other
estimators in their study including the parametric linear fit. The performance of our
estimator is comparable to that of the other estimators which are relatively close.
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We also investigated the coverage of pointwise credible intervals of our estimators.
The average coverage of all estimators is within a range of 82 to 88% which confirms
the findings of the previous sections that the fully Bayesian approach yields rather
conservative credible intervals. An exception are the estimators with main effects
included for f,; where the average coverage is only 68 %.
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Figure 5: Bozxplots of log(MSE) for the various surface estimators.

5 Application to rents for flats

In this section, we demonstrate the practicability of our approach with a careful
analysis of rent data that have been collected to create a "rental guide” for flats in
Munich. An application with binary responses to unemployment data based on the
methodology of this paper can be found in Fahrmeir et al. (2001). There the focus is
on reemployment chances of unemployed workers given covariates like age, calendar
time, duration of unemployment and the district in which the unemployed live. An
analysis of treatment costs in hospitals can be found Lang et al. (2001). Both
applications show the practicability of our approach even for very large datasets.

According to the German rental law, owners of apartments or flats can base an
increase in the amount that they charge for rent on ”average rents” for flats com-
parable in type, size, equipment, quality and location in a community. To provide
information about these ”average rents”, most larger cities publish ”rental guides”,
which can be based on regression analysis with rent as the dependent variable. We

20



use data from the City of Munich, collected in 1998 by Infratest Sozialforschung for
a random sample of more than 3000 flats. As response variable we choose

R monthly net rent per square meter in German Marks, that is the monthly rent
minus calculated or estimated utility costs.

Covariates characterizing the flat were constructed from almost 200 variables out
of a questionnaire answered by tenants of flats. In our reanalysis we use the highly
significant metrical covariates "floor space” (F') and "year of construction” (Y)
and a vector v of 25 binary covariates characterizing the quality of the flat, e.g.
the kitchen and bath equipment, the quality of the heating or the quality of the
warm water system. Another important covariate is the location L of the flat in
Munich. For the official Munich ’99 rental guide, location in the city was assessed
in three categories (average, good, top) by experts. In our reanalysis we focus on
a more data driven assessment of the quality of location. More specifically, we
include additional spatially correlated random effects 6" into our model that are
specific for subquarters (”Bezirksviertel”) in Munich to account for extra spatial
variation. Additionally, unstructured (uncorrelated) random effects by with L
as the grouping variable are incorporated in order to capture local extra variation.
So we choose the Gaussian additive mixed model with predictor

n =" —+ fi (F) + fZ(Y) + f12(F, Y) + b%orr + b%ncorr + U”y.

The main effects f; and fy of floor space and year of construction are modelled by
cubic P-splines with 20 knots and a second order random walk penalty. For the
interaction we choose a two dimensional P-spline on a grid of 12 by 12 knots and
with the smoothness prior (7). We have also experimented with P-splines and locally
adaptive variances but the differences were negligible. For the spatially correlated
random effects b9°"" we choose a Markov random field prior with adjacency weights
(see Fahrmeir and Lang, 2000a, b for details), and for the uncorrelated random
effects the prior (9).

Figure 6 shows the effects of floor space and year of construction. Panels a) and
b) show the posterior means together with 80 % pointwise credible intervals of the
main effects. Panel ¢) displays the posterior mean of the interaction term. Figure
6 a) shows the strong influence of floor space on rents: small flats and apartments
are considerably more expensive than larger ones, but this nonlinear effect becomes
smaller with increasing floor space. The effect of year of construction on rents in
Figure b) is more or less constant untill the ’50s. It then distinctly increases untill
about 1990, and it stabilizes on a high level in the ’90s. Although the interaction
effect in Figure c) is not overwhelmingly large, we clearly see that old flats built
before the second world war with a floor space below 45 square meters are cheaper
than the average. On the other hand, modern flats built after 1972 (the year of the
Olympic summer games) are somewhat more expensive than the average.

Figure 7 a) shows a map of Munich, displaying subquarters and the posterior mean
estimates of the sum of the spatially correlated and uncorrelated random effects.
Note that the correlated effects clearly exceed the uncorrelated effects with a range
approximately between -1.7 to 1.7. The coefficients of the uncorrelated effects have
only a range between -0.5 and 0.5. The inclusion of spatially correlated and uncor-
related random effects is a good opportunity to investigate empirically the validity
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of the experts assessment of the quality of location. In fact, we could reestimate
the model with the experts assessment included in form of two additional dummy
variables for good and top locations. If the experts assessment is valid the extra
spatial variation measured by the random effects should considerably decrease. Fig-
ure 7 b) displays the sum of both random effects when the experts assessment is
included. The effects of floor space, year of construction and the fixed effects are
virtually unchanged and therefore omitted. We observe that the remaining variation
in Figure b) is smoother although there is considerable spatial variation remaining.
The reason for the small decrease is that the variation of the uncorrelated effects re-
mained more or less stable. The variation of the correlated random effects, however,
decreased considerably.

6 Conclusions

In this paper we propose a fully Bayesian approach for P-splines by replacing the
difference penalties in the classical approach by random walk priors. The approach
is extended to surface fitting using the tensor product of one dimensional B-splines
and spatial generalizations of random walk priors. Highly oscillating curves can be
estimated by replacing Gaussian priors by a hierarchical t-formulation. Although
the simulation studies and the data example in this paper covers primarily the case
of Gaussian responses our approach is already implemented and works well for non-
Gaussian responses including models for multicategorical data. An application to
unemployment data with binary responses can be found in Fahrmeir et al. (2001)
showing the practicability of Bayesian P-splines even for very large datasets. The
comparison of Bayesian P-splines with the classical approach in Section 4.1 shows
that our approach is (at least) competitive. In the classical approach the choice
of the smoothing parameters via cross validation is sometimes difficult whereas the
simulatenous estimation of functions and smoothing parameters in the Bayesian
approach works quite well in all situations. We consider this as a distinct advan-
tage of our approach particularly in situations with a moderate or large number of
smoothing parameters as in our data example on rents for flats. As has been shown
in Section 4.2, our approach for estimating highly oscillating curves outperforms
many of the recent approaches in the literature. Surface estimating via P-splines
is competitive with other smoothers, although there are some open problems re-
maining. Particularly, estimation of surfaces via MCMC is relatively slow because
the bandwidth of the posterior precisison matrix is much larger than for univariate
smoothers. A simple remedy might be to update the parameters row- or columnwise
rather than all parameters in one step. Then, the bandwidth of precision matrices of
full conditionals reduces considerably. Another problem with surface fitting is that
the values of the covariates might be irregularly distributed. In such situations the
performance of our estimator might be improved by allowing the knot pairs to adapt
to the data as has been suggested by Smith and Kohn (1997). We will investigate
this in future research.
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Figure 6: Effect of floor space and year of construction. Panel a) and b) show the
main effects (posterior means and 80 % pointwise credible intervals). The intercation
is shown in panel c¢) (posterior mean only).

23



a) Experts assessment excluded

7
2

1"900'4"4 2,

29 ALy

DN LT A4
RSt S Ao/

IS AR L

A
Nizar
e (’/4
Uf’ﬁ
4

D ER\

Ilﬁﬁ' A
- i‘]”n/("“? ~

747/

Al

Figure 7: Posterior means of the sum of spatially correlated and uncorrelated random
effects. Panel a) refers to the model where the experts assessment of location is
exluded, panel b) refers to the model where it is included.
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