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Abstract

Generalized linear models (GLMs) and semiparametric extensions provide
a flexible framework for analyzing the claims process in non-life insurance.
Currently, most applications are still based on traditional GLMs, where co-
variate effects are modelled in form of a linear predictor. However, these
models may already be too restrictive if nonlinear effects of metrical covari-
ates are present. Moreover, although data are often collected within longer
time periods and come from different geographical regions, effects of space
and time are usually totally neglected. We provide a Bayesian semiparamet-
ric approach, which allows to simultaneously incorporate effects of space, time
and further covariates within a joint model. The method is applied to analyze
costs of hospital treatment and accommodation for a large data set from a
German health insurance company.

Keywords: MCMC, semiparametric Bayesian inference, smoothness pri-
ors,treatment costs

1 Introduction

Actuarial applications of generalized linear models (GLMs) have gained much in-
terest in recent years, see Renshaw (1994), and Haberman and Renshaw (1998) for
a survey. In non-life insurance, they are used as a modelling tool for analyzing
claim frequency and claim severity in the presence of covariates. Knowledge about
these two components of the claims process is the basis for determining risk premi-
ums. A characteristic feature of many applications is that they rely on traditional
GLMs or quasi-likelihood extensions, assuming that the influence of covariates can
be modelled in the usual way by a parametric linear predictor. However, as in our
application to health insurance, the data provide detailed individual information
for types of covariates where influence on claims is difficult or almost impossible to
assess with parametric models. Firstly, the effect of metrical covariates, such as age
of the policy holder, is often of unknown nonlinear form. Generalized additive mod-
els (GAMs) with a semiparametric additive predictor provide a flexible framework
for statistical modelling in this case. Secondly, the data also include information
on the calendar time of claims, and on the district where the policy holder lives.
Neglecting these effects in modelling the claims process will lead to biased fits, with
corresponding consequences for risk premium calculation, see Brockman and Wright
(1992) for a discussion in the context of calendar time.



Therefore, statistical modelling tools are required which make thorough space-time
analyses of insurance regression data possible and allow to explore temporal and
spatial effects simultaneously with the impact of other covariates. We present a
semiparametric Bayesian approach for a unified treatment of such effects within
a joint model, developed in the context of generalized additive mixed models in
Fahrmeir and Lang (2001a, b) and Lang and Brezger (2001). Our application in-
vestigates costs caused by treatment and accommodation in hospitals. However,
the basic concepts are transferable to other costs for medical treatment, to claim
frequencies and to other non-life insurances.

2 Semiparametric Bayesian inference for
space-time regression data

2.1 Data

The space-time regression data from health insurance, which will be analyzed in
the next section, consist of individual observations (v, Ti, Wi, Sit), @ = 1,...,n,
t =1,...,T, where y; are costs for hospital treatment or for accommodation of
policy holder 7 in month ¢, x; is the age at calendar time ¢, w; is a vector of
categorical covariates such as gender, occupation group, type of disease, and s;; is
the district in West Germany where the insured lives in month ¢. In general, other
types of response variables y, in particular claim frequency, might be of primary
interest, and = could be a vector of several metrical covariates.

2.2 Observation model

Since costs y;; are nonnegative, several distributional assumptions can be reasonable,
see for example Mack (1998). We do not take into account zero-costs, so a Gamma
or log-normal distribution is a common choice. While the former is often preferred
in car insurance, a log-normal distribution gives a better fit to the health insurance
data at hand. Therefore, we consider log-costs z;; = log(y;;), and choose a Gaussian
additive model z;; = n; + €;, with i.i.d. errors ¢;; ~ N(0,0?) , and predictor

Nit = f(xzt) + ftime(t) + fspat(sit) + wyljt’% 1= 17 ceey t e ﬂa (]-)

where T; C {1,...,T} are the months with nonzero-costs y;; > 0. The unknown
function f(z) is the nonlinear effect of age x, fime(t) represents the calendar time
trend, and fo,q(s) is the effect of district s € {1,...,S} in West Germany. We
further split up this spatial effect into the sum

fspat(s) = fstruct(s) + fu’nstr(s)

of structured (spatially correlated) and unstructured (uncorrelated) effects. A ra-
tional for this decomposition is that a spatial effect is usually a surrogate of many
underlying unobserved influential factors. Some of them may obey a strong spatial
structure, others may be present only locally.



The last term in (1) is the usual linear part of the predictor, with fixed effects.
To ensure identifiability, an intercept is always included into w;, and the unknown
functions are centered about zero.

Retransformation of the Gaussian additive model (1) for log-costs z;; gives a lognor-
mal model for costs y;; with (conditional) expectation

E(yit|nit, 02) = i = exp(ny + 02/2); (2)

i.e., we get a multiplicative model for expected costs.

Model (2) is closely related to a Gamma model for y; with predictor (1) and an
exponential link function. The models are special cases of generalized additive mixed
models described in Fahrmeir and Lang (2001a).

2.3 Priors for functions and parameters

To formulate priors in compact and unified notation, we express the predictor vector
n = (i) in matrix notation by

n= f + ftime + fstruct + funstr + W’Y, (3)

where f, f(time) etc. are the vectors of corresponding function values and W = (w;;)
is the design matrix for fixed effects. It turns out that each function vector can
always be expressed as the product of a design matrix and a (high-dimensional)
parameter vector. Using f = X/ as a generic notation for functions, (3) becomes

77:..._|_XB_|_..._|_W7'

For fixed effects v, we generally choose a diffuse prior, but a (weakly) informative
normal prior is also possible. Constructions of the design matrix X and priors for
B depend upon the type of the function and on the degree of smoothness. For
metrical covariates, such as age and calendar time, random walk models, P-Splines
and smoothing splines are suitable choices, structured spatial effects are modelled
through Markov random field priors, and unstructured effects through i.i.d. normal
random effects. In any case, priors for the vectors [ have the same general Gaussian
form

p(Bl7) o exp(—%ﬂ'l(ﬁ). (4)

The penalty matrix K penalizes roughness of the function. Its structure depends
on the type of covariate and on smoothness of the function, see Fahrmeir and Lang
(2001a, b) and Lang and Brezger (2001) for details. The hyperparameter 72 acts as
a smoothing parameter and controls the degree of smoothness. A highly dispersed
inverse Gamma [G/(a,b) prior is a convenenient choice as a hyperprior. The same
choice is made for the variance o2 of the errors €;. As usual, observations and priors
are assumed to be conditionally independent.

2.4 MCMC inference

Estimation of functions and parameters is based on the posterior, which is defined
by the observation model and the priors. Since the posterior is intractable ana-
lytically or numerically, inference is carried out via MCMC simulation. For the



Gaussian additive model (1) for log-costs, full conditionals are (high-dimensional)
Gaussian or inverse Gamma distributions, so that Gibbs sampling is possible. The
full conditional for a typical g is Gaussian with precision matrix P and mean m

1, 1 a1, _
Pz;XX—I—ﬁK, m =P ;X(y—n),

where 7 is the part of the predictor assossiated with the remaining effects. Efficient
sampling can be achieved by Cholesky decompositions for band matrices (Rue, 2000)
and is implemented in BayesX (Lang and Brezger, 2000). For non-Gaussian obser-
vation models, e.g., a Gamma model, additional MH steps are necessary.

3 Application to Health Insurance Data

The approach has been applied to a large space-time regression data set from a
private health insurance company in Kragler (2000), with separate analyses for var-
ious types of health services. The data set contains individual observations for a
sample of 13.000 males (with about 160.000 observations) and 1.200 females (with
about 130.000 observations) in West Germany for the years 1991-1997. All analyses
were carried out separately for males and females. Analyses for costs were based on
Gamma or log-normal models, while frequencies of doctoral visits or of treatments
in hospitals were modelled by logit regressions.

Supported by evidence from diagnostic model checks, we use Gaussian additive mod-
els (1) for the following space-time analyses of costs for health services in hospitals.
In contrast to costs for doctoral visits, it turns out that the categorical covariates
"occupation group” and "type of disease” are non-significant. Furthermore, sep-
arate analyses for the 3 types of health services (accommodation, treatment with
operation, treatment without operation) are preferred to a joint model with type of
service as a categorical covariate. Therefore, our analysis for the 6 subgroups, deter-
mined by the combinations of gender and type of service, uses a Gaussian additive
model (1) for log-costs, where w;; contains only an intercept. The effect of age and
the time trend are modelled by Bayesian P-splines (Lang and Brezger 2001), for the
spatial effect a Markov random field prior with adjacency weights is used (Fahrmeir
and Lang 2001b).

The effect of age is displayed in Figure 1 for each of the 6 groups. It differs be-
tween groups, showing that separate analyses are necessary to avoid confounding.
For females, the effect on costs for accommodation increases monotonically over a
wide range of age values. In contrast, the effects for treatment with or without
operation have a different shape. Starting from a higher level in younger years,
they decrease monotonically until about 45 years of age, where the effects starts to
increase. A possible explanation might be the higher proportion of younger females
staying in hospitals for births of their children: Mostly, they stay only for a few days
with comparably low costs for accommodation, but with relatively higher costs for
medical treatment. Figure 2 shows the effects of calendar time. While the effect
on accommodation costs is more or less continuously increasing over the years, a
corresponding increase of the effect on treatment costs until about 1995 is followed
by an enormous decline. The reason for this decline might be changes in regulations
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or laws for health insurance or health care. More discussion with experts is needed
for a convincing explanation of this effect. Anyway, it becomes obvious that risk
premium calculation based on data from this period has serious problems, when the
calendar time trend is simply neglected. This is one of the main reasons, why we
believe that careful space-time analyses of insurance data are needed, at least for
monitoring purposes. The argument is confirmed by the results for regional effects.
They are visualized in Figure 3 by ”significance maps”, constructed as follows: For
each region 10% and 90% posterior quantiles of its estimated effect are calculated
from the posterior. If the 10% quantile is positive, the regional effect is significantly
positive; it is significantly negative if the 90% quantile is negative, and it is non-
significant otherwise. Again, the maps reveal distinct patterns which motivate closer
inspection by experts.

4 Conclusion

Our application demonstrates that a thorough space-time analysis of insurance data
can reveal important features of the claims process which are not easily detected by
traditional methods. Although we focussed on claim severity in health insurance,
the concepts can also be used for modelling claim frequencies and for analyzing other
non-life insurance data. First experience with modelling claim frequencies in health
insurance shows that a direct transfer of models common in car insurance is at least
problematic. We will investigate this in detail in future work.
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Figure 1: Estimated effect of age. Shown is the posterior mean within 80 % credible
TEGLON.S.
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Figure 2: Estimated time trend. Shown is the posterior mean within 80 % credible
TeqIons.
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Figure 3: Posterior probabilities of the structured spatial effect.



