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Abstract

This paper deals with the application of the weighted mixed regression

estimation of the coe�cients in a linear model when some values of some of

the regressors are missing� Taking the weight factor as an arbitrary scalar�

the performance of weighted mixed regression estimator in relation to the

conventional least squares and mixed regression estimators is analyzed

and the choice of scalar is discussed� Then taking the weight factor as

a speci�c matrix� a family of estimators is proposed and its performance

properties under the criteria of bias vector and mean squared error matrix

are analyzed�

� Introduction

In many practical applications� the available data for regression analysis is found
to contain some missing values� Consequently� the standard statistical proce�
dures for deducing the inferences pertaining to the parameters of the model
cannot be applied� see� e� g� Little and Rubin ���	
� for an interesting account�
Now there are two alternatives� One is to follow the amputation procedure
which involves discarding the incomplete observations and using the complete
observations only� Contending that the deleted observations may contain some
valuable information� the other alternative is to adopt some imputation proce�
dure which consists of �nding substitutes for the missing values and employing
the thus obtained data set� Both the alternatives have their own limitations
and quali�cations� and it is generally hard to achieve uniform superiority of
amputation over imputation or vice�versa�

When some values of some of the regressors in a linear regression model are
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missing� there are several procedures for �nding the imputed values of miss�
ing observations
 see� e� g� Little ������� Little and Rubin ���	
� and Rao and
Toutenburg ������� Employing the imputed values to �ll up the missing values�
Toutenburg� Heumann� Fieger and Park ������ have considered the estimation
of regression coe�cients under a mixed regression framework� The conventional
mixed regression estimator for the coe�cient vector is presented and its superi�
ority over the least squares estimator which ignores the incomplete observations
is discussed under several criteria based on the mean squared error matrix� They
have also considered the application of weighted mixed regression estimation in
which possibly unequal weights are given to the complete and repaired parts of
the data set with the help of a scalar� Instead of a scalar the choice of which is
arbitrary and is a matter of practitioner�s preference� we propose the assignment
of weights with the help of speci�c matrices� Based on such a proposition� a
class of estimators is presented and its e�ciency properties are analyzed�

The plan of this article is as follows� In Section �� we describe the model and
present the conventional estimators for the vector of regression coe�cients along
with their e�ciency properties� In Section �� we present the weighted mixed
regression estimator considered by Toutenburg et al� ������ and discuss its per�
formance properties� An alternative estimator arising from the application of
weighted mixed regression estimation using a di�erent weighting procedure is
then considered in Section � and a family of estimators termed as t�class is
proposed� The properties are also discussed using the large sample asymptotic
theory� Some concluding remarks are �nally o�ered in Section �� Lastly� the
Appendix gives the derivation of results stated in the Theorem�

� Model Speci�cation and the Conventional Es�

timators

Let us postulate the following linear regression model with n complete observa�
tions�

yc � Xc� � �c �����

where yc denotes a n � � vector of n observations on the study variable� Xc is
a n �K full column rank matrix of n observations on the K regressors of the
model� � is a K � � vector of the coe�cients associated with them and �c is a
n� � vector of disturbances�

Further� we assume the availability of m incomplete observations in which some
values of some of the regressors are missing� Thus� if y� denotes the m � �
vector of m observations on the study variable� X� is the m �K matrix with
not necessarily of full column rank of m observations on the K regressors such
that every row of it has at least one missing value and �� denotes the m � �
vector of disturbances� we have

y� � X�� � �� � �����

It is assumed that the elements of �c and �� are independently and identically
distributed with mean � and �nite but unknown variance ���
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When the incomplete observations are totally dropped from the data set� the
application of least squares procedures to ����� gives the following estimator of
��

bc � �X � c�Xc�
��X �

cyc �����

which is unbiased with variance covariance matrix as

V �bc� � E�bc � ���bc � ��� �����

� ���X �

cXc�
��

� ��Sc �say� �

Alternatively� one may employ some imputation procedure for completing the
data set
 see� e� g�� Little ������� Little and Rubin ���	
� and Rao and Touten�
burg ������ for an interesting account� Following some imputation procedures
and inserting the imputed values in place of the missing values in X�� suppose
that we obtain the matrix XR� Thus we can write ����� as follows�

y� � XR� � v� 
 v� � ��� � �Z�� �����

where

Z �
�

�
�X� �XR� � �����

Combining ����� and ����� to form the mixed regression framework� the appli�
cation of least squares provides the following estimator�

bR � �X �

cXc �X �

RXR����X �

cyc �X �

RY�� ���
�

which is generally biased with bias vector

B�bR� � E�bR � �� ���	�

� ��X �

cXc �X �

RXR���X �

RZ�

and mean squared error matrix as

MSE�bR� � E�bR � ���bR � ��� �����

� ���S � SX �

RZ��
�Z �XRS�

where

S � �X �

CXc �X �

RXR��� � ������

Toutenburg et al� ������ have compared the estimators bc and bR under the
criteria of mean squared error matrix� total mean squared error �trace of mean
squared error matrix� and predictive mean squared error �trace of X �

cXc times
the mean squared error matrix�� and have deduced conditions for the superiority
of bR over bc� For instance� a necessary and su�cient condition for the variance
covariance matrix of bc to exceed the mean squared error matrix of bR by a
non�negative de�nite matrix is

��Z ��I �XRScX
�

R���Z� � � � ������

A procedure for testing this condition is also outlined by them�
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� The Weighted Mixed Regression Estimator

Toutenburg et al� ������ have considered the minimization of the quantity

�yc �Xc����yc �Xc�� � ��y� �XR����y� �XR�� �����

with respect to the elements of � and have found the following weighted mixed
regression estimator of ��

b� � �X �

cXc � �X �

RXR����X �

cyc � �X �

Ry�� �����

where � is a positive scalar not exceeding � and can be regarded as re�ecting
the weight being assigned to the repaired part of the data set in relation to the
complete observations�

Viewing ����� as a family of estimators characterized by the scalar �� it is inter�
esting to note that b� reduces to bc for � � � and to bR for � � ��

Assuming � to be nonstochastic� it is easy to see that the bias vector of b� is
given by

B�b�� � E�b���� �����

� ���X �

cXc � �X �

RXR���X �

RZ�

while its mean squared error matrix is

MSE�b�� � E�b�����b����� �����

� ��S� � ���S�X
�

R���� ��I � �Z���Z ��XRS�

where

S� � �X �

cXc � �X �

RXR��� � �����

These expressions are presented by Toutenburg et al� ������ but no comparison
with the corresponding expressions for bc and bR is reported� Let us �ll up this
gap�

Comparing bc� bR and b�� we observe that bc is an unbiased estimator of � while
bR and b� are generally biased�

For the comparison of bias� we take the criterion as the length of the bias vector
wich may furnish an idea about magnitude of bias� Under this criterion� it is
seen from ���	� and ����� that b� has smaller length of bias vector in comparison
to bR when

����Z �XRS
�
�X

�

RZ�

��Z �XRS�XRZ�
� � � �����

As the matrix ��X �

cXc � �X �

RXR� � ��X �

cXc � X �

RXR�� is positive de�nite for
� � � � �� the matrix

��X �

cXc �X �

RXR��� � ��X �

cXc � �X �

RXR���� � S � �S�

�



is also positive de�nite� Using it� we see that the condition ����� always holds
true� Thus the weighted mixed regression estimator has smaller length of bias
vector in comparison to the conventional mixed regression estimator�

If we write

G � �I � �XRScX
�

R��� ���
�

and use the identity

S� � �X �

cXc � �X �

RXR��� � Sc � �ScX
�

RGXRSc ���	�

in ������ we get

MSE�b�� � ��Sc � ���ScX
�

RG�G�� � ��� ��I � �Z���Z ��GXRSc � �����

Comparing it with ������ it is observed that th estimator b� is superior to bc
according to the criterion of mean squared error matrix when the matrix ex�
pression

G�� � ��� ��I � �Z���Z �

� ��� ��I � �XRScX
�

R � �Z���Z �

is non�negative de�nite for which a necessary and su�cient condition is

��Z ���
�� �

�
�I �XRScX

�

R���Z� � � � ������

As � � � � �� a comparison of ������ with the condition ������ reveals that the
weighted mixed regression estimator b� dominates the unbiased estimator bc
over a relatively wider range of situations when compared with the dominance
of the conventional mixed regression estimator bR over bc�

Finally� let us compare the two biased estimators bR and b��

Writing

D � �I � ��� ��XRS�X
�

R��� ������

we can express

�X �

cXc �X �

RXR��� � �S��� � ��� ��X �

RXR��� ������

� S� � ��� ��S�X
�

RDXRS� �

Substituting it in ������ we get

MSE�bR� � ��S� � ��S�X
�

RD���� ��D�� � Z���Z ��DXRS� � ������

Comparing it with ������ we observe that

MSE�b���MSE�bR� � ��S�X
�

R�A�DZ���Z �D�XRS� ������

�



where

A � ��� ���D � �I� � ��Z���Z � � ������

Thus the mean squared error matrix of b� exceeds the mean squared error matrix
of bR by a non�negative de�nite matrix when �A�DZ���Z �D� is a non�negative
de�nite matrix for which a necessary and su�cient condition is

��Z �DA��DZ� � � � ������

This condition is satis�ed so long as

��Z �D�D � �I���DZ� � ��� ��

or

��Z ��I � ��� ���XRS�X
�

R � ���� ��XRS�X
�

RXRS�X
�

R���Z� � � � ����
�

On the other hand� for the dominance of b� over bR� consider the di�erence

MSE�bR��MSE�b�� � ��S�X
�

R�DZ���ZD �A�XRS� � ����	�

As the matrix A is positive de�nite� the matrix expression inside the brackets
on the right hand side of ����	� can never be non�negative de�nite except in the
trivial case m � �� In other words� the weighted mixed regression estimator b�
does not dominate the conventional mixed regression estimator bR with respect
to the criterion of mean squared error matrix so long as the number of incomplete
observations is more than one�

Lastly� let us consider he optimal choice of the scalar �� It is obvious from �����
that non non�zero value of � can be found for which the estimator b� is unbiased
or approximately unbiased� Similarly� it is seen from ����� that we cannot choose
a value of � for which the expression of the mean squared error matrix attains
its minimum� Even when we attempt to minimize the total mean squared error�
i� e�� the trace of the mean squared error matrix� the optimal choice of � is
provided by the solution of equation

tr�X �

cXc � ��X �

RXR��X �

cXc � �X �

RXR��� ������

�����Z �XR�X �

cXc � �X �

RXR���X �

RZ� � � �

As this is a typically nonlinear equation� it is di�cult to deduce a neat expression
for the solution except in the particular case of m � �
 see Toutenburg et al�
������ Section ����� Pursuing the case of m � �� they have proposed to replace
�X� � XR�� and �� in the optimum value of � by their unbiased estimators
and have reported some simulation results�

� An Alternative Weighted Mixed Regression

Estimator

Considering the model equations ����� und ������ we observe that

�E��c�
�

c��
�� �

�

��
I �����

�



�E�v�v
�

�
���� �

�

��
�I � Z���Z ���� �����

�
�

��
�I �

�

�� ��Z �Z�
Z���Z ��

�
�

��
� �say� �

Instead of the weighted sum ������ let us take the criterion function as the
following weighted sum

�yc �Xc����E��c�
�

c��
���yc �Xc�� � �y� �XR����E�v�v

�

�
�����y� �XR��

or equivalently

�yc �Xc����yc �Xc�� � �y� �XR�����y� �XR�� � �����

Minimizing it with respect to the elements of �� we obtain the following esti�
mator of ��

�� � �X �

cXc �X �

R�XR����X �

cyc �X �

R�y�� � �����

Using the identity

�X �

cXc �X �

R�XR���

� �X �

cXc �X �

RXR �
�

� � ��Z �Z�
X �

RZ��
�Z �XR���

� �X �

cXc �X �

RXR���

��� � ��Z �Z� � ��Z �XR�X �

cXc �X �

RXR���X �

RZ����

��X �

cXc �X �

RXR���X �

RZ��
�Z �XR�X �

cXc �X �

RXR���

we can express

�� � bR� �����

��Z ��y� �XRbR�

� � ��Z ��I �XR�X �

cXc �X �

RXR���X �

R�Z�
�X �

cXXc �X �

RXR���X �

RZ� �

As this estimator involves �� and �X��XR�� which are unknown� we propose
to replace them by their unbiased estimators s�c and y� �XRbc with

s�c � �
�

n�K
��yc �Xcbc�

��yc �Xcbc� � �����

Such a proposition leads to the following feasible version of ���

��F � bR � h�X �

cXc �X �

RXR���X �

R�y� �XRbc� ���
�

where

h �
�y� �XRbc�

��y� �XRbR�

s�c � �y� �XRbc���I �XR�X �

cXc �X �

RXR���X �

R��y� �XRbc�
� ���	�






Looking at the form of the feasible estimator ���
�� we propose the following
t�class of estimators for ��

��t � bR � th�X �

cXc �X �

RXR���X �

R�y� �XRbc� �����

where t is any non�negative scalar characterizing the etimator�

Observing that

X �

R�y� �XRbc� � �X �

cyc �X �

Ry��� �X �

cXc �X �

RXR�bc

we can express

��t � thbc � ��� th�bR � ������

Thus ��t is a convex linear combination of the conventional least squares and
mixed regression estimators�

The exact expressions for the bias vector and the mean squared error matrix of
��t cannot be derived unless we specify the distribution of disturbances� Even
when we make a simplifying assumption like normal distribution� it can be well
appreciated that the exact expressions will have su�ciently intricate form and
will not permit us to draw any meaningful and clear inference� We therefore
consider their large sample approximations without assuming any speci�c dis�
tribution for the disturbances in the model�

For the application of the large sample asymptotic theory� we assume that the
regressors are asymptotically cooperative so that the limiting forms of the ma�
trices n��X �

cXc�m
��X �

�
X��m��X �

RXR and m��X �

RX� as m and n grow large
are �nite� Further� it is assumed that the limiting form of n��X �

cXc is also
nonsingular�

Let us write

	 �
�

m
��Z ��I �XRSX

�

R�Z�

������


 � �� � 	����
m� �

m
� 	�

The following results are derived in Appendix�

THEOREM� Assuming the characterizing scalar t to be nonstochastic� the large
sample asymptotic approximations for the bias vector and the mean squared
error matrix of the t�class estimators of � to order O�n��� are given by

B� ��t� � E� ��t � �� ������

� ���� 
t�SX �

RZ�

MSE� ��t� � E� ��t � ��� ��t � ��� ������

� ���t�Sc � ��� t��S�

������ t��� � ��� �
�t�SX �

RZ��
�Z �XRS �

	



��� Comparison of Bias Vectors

It is clearly seen from ���	�� ����� and ������ that all the three estimators bR�

b� and ��t are generally biased� However� ��t becomes unbiased to order O�n����
e� g�� approximately unbiased if we choose t � ���
� which is always larger than
one as 
 lies between � and � by virtue of its speci�cation�

For studying the magnitude of bias� let us take the length of bias vector as the
measure� With respect to such a measure� we observe from ���	� and ������ that
��t is superior to bR when

� � t �
�



� ������

TZhe reverse is true� i� e�� ��t fails to beat bR when t exceeds ���
��

Similarly� it is seen from ����� and ������ that ��t is better than b� when

��Z �XRS
�
�X

�

RZ�

��Z �XRSX �

RZ�
� �

�� 
t

�
�� � ������

As �S� � S� is a non�negative de�nite matrix� the condition ������ is satis�ed
so long as

�
�� 
t

�
�� � �

or

�
�� �



� � t � �

� � �



� � ������

The opposite is true� i� e�� ��t is inferior to b� as long as

t �
�



����
�

where use has been made of the non�negative de�niteness of the matrix �S �
�S���

As � is assumed to lie between � and �� it is observed from ������ and ������
that the t�class estimators have smaller length of bias vector� to the given order
of approximation� in comparison to the estimators bR and b� provided that the
characterizing scalar t is chosen according to the constraint �������

��� Comparison of Mean Squared Matrices

Next� let us compare the estimators with respect to the criterion of mean squared
error matrix�

�



First comparing ��t with the unbiased estimator bc� we observe from ����� and
������ that

V �bc��MSE� ��t� � ����� t�� �

��Sc � S�� ���
�
t

� � t
�SX �

RZ��
�Z �XRS� ����	�

� SX �

R�cXRS

where

�c � ��� t����I �XRScX
�

R�� ���
�
t

� � t
�Z���Z �� � ������

Clearly� the matrix �c is non�negative de�nite implying the superiority of ��t
over bc under mean squared error matrix if and only if

���
�
t

� � t
���Z ��I �XRScX

�

R�Z� � � ������

provided that the characterizing scalar t does not exceed one�

It is interesting to note that the condition ������ will always be true as long as


 � �
� � t

�t
� 
 � � t � � � ������

On the other hand� the unbiased estimator bc remains superior to ��t when t is
greater than one and either of the following two conditions is satis�ed�


 � �
� � t

�t
� ������

���
�
t

� � t
���Z ��I �XRScX

�

R�Z� � � � ������

Next� from ����� and ������� we have

MSE�bR��MSE� ��t� � ���t�SX �

R�RXRS ������

where

�R � �I �XRScX
�

R� � �� � �
�
�� t

t
��Z���Z � � ������

We thus see� that ��tdoes not dominate bR for m � �� On the other hand� bR
dominates ��t as long as t does not exceed one� For t exceeding one� the necessary
and su�cient condition is

��
�
t� �

t
�� ����Z ��I �XRScX

�

R���Z� � � � ������

When we compare b� and ��t under the criterion of mean squared error matrix�
it may be appreciated from expression ����� and ������ that it is di�cult to

deduce necessary and su�cient conditions for the superiority of b� over ��t and
vice�versa�

��



��� Comparison of Weighted Mean Squared Errors

Let us take the performance criterion as the weighted mean squared error de�ned
by the trace of the mean squared error matrix multiplied by the matrix S�� �
�X �

cXc �X �

RXR��

From ������ ������ ����� and ������� we observe that the weighted mean squared

errors of the estimators bc� bR� b� and ��t can be expressed as

WMSE�bc� � E�bc � ���S���bc � �� ����
�

� �� trS��Sc

WMSE�bR� � E�bR � ���S���bR � �� ����	�

� ���K � ��Z �XRSX
�

RZ��

WMSE�b�� � E�b� � ���S���b� � �� ������

� ���� trS�S
�� � ��� �� trScS�S

��S�

�����Z �XRS�S
��S�X

�

RZ��

WMSE� ��t� � E� ��t � ���S��� ��t � �� ������

� ���t� trS��Sc � ��� t��K

���� t�����
�
t

� � t�
���Z �XRSX

�

RZ��

Writing


 �
��Z �XRSX

�

RZ�

�trS��Sc �K�
������

it is seen from ����
� and ������ that the t�class estimators are superior to the
estimator bc under the criterion of weighted mean squared error when either of
the following conditions is satis�ed�

���
�
t

� � t
�
 � � 
 t � � ������

���
�
t

� � t
�
 � � 
 t � � � ������

Next� we observe from ����	� and ������ that the t�class estimators are better
than bR when we choose t according to the following constraint

�� � �
�
�� t

t
��
 � � � ������

Similarly� it follows from ������ and ������ that ��t is better than b� when the
expression

� trS�S
�� � ��� �� trScS�S

��S� � t� trS��Sc � ��� t��K ������

���Z �XR���S�S
��S� � ��� t�����

�
t

� � t
�S�X �

RZ�

is positive�

��



As the matrix �S��S�� is non�negative de�nite� the expression ������ is positive
so long as

����� 
t� � ��� �
�t��
 � �
� trS�S

�� � ��� ��ScS�S
��S� �K

trS��Sc �K
� t��

������

provided that the quantity on the right hand side of the inequality is positive�

If we minimize the expression ������ with respect to t� the optimum value of t
is given by

to �




�� ��� �
�

����
�

provided that ��� �
�
 is less than one�

As 
 and 
 involve unknown quantities �� and �X��XR��� we may replace them
by their unbiased estimators� This proposition leads to the following estimators
of 
 and 
�

�
 � �� �m�
�

s�c
�y� �XRbc�

��I �XRSX
�

R��y� �XRbc��
�� ����	�

�
 �
�Y� �XRbc�

�XRSX
�

R�Y� �XRbc�

s�c�trS
��Sc �K�

������

which when substituted in ����
� provides a feasible version of to� viz�


�to �
�
�


�� ��� ��
��

������

that can be readily used in practice�

Other feasible versions of to can be constructed by using bR or ��� �i� e�� ��t with
t � �� in place of bc in ����	� and �������

� Some Concluding Remarks

Employing the mixed regression framework� we have considered the estimation
of the vector of coe�cients in a linear regression model when some values of some
of the regressors are missing� Following �nicht in LitDB �the minimization of a
weighted combination of the two sums of squares of errors arising from complete
observations and repaired observations has been considered by Toutenburg et al�
������ taking the weight factor as an arbitrary scalar� The resulting weighted
mixed regression estimator essentially de�nes a class of estimators characterized
by the scalar� and the conventional least squares and mixed regression estimators
are found to be particular cases of it� The weighted mixed regression estimator
is seen to possess smaller length of bias vector in comparison to the conven�
tional mixed regression estimator� Further� taking the performance criterion to
be the mean squared error matrix and comparing the necessary and su�cient
conditions for superiority of the conventional mixed regression estimator and

��



the weighted mixed regression estimator over the unbiased least squares estima�
tor� it is observed that the weighted mixed regression estimator performs better
than the least squares estimator over a relatively wider range of situations when
compared with the situations under which the conventional mixed regression
estimator is better than the least squares estimator� However� when the two
biased estimators are compared� the weighted mixed regression estimator fails
to dominate the conventional mixed regression estimator under mean squared
error matrix criterion� For the converse of it� i� e�� the dominance of the conven�
tional mixed regression estimator over the weighted mixed regression estimator�
we succeed in deducing a necessary and su�cient condition�

So far as the optimal choice of characterizing scalar in the weighted mixed
regression estimator is concerned� it is hard to determine� For instance� no value
of the scalar can be speci�ed for which the expression for the mean squared
error matrix attains its minimum� even when the criterion is taken to be a
scalar based on the mean squared error matrix� the determination of the optimal
values requires solving a typically non�linear equation and no neat algebraic
expression can be found� Consequently� iterative procedures are required to
�nd it m!numerically but then the properties of the resulting estimator cannot
be investigated analytically� Besides it� the non�linear equation contains some
unknown quantities� However� one can replace them by theri estimators as
recommended by Toutenburg et al� �������

Instead of using a scalar weight for combining the two sums of squares of errors�
we propose to use a speci�c matrix based on the second order moment matrices
of the disturbances in the models associated with the complete and repaired ob�
servations� This proposition leads to an estimator which involves some unknown
quantities� Replacing them by their unbiased estimators in a bid to obtain a
feasible version and introducing a characterizing scalar t� we have presented a
family of estimators which we term as t�class estimators� These estimators turn
out to be the convex linear combinations of the conventional least squares and
mixed regression estimators�

Analyzing the performance properties of the t�class estimaotrs with the help
of large sample asymptotic theory� it is found that the t�class estimators are
generally biased�

However� the bias in large samples may vanish through a suitable choice of the
characterizing scalar t� Examining the length of the bias vector to the given
order of approximation� we have determined the range of t in which the t�class
estimators have smaller magnitude of the length of bias vector in comparison to
the conventional mixed regression and weighted mixed regression estimators�

Comparing the estimators with respect to the criterion of mean squared error
matrix� it is observed that the t�class estimators with � � t � � dominate the
unbiased least squares estimator under certain condition� However� the t�class
estimators fail to dominate the mixed regression estimator when the number of
incomplete observations is more than one� On the contrary� the mixed regression
estimator dominates the t�class estimator with t less than one� This result
remains true for t greater than one when a certain condition is satis�ed�

Taking the performance criterion as the weighted mean squared error� we have
worked out the conditions under which the t�class estimators are superior to

��



the least squares� mixed regression and weighted mixed regression estimators�
A value of the characterizing scalar t is also determined which minimizes the
weighted mean squared error� Such a value is found to contain some unknown
quantities� and accordingly feasible versions are presented�

Our investigations are fairly general though asymptotic in nature as no assump�
tion regarding the distribution of disturbances like normality is made� However�
it will be interesting to analyze the performance properties in �nite samples as�
suming some speci�c distribution for the disturbances� Perhaps an elaborate
numerical study based on simulation and"or bootstrap methodologies may pro�
vide some useful �ndings�

Appendix

Besides the quantities de�nes in ��� �� let us write

Qcc �
�

n
X �

cXc � Q�� �
�

m
X �

�
X� �

QRR �
�

m
X �

RXR � QR� �
�

m
X �

RX� �

Q � �Qcc � fQRR��� � � �
�

�
�QR� �QRR�� �

	 �
�

��
���Q�� � QRR �QR� �Q�

R��� � f���Q� �

uc �
�

n���
X �

c�c � wc � n����
��c�c
n

� ��� �

u� �
�

m���
X �

�
�� � w� � m����

��
�
��
m

� ��� �

uR �
�

m���
X �

R�� � f �
m

n

so that Qcc� Q��� QRR� QR�� Q� �� 	 and f are of order O��� while uc� u�� uR� wc

and w� are of order Op����

Thus we can express

�bc � �� �
�

n���
Q��
cc uc �A���

�bR � �� � fQ
 �
�

n���
Q�uc � f���ur� � �A���
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Next� we observe that

�yc �Xcbc� � �c �
�

n���
XcQ

��
cc uc

�y� �XRbc� � �� � �X� �XR�� �
�

n���
XRQ

��
cc uc

�y� �XRbR� � �� � �X� �XR�� � �fXRQ��
�

n���
XRQ�uc � f���uR�

�

n
QX �

RXRQ
��
cc � �Q��

cc �Q�

s�c � �� �
wc

n���
�Op�n��� �

Using these� it is easy to see that

�

n
�y� �XRbc�

��y� �XRbR� � ��f�� � 	� �
a�
n���

�
a�
n

�A���

�

n
�s�c � �y� �XRbc�

��I �
�

n
XRQX

�

R��y� �XRbc�� �A���

� ��f�� � 	� �
a�
n���

�
a� � ��

n
�Op�n�

�

� �

where

a� � f����w� � ����u� � uR�� �f���
�Q�uc � f����uR�

a� � u�c�Q� S��cc �uc � �f���u�cQuR � fu�RQuR �

Thus the quantity h speci�ed by ���	� can be expressed as

h � ��
�

nf���� � 	�
��� �

wc

n���
� Op�n���� �A���

�� �
a�

n���f���� � 	�
�Op�n����

� ��
�

nf�� � 	�
�Op�n�

�

� � �

Using �A���� �A��� and �A��� in ������ we get

� ��t � �� � ��� t�fQ
 �
�

n���
�tQ��

cc uc � ��� t�Q�uc � f���ur��� �A���

�
t

n�� � 	�
Q
 �Op�n�

�

� � �

It is easy to see that the bias vector of ��t to order O�n��� is

B� ��t� � E� ��t � �� �A�
�

� ���� t�fQ� �
�t

n�� � 	�
Q�

� ���� 
t�SX �

RZ�

��



where 
 and S are de�ned by ������ and ������ respectively�

Similarly� the mean squared error matrix of ��t to order O�n��� is given by

MSE� ��t� � E� ��t � ��� ��t � ��� �A�	�

� ����� t��f�Q���Q�
������ t�tf

n�� � 	�
Q���Q

�
��

n
�t�Q��

cc � ��� t��Q�

� ����� t��� � ��� �
�t�SX �

RZ��
�Z �XRS

����t�Sc � ��� t��S� �

The results �A�
� and �A�	� are stated in the Theorem�
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