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Abstract

We consider online monitoring of sequentially arising data as e.g. met in
clinical information systems. The general focus thereby is to detect break-
points, i.e. timepoints where the measurement series suddenly changes the
general level. The method suggested is based on local estimation. In par-
ticular, local linear smoothing is combined by ridging with local constant
smoothing. The procedure is demonstrated by examples and compared with

other available online monitoring routines.
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1 Introduction

A considerable number of papers in the last years focussed on modelling and test-
ing of edges and jumps in smooth functions, see e.g. McDonald & Owen (1986),
Hall & Titterington (1992), Chu, Glad, Godtliebsen & Marron (1998), Miiller &
Stadtmiiller (1999). These methods are however preferably or exclusively designed
for data which are analyzed “offline”. This means the entire data set is available
for the analysis. In contrast, “online” monitoring is required if observations arrive
successively in time. Then at each time point a decision is required whether a jump
or edge has occurred. In this paper we will extend some of the “offline” tools above

for monitoring data online. We develop an online test checking for breakpoints.

The analysis of data occurring online is an important issue in various fields of
science and industry. This includes quality control management, time series in
finance or online monitoring of clinical information systems. A general overview of
existing procedures for online monitoring is found in Basseville & Nikiforov (1993).
The use of online methods in clinical information systems has been focussed by e.g.
by Daumer & Falk (1998), who make use of a Kalman filter to detect jumps and
thresholds in the (online) ECG profile of a patient after surgery. Imhoff & Bauer
(1996) and Bauer, Gather & Imhoff (1999) make use of a time series approach for
online monitoring while Daumer (1997) uses an adaptive control chart based on
moving averages. In all these papers the general focus is to detect sudden structural

changes in order to give alarm.

The general problem for online monitoring we are considering here can be de-

scribed as follows. Assume that at time-point ¢ the measurement y; is observed. It



is assumed that g, follows the stochastic model

ye = p(t) + & (1)

where p(t) is the mean function in time, which possibly also depends on other
covariates, and ¢; is a random noise, which is allowed to be correlated with previous
observations. Both, 1y, and hence ¢; are allowed to be multivariate, but we restrict
to the univariate case here. Based on the information available at time-point ¢, i.e.
based on y1, ...,y it is to decide whether u(¢) has a breakpoint at time-point ¢. A
breakpoint here means that p(t) is discontinuous, i.e. there is a jump at ¢, or pu(¢)
has a discontinuous first derivative, i.e. there is an edge or sharp bend at ¢. Online

monitoring of the data should give alarm if a breakpoint occurs at time-point t.

A convenient approach is to compare the observed value y;, with a predictor ;.
Alarm is given if gy, differs from the predictor by more than the threshold A, say,

ie. if
lye — i| > A (2)

The threshold A, is thereby chosen such that sensitivity of the alarm rule is achieved
while the probability of false alarms is small. The prediction 7; is calculated from
previous values y;_j, ...y 1, with h as time lag. Daumer (1999) suggests to calculate
Y by a running mean calculated from y; 4, ...4; 4, where d is a second time lag with
1 < d < h. Hence observations in the near past are left unconsidered. The time
lag d serves as delay for the running mean and Daumer shows that for d > 1 the
alarm rule (2) improves its performance compared to taking d = 1. In this paper we
apply more sophisticated smoothing techniques instead of a simple running mean.

We make use of local polynomial fitting (see e.g. Fan & Gijbels, 1996) which reacts
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better on structural changes and moreover can cope for smooth shifts, unlike the

running mean.

Considering (2) it becomes obvious, that the alarm rule basically depends on the
value of 3. This in turn implies a high variance of the procedure. We therefore
replace y; in (2) by a smooth estimate of u(¢). In the same way we replace the

predictor by a second smooth estimate. This means we consider the alarm rule

|1 (t) — ()] > Ay (3)

where i1 (t) and fis(t) are two estimates of 1(t). The first estimate fi;(¢) is thereby
calculated as long term estimate from y; p,,...,y; while fio(¢) is a as short term
smoother obtianed from v; j,,...,y:, where hy < h;. The major difference of (3)
compared to (2) is, that we do not compare the current observation with its pre-
dictor, but we compare two estimates of the mean function. The basic idea behind
this is that if (¢) has a jump or a sharp bend at ¢, the long term estimate fi;(¢) and
the short term estimate fio(t) will essentially differ. If in contrast p(t) is smooth,
both smooth estimates will basically be the same. Hence the alarm rule (3) can be
seen as smooth test statistic, where large values indicate a violation in the smooth-

ness of p(t).

The bandwidth hy which is chosen for the short term estimate mainly determines
the speed of reaction of the alarm. Taking a large value for hy, the reaction time
and the specitivity of the alarm rule increases while the variance of the alarm rule
decreases so that false alarms are less probable. Using a small bandwidth hy on the
other hand improves the reaction time and the sensitivity of the alarm rule (3) but

the variability increases. The second tuning parameter is h; which covers the general
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stationarity and stability of the process. Beside the choice of the two bandwidths A
and hsy the fixing of the threshold A; is required which however results from simple

variance calculations.

The choice of the applied smoothing method is thereby essential. Generally
speaking, smoothing methods are weak in detecting jumps since they smooth over
edges or jumps. Once a jump occurs and is detected, it is therefore necessary that
the smooth estimates adjust quickly for the new level or shift. It is well known
that local linear smoothing and local constant smoothing, which is a simple running
mean, react quite differently at the boundary of the support points. Note that by
definition, the online estimates are calculated at the boundary. We will combine
both estimates using a ridge regression, as suggested in Seifert & Gasser (2000) for
“offline” analysis. The ridge regressor thereby results as weighted mean of the local

linear and the local constant estimate.

2 Local Linear Smoothing and Breakpoint Detection

We calculate the long term estimate by fitting a local linear model to the data pairs
(t —i,yp—;) for i = 0,1,...,hy. Let therefore K;(-) denote a kernel function with
support [0, hq], e.g. K;(-) is the uniform kernel with K;(x) = 1/hy for z € [0, hy] and
K, (x) = 0 otherwise. Another example is found by taking K (-) as the truncated
normal density with mean h;/2 and variance (h;/4)?. The estimate fi;(¢) is then
obtained by fitting a weighted linear model using the kernel K (-) as weight function.

It is not difficult to show that the resulting estimate is the weighted mean

h1
() = D wiiye (4)
=0



with weights

win = (1,0)K:(s (Zm <1> 1,—;’))1 ! (5)

—1

K (i) (Shy 2 + ©Sh, 1)
Sh1,0Sm.2 — Si 4

where Sy, ; = Y, K,(i)(—i)/ for j = 0,1,2. Tt is important to note that the
weights do not change in ¢ and hence they can be calculated once and no updating

is required.

In the same fashion one obtaines the short term estimate fis(¢) as local linear fit
to the data (t —i,v; ), i = 0,..., ho. Let therefore Ky(-) be a kernel density with
support [0, ko], e.g. a half sided normal distribution. Figure 1 demonstrates this

setting. For ¢ = 0,..., hy we set

K5(7)(Shy2 + 1Shy 1)
Sh2,08h2,2 - 8}212,1

W; 2

with Sy, ; = 2020 Ky(i)(—i)’ for j = 0,1,2, while w;3 = 0 for i > hy. The short

term estimate is then available through

h1 h2
Z Wi 2Yt—i = Z Wi, 2Yt—i- (6)
i=0 i=0

The weights are for convenience constructed such that the vectors wy = (wg 1, ..., wp, 1)"

and wy = (wp 2, .., wh172)T have equal length. We now combine the two estimates in

the alarm rule (3). If u(¢) is smooth in [t —hy, t] one gets for the bias of iy (¢)— fi2 (1)

E{f(t) — fia(t)} = /2210“ w; o) (—1)% + ...

_ )2 <Sh1,2 — Sni15m3  Shae — 5h2,15h2,3>
Sh1.0Sh1,2 = Shia Sha0She2 = Sty

1,




The bias thereby gets large if p”(t) is large, which is the case if p(-) rapidly changes
its direction at t. As extreme case this results in a jump or sharp bend. The quantity
fi1(t) — fio(t) in the alarm rule (3) can therefore be seen as an empirical estimate for
the second order derivative of p(-). If the resulting value is large in absolute terms

the resulting function is likely to be rough or unsmooth in ¢.

The choice of the threshold A; in (3) requires the estimation of the variability of

fir(t) — fiz(t). We rewrite fiy(t) — fi2(t) as
h1
fn(t) — a®) = 3 wipe )
i=0

where w; = w;; — w; 2. Assuming local stationarity, simple calculation leads to

hi h
var{fi(t) — fe(t)} = Zw202 + 2> wiwjcov(ey, &)
1=0 j>¢
hi
= Zw37(0)+222wiwﬂ(i—j) (8)
i=0 =0 j>i

where y(d) = cov(y;_q, ;) is the covariance function and o = v(0) = var(y;) with
l=t—hy,...,t. Estimation of (8) can then be done by the simple moment based

estimate (see Brockwell & Davis, 1987)

7(d) = Z {vi = 2() Hyiva — 1i2(i + d)}. (9)

h—l—l— i

where ¢, > 11is a constant which reduces the bias of the estimates and h > h; is some
timelag expressing the local stationarity of the process. Assuming y;, [ =1,2,... to

be independent one finds for d = 0 in (9) by taking expectation
[ . -| ha

2 [ Z {yi_ljZ(i)}zJ = o*(h+1) 1—2wo,2+2w]2.72 .
i=t—h =

For d > 0 one gets

{ Z {yi — 2(0) Hyira — f2(i + d)}} = 02(h +1—d) (‘wd,Z + ZZ: wj,2wj+d,2)

Jj=0



Hence, setting ¢g = 1/(1 —2wq 2 + Z;-ZO w3 ,) resp. ¢g = 1/(—wgz + E;-ZO WjoWjtd2)

provides a bias reduced variance estimate.

The computation of (9) in every timepoint can be accelerated by making use of the
following iterative update scheme. Let d;, = {y; — fia(t), y—1 — fl2(t = 1), .. ., Yp —

fia(t — h)}T and

D, = | Gu O On
) - h+1

* dt,h—l . dt,h—h1

h h—hi1+1

where 04 are column vectors of zeros with length d. The covariance vector at time
point ¢ can then be estimated by 7, = dz:thth, where 4, = {7(0),...,%(h1)},
C = diag(c;)o<i<n, and the subscript ¢ indicates that information available at
timepoint ¢ is used. Simple matrix algebra (see appendix) provides the approx-

imative recursive formula

- 1 ~ T h
Yiq1 = h—_H(yt+1 — fia(t +1))d;, 4, C + h—H’Yt- (10)
Defining the covariance matrix I' = [T'];; = [y(|i — j|)];; for 4,5 = 0,..., hy one gets

the variance estimate
var(in(t) — fiz(t)) = wlw” (11)

where w = (wy, ... wy,) and Tisa plug in estimate of I'. This suggests the alarm

threshold

Ay = ayfvar(n (1) — fia(t)) (12)

where a is chosen such that the alarm rule is sensitiv and false alarms a less probable.

This provides a simple test on presence of a breakpoint: We reject the hypothesis



“No breakpoint at time t” if

7, = > up_e (13)

2

(1) — fa() ‘
var(fiy (t) — fia(t))
where « is the error probability and u;_ga is the 1 — a/2 quantile of the N(0,1)-

distribution.

3 Practical Adjustments

3.1 Ridging

In Chapter 2 we suggested to use local linear fitting to calculate the long and short
term estimates. All estimates are done at the boundary, where Local polynomial
smoothers are known to be more variable than local constant smoothers. In terms

of variability one therefore has to consider the Nadaraya-Watson estimate

hi1
finw(t) = D wiinwle (14)
i=0

with w; 1 yw = Ki(i)/Sh, 0 as a competitor to fi;(1).

Figure 3 shows the behavior of the local estimates when used with the alarm
rule (3) for independent Gaussian errors. Both estimates detect the jump at 200
and the bend at 400, but the bend at 600 is only found by the local linear fit, since
this adopts the inclination. Hence, one should use a local linear fit when there is a
slope in the data while local constant appears more appropriate if the data are flat.
Considering the local linear fit in more depth uncovers a further drawback. The
local linear fit adjusts for the model violation shortly after the jump, while the local
constant fit reacts delayed. Thereafter however the local linear fit over-steers the

shift and the local constant gets superior. Figure 2 gives a tutorial to demonstrate



this point. In order to balance local linear and local constant fitting we propose to
use Ridging as suggested in Seifert & Gasser (2000). This means we replace the long

term estimate by
[t ridge(t) = Aefin,nw (t) + (1 — A) fin () (15)

where )\, € [0,1] is the ridge parameter. The ridge estimate again results as a
weighted sum of the observations y; so that variance calculations for the ridge es-
timate are straight forward. In practice it is often helpful to choose A\ data adaptive.

We make use of the setting
22
A = e (1) (16)

where 3(t) is the estimated slope of the function p(t) obtained from the local linear

fit by
~ hl
ﬁ(t) = Z VilYt—i
i=0

with v; = K1(2)(Shy,1 +Sh1,0)/(Sh, 1 — Shi,09h,2)- In Figure 3 for ¢ = 50 it becomes
obvious that the ridge estimate combines the advantages of local linear and local

constant fitting. Figure 4 shows the value of A\; over time in this example.

3.2 Missing Values and Outliers

In practical applications one is often faced with outliers or missing data which dis-
turb the performance of the alarm rule. We suggest the following adjustments. If
observation y; is missing we impute a predicted value 7; calculated from the previous

observations. A simple setting is to use 3 = fi(t — 1). This however will not cover
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possible shifts. We therefore predict y; by extrapolation from the previous estim-
ates by using a linear extrapolation from fis(t — hs), ..., fia(t — 1). The weights for
the extrapolation have to be calculated once, so that extrapolation is numerically

simple.

In a similar fashion we handle outliers. An outlier is classified as a single or small
group of observations which do not follow the model. A detection rule for outliers

is for instance

lys — el > ky/71-1(0) (17)

where ¥, is a predictor for y; calculated as above and k is some positive constant. If
y; is classified as outlier, its value is substituted by its predictor. Moreover, if (17)

holds for a number of consecutive time-points alarm should be given.

3.3 Variance Calculation

The moment based variance estimator described in the previous section can be inef-
ficient if the data are uncorrelated or the errors trace from a model with parametric
dependence pattern, e.g. an AR(1) process. In the first case one can set y(i) = 0
for 7 > 0. In the latter case one could use the assumed dependence process to im-
prove the variance estimation. For the AR(1) process for instance one fits locally

the regression model
Et = PEi—1 + (18)

to the residuals ¢;, where 1, are uncorrelated white noise errors. This yields the

covariance function v(d) = o?p? for d = 0,...,h. In practice (18) is fitted to the
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fitted residual &; = y; — f12(t) and one obtains

h h
p = th—igt—iﬂ/zgf_i-
i=1 i=1

The coefficient p can thereby again be updated recursively from previous values as

shown in the appendix.

Variance calculation suffers from jumps and edges since both estimates, the short
term and the long term estimate are biased at the jumps and residuals are overfitted.
It is therefore advisable to pause online updating of the variance once a jump or
outlier has been detected. This means in this case one sets 7, = 4;_; until the alarm

is stopped.

4 Examples

4.1 Cardio Beats

In a hospital the cardio beats per minute of the mother before the confinement are
monitored. It is of interest to detect sudden changes in the recorded data. Fig. 5
shows the data and the resulting short and long term estimates. We used bandwidths

hy = 160, hy = 30, h = 300 and a ridging constant ¢ = 80.

A special property of this data set is the large amount of missing values, displayed
as data points with Y = 0. However, the algorithm manages to outnumber these
values and hence the estimated curves are not affected as seen in the first period
of missing values from ¢ = 176 to t = 196. The bottom graph in Fig. 5 shows the
standardized test statistic T, and bands given by the 99.5%- quantile of the standard

normal distribution. It is seen that all jumps are detected quickly and significantly.
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At points 199 and 240 a shift in the level is found while at 340 the cardio beats
decrease abruptly with level changes detected at 399 and 421. Afterwards the cardio
beat frequency increases slowly until it reaches the plateau. The end of the increase

is detected at 604.

4.2 ECG Measurements

In the second example we apply the method to data which have been previously used
in Daumer & Falk (1998) for the demonstration of their online monitoring algorithm.
The data are ECG measurements taken every five seconds from a patient undergoing
a skin transplantation. At ¢ = 219 an artificial outlier is added. Figure 6(a) and
6(b) show the long term estimates and test statistics for different settings of the
ridging parameter ¢ in (16). For all settings the breakpoints at timepoint 120 and
285 are detected. Afterwards however the estimates behave differently. For ¢ = 0
one obtains a local constant estimate. This is unable to adjust for the slope and
does not find the end of the slope area at 378. Afterwards the local constant detects
small level changes at 454, 497, 515 and 739. On the contrary the local linear fit,
obtained for ¢ = oo, gives the end of the slope area but oversteers afterwards so that
some small level changes are not uncovered, but some spurious alarm signals are
given. In contrast, setting the ridging parameter ¢ = 120 compensates the problem
of oversteering and detects both, the end of the slope area as well as the small level
changes afterwards. In general, local constant estimators are better in detecting
level changes, while local linear estimators detect breaks of trends. Finding the

appropriate ridging parameter means balancing between these two goals.

We return to this data example in the next section and compare our method with

13



the procedure suggested in Daumer & Falk (1998).

5 Comparison to other methods

5.1 Autoregressive models

In Gather, Bauer, Imhoff & Lo6hlein (1998) it is assumed that the data follow an
autoregressive model. We illustrate their method at the cardio data from above. Be-
fore applying the method, we substitute the missing values by short-term-predictors.
Then the data set is divided in an estimation period and a prediction period. Since
the data have to be more or less stationary during the estimation period, we choose
the estimation period ¢ =1,...,180 . In order to obtain a nearly balanced propor-
tion between the amount of data in the two periods we reduce the data set to the

first 380 data points.

During the estimation period the parameters for the AR-process are estimated
(the AIC criterion suggested an AR(1) model). In the prediction period it is observed
whether the data points are inside or outside a confidence band surrounding the
predicted values. The result is shown in Fig. 7 for a 95% confidence interval. If less
then five consecutive observations are outside of the confidence interval, then they
are classified as outliers, whereas a level change is detected for more then five points
out of the confidence interval. Thus, the jump detected at t = 197 is classified as
a level change at ¢t = 201, compared to a detection at ¢ = 199 with our adaptive

ridging method.

We conclude that the AR method by Gather et al. is a fast and reliable method,

but is probably not suitable for every kind of data, especially data with quickly
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changing rising or falling trends, whereas the local estimation method we proposed

in this paper adapts to a wide range of data situations.

5.2 Phase space models

Another idea of Gather, Bauer, Imhoff & Lohlein (1998) is to plot every data point
against its previous data point in a state space. We tried this method for the first
380 cardio data points (see Fig. 8). Gather et. al. move a time window of length
60 through the data and alarm is given if the next five consecutive observations are
in a different region than the previous 60 ones. In the plot, the way of the data in
the state space can be followed. Starting somewhere in the left down area of the big
cluster, the line climbs up to the right top edge, then falls down and turns left to the
small cluster (representing the data points ¢ = 197,...,t = 232) and finally climbs
up again to the big cluster. Every change of the cluster represents a jump in the
data. This means that alarm is given at the timepoints ¢ = 201 and 237, compared

to alarm signals at ¢ = 199 and 240 with the adaptive ridging method.

Though this method is very useful for visualizing the structure of the data, we
think it might be difficult to use it online for reliable alarm detection, especially for

sloping data, where the dividing lines between single clusters become foggy.

5.3 State Space Models

Daumer & Falk (1998) and Fahrmeir & Kiinstler (1999) use state space models for
filtering time series. A linear state space model is given by a linear observation
equation

U =20+ & (t=1,2,...)
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for the observations 1, 49, ... given the states 3, (s, ..., which is supplemented by

a linear transition equation

By = Fifi1+w (t=1,2,..))

fo = ag+vo
with Gaussian errors ; and v;, nonrandom vectors 2y, 2o, . . . and transition matrices
Fy, F,,.... This model can be solved with Kalman filters. Daumer & Falk (1998)

define such a state space model for each possible location of a jump. The resulting
family of models, called a multi-process model, is examined with Bayesian methods
and jumps are detected by choosing the most likely model. For detecting outliers, a
2nd multi-process modell has to be introduced. Daumer & Falk (1998) apply their
method to the data shown in Figure 6(a) and find changepoints at ¢t = 120, 285,
506, 752 and 821. In contrast, the local ridging method with ¢=120 uncovers the
changepoints 120, 285, 378, 432, 512, 739 and 788. It appears that both methods
uncover abrupt changes from a long term level but the local adaptive ridging method
appears more flexible and gives alarm also at short term changes. Moreover both

methods are equal in the speed of detection.

6 Conclusion

We showed that local smoothing methods can be used effectively for detecting jumps
and bends in online monitoring. The algorithm combines the advantages of many
other breakpoint detection methods: It can be used online, since only the data given
until the examined time point are necessary for the estimations. Furthermore it is

able to detect jumps or bends of flat and sloping trends. The method adapts to
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the variability of the data, which means that it will not give alarm for a small jump
within highly fluctuating data, but will give alarm for the same jump for less variable
data. Finally it is worth mentioning that only few computational effort is required,
because the weights needed for the estimates have only to be calculated once and

the variance calculations follow a simple update rule.

The only technical problem, namely the over-steering, can be solved quite satis-
factory by adaptive ridging. However, we shouldn’t suppress that it can’t be avoided
completely (see. Fig. 3 and 5). If one wants to exclude it totally, one has either to
use only the data after a jump for the estimations of fi; (t) and fis(t) , which requires
recalculating all weights after every jump, or to use methods like edge-preserving
smoothing (see Chu, Glad, Godtliebsen & Marron, 1998). However, both ways re-
quire large additional computational effort, so that it is questionable whether they

convince in practice.
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A Technical Details

Derivation of (10)

Note that
T
dt+1 th+1,h
Yt 1*ﬁ2 t+1
+T1() 0, e 0p,
= — t+1).d" ) Yey1— 2 (t+1) L Yer1—pip (t+1)
(yt+1 ia( ). dyp d. . h h—h1+1
ht1
+ dt,h72 .. dt,h—hl—l
h h—hi+1

<{yt+1 — ot + 1)} diidipn

h—+1 h+1 77
{yre1 — B2+ DHys—nyt1 — fla(t — ha + 1)} L di_pynn 1Bt
’ h—hs+1 h—hy+1 '

Making use of d 4, 4 1dip—a—1/(h —d+1) ~ di_y,_4dip—q/(h — d+ 2) provides

(10) for h sufficiently large.

Update of p; in model (18)

Note that

-1

h—1
(Ze) - (2-aa+xs )

=1

-1

Q

so that the inverse can approximated by recursive updating. Setting R;; 1= (Zh B2 )
1 . p-1 2020 22 _vh = =~
one gets Ry, ~ Ry — Ry (6] — &/ },). The numerator Ry, = 3" & & i1 can

be updated by Ry 1 = Riy + &&41 — Et—nEi—ht1 -
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Figure 1: Kernel positions for an estimate at t=170.
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Figure 2: Tutorial on different behavior of local constant, local linear and ridge
estimate after a jump.
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Figure 3: Simulated data set with local constant, local linear and ridged long term
estimate using the alarm detection rule (3).

21



= |

—

)

— |

-

— |

o~

= |

= _|

[ T T T T T

o 200 400 [S]ele] 800
t

Figure 4. Development of the ridgeparameter )\; over time for the simulated data
set analyzed in Fig. 3.
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Figure 5: Cardio data with long and short term estimates. In the bottom the test

statistic T} is compared with the quantile ug g5 = 2.58. Vertical lines indicate the

detection of breakpoints.

23



70 80 90 100

60

10

ECG measurements

_— c=120

[0} 200 400 600 800

(b)

(0] 200 400 600 800

Figure 6: (a) ECG data with long term estimates for different degrees of ridging, using
hy = 150, ho = 25, h = 200. The lines in the bottom indicate the alarm periods for ¢ =0
(top), ¢ = 30,¢ = 120, ¢ = oo (bottom). Alarm signals for ¢ < 100 are ignored, since the
algorithm needs sufficient data points to work. (b) Test statistic 7} for ¢ = 0,...,c = oo,
degrees of ridging symbolized like in (a). Alarm thresholds (horizontal lines) at +2.58.
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Figure 7: Cardio data with predicted values (solid line), 95% confidence bands

t

200

(dashed lines) and alarm detection at t=201 (dotted line).
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Figure 8: Cardio data from example 4.1. (for ¢ = 1,...,380) plotted in a phase
space.
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