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Abstract

Generalized linear mixed models are a common tool in statistics which
extends generalized linear models to situations where data are hierarchi-
cally clustered or correlated. In this article the simple but often inadequate
restriction to a linear form of the predictor variables is dropped. A class
of semiparametrically structured models is proposed in which the predic-
tor decomposes into components that may be given by a parametric term,
an additive form of unspecified smooth functions of covariates, varying-
coefficient terms or terms which vary smoothly (or not) across the repeti-
tions in a repeated measurement design. The class of models is explicitly
designed as an extension of multivariate generalized mixed linear models
such that ordinal responses may be treated within this framework. The
modelling of smooth effects is based on basis functions like e.g. B-splines
or radial basis functions. For the estimation of parameters a penalized
marginal likelihood approach is proposed which may be based on integra-
tion techniques like Gauss-Hermite quadrature but may as well be used
within the more recently developed nonparametric maximum likelihood
approaches. For the maximization of the penalized marginal likelihood the
EM-algorithm is adapted. Moreover, an adequate form of cross-validation
is developed and shown to work satisfactorily. Various examples demon-
strate the flexibility of the class of models.

Keywords: Generalized linear mixed models; Generalized semiparamet-
rically structured mixed models; EM-algorithm; Ordinal mixed models;
Cross-validation; Nonparametric maximum likelihood.



1 Introduction

In many studies samples are clustered or correlated. The clustering may be due
to repeated measurements as in longitudinal studies or to subsampling from the
primary sampling units in cross-sectional studies. One approach to modelling
such data is the incorporation of random effects for the subjects or clusters into
the linear predictor. Under the assumption of an exponential family type of
distribution the incorporation of random effects extends generalized linear models
(GLMs) to generalized linear mixed models (GLMMs).

The main problem in GLMMs is that the marginal distribution of the response
obtained by integrating out the random effects, does not have closed form. This
led to the development of several methods to obtain analytical approximation
for the likelihood, like numerical integration based on Gauss-Hermite quadrature
(e.g. Hinde, 1982, Anderson & Aitkin, 1985) or Monte Carlo techniques within
the EM-algorithm (McCulloch, 1994, McCulloch, 1997, Booth & Hobert, 1999)
or approximation methods as Taylor expansions or Laplace approximation (e.g.
Breslow & Clayton, 1993, Wolfinger & O’Connell, 1993, Longford, 1994). A more
recent approach is nonparametric maximum likelihood which avoids the assump-
tion of a fixed distribution for the random effects (Aitkin, 1996, Aitkin, 1999).
Most of the articles consider unidimensional, binomial or Poisson distributed, re-
sponses. Extensions to ordinal models have been considered by Harville & Mee
(1984), Jansen (1990), Tutz & Hennevogl (1996) and more recently by Hartzel,
Agresti & Caffo (2001).

The basis of GLMMs is the linear predictor which restricts the influence of
covariates to a strictly parametric form. In regression models there is a wide
body of literature where the strict parametric form is extended to more flexible
forms of semi- and nonparametric regression. Overviews are given by Hastie &
Tibshirani (1990), Green & Silverman (1994), Schimek (2000), for discrete data
see Simonoff (1996), for multivariate responses see Fahrmeir & Tutz (2001).

Nonparametric approaches to correlated data for normally distributed re-

sponses have been considered by Rice & Silverman (1991) and for non-Gaussian



models in a generalized estimation equation framework by Wild & Yee (1996)
and Berhane & Tibshirani (1998). As far as mixed methods are concerned there
has been some development for nonparametric time functions within linear mixed
models (Zeger & Diggle, 1994, Zhang, Lin, Raz & Sowers, 1998), but very lim-
ited work has been done to extend nonparametric regression techniques to mixed
models for non-Gaussian responses. An important step in this direction is the in-
troduction of generalized additive mixed models (GAMMSs) given by Lin & Zhang
(1999). They use smoothing splines to obtain smooth estimates of covariate ef-
fects. A fully Bayesian approach has been recently proposed by Fahrmeir & Lang
(2001)

In this paper generalized semiparametrically structured mixed models (GSS-
MMs) will be considered within a multivariate framework including ordinal re-
sponse models. The term ”structured” means that the structure of the predictor
is determined by several components, containing parametric parts as well as non-
parametric parts like additive terms (which itself represents a structured form
of nonparametric functions). The assumed structure determines how parametric
and nonparametric parts are connected. This may be in an additve form as in
partially linear models but it may also be in a multiplicative form as in vary-
ing coefficients models. In order to illustrate the type of data for which these

approaches are adequate in the following potential applications are given.

Application 1: Infectious disease

Zeger & Karim (1991) considered longitudinal data on respiratory infection in
Indonesian children. 275 children were examined up to six consecutive quarters.
The response is respiratory infection (1: yes, 0: no), covariates were years, xe-
rophthalmia status (1: yes, 0: no), which is an ocular manifestation of chronic
vitamin A deficiency (1: yes, 0: no), gender (1: female, 0: male), height for age

and presence of stunting (1: yes, 0: no).



Application 2: Injuries to the knee

In a clinical study focusing on the healing of sports related injuries of the knee
n = 123 patients have been treated. By random design one of two therapies were
chosen. In the treatment group an anti-inflammatory spray was used while in
the placebo group a spray without active ingredients was used. After ten days
of treatment with the spray and at three further occasions, the mobility of the
knee was investigated in a standardized experiment during which the knee was
actively moved by the patient. The pain occurring during the movement was
assessed on a five point scale ranging from no pain to severe pain (for further
information on the data see Tutz (2000). In addition to treatment the covariate

age was measured.

These examples represent repeated measurements and contain at least one
metric variable for which it is doubtful that the effect is linear or quadratic as
would usually be assumed within a generalized linear mixed models framework.
In application 2 adequate modelling should account for the ordinal response vari-
able. Otherwise the number of parameters and smooth components would be
unnecessarily high. In particular when subjective assessments represent the re-
sponse as in application 2 it has to be expected that heterogenity is very high
because the scaling of pain level will vary across individuals.

In Section 2 first the basic GLMMs are introduced which are appropriate
for unidimensional responses like binary or Poisson data as well as multivariate
extensions which are adequate for ordinal responses. Moreover, semiparametric
extensions in the form of additive modelling are considered. In Section 3 the
concept of penalized marginal likelihood estimation is introduced. The basic idea
is to represent the smooth components as a finite sum of basis functions which
are connected to knots on an equally spaced grid and to penalize the marginal
likelihood by restricting the differences of coefficients that correspond to these
basic functions. For common likelihood based regression problems concepts of
this type have been considered in the form of P(enalized) Splines (e.g. Eilers &
Marx,1996, Ruppert & Carroll,1999). The essential difference to these approaches



is that now one has a penalized marginal likelihood which can be given only in
integral form. It is shown how the marginal likelihood can be maximized directly
by Monte Carlo or Gauss Hermite approximation or indirectly by use of EM tech-
niques. Moreover, a simple estimation concept for standard errors and confidence
intervals is developed. In section 4 the estimation concepts are validated in a sim-
ulation study and compared to the double penalized quasi-likelihood approach
of Lin & Zhang (1999). Section 5 gives some extensions to varying-coefficients

modelling where interaction effects may be modelled nonparametrically.

2 Generalized structured random effects model

2.1 Linear random effects models

Before considering more complex models, in this section multivariate generalized
linear models are reconsidered. They provide a general framework which allows
not only unidimensional responses like binomial or Poisson distributed responses
but include the multinomial case which in particular allows parsimonious mod-
elling of ordinal response data.

Let the data be given by (v, xit), it =1,...,n,t =1,...,T, with y;; denoting
the g-dimensional response connected to observation ¢ in cluster ¢ and x;; denoting
a vector of covariates which may vary across the observations within one cluster.
Often the clusters correspond to individuals and the observations to repeated
measurements, therefore the index ¢. Only for the simplicity of presentation the
number of observations within one cluster T" does not depend on the cluster. A
generalized linear random effects model is specified by two components. First, it
is assumed that the conditional density of y;; given the explanatory variable x;;

and the random effects b; is of the exponential family type

f (atlzi b)) = exp (y;,0i — £(6)) /& + c(yar, @) (1)

where 6;; denotes the natural parameter and k(.) the log normalization constant.

The second component specifies the link between response and the covariates.



The structural assumption specifies the conditional mean by
it = E(Wie wie, bi) = h (Zi 8 + Wishy) (2)

where h : R? — IRY is the response function and Z;;, W;; are design matrices
composed from ;.

The multivariate setting is chosen deliberately to incorporate ordinal mod-
els. If Y; € {1,...,k} is an ordinal response, the actual response is y: =
(Yit1y - - - Yitg) » ¢ = k — 1, with y, = 1if Y}y = r and y;, = 0 otherwise. The
most often used ordinal model is the proportional odds model (McCullagh 1980)

which in its basic form is given by
P (Y; < rlz;) = Fyor + 3] 7)

where F' is the logistic distribution function. The random effects formulation

with random intercept is given by
P (Y;t < 7"|$z't, bi) =F (’Yor + :cZ;v + bi) . (3)

It is easily seen that the model has the form (2) by considering 7, = (s, - - -, Titg),
Tir = P (Yiy = 7|24, b;) as the mean response p;; and specifying 7, = (Iqxq, 1:}F><1 ® xit) ,
Lo = (L,..,1), Wi = 1gx1, B85 = (o1,---70q:7") - The g-dimensional re-
sponse function A is also found easily (see e.g. (Fahrmeir & Tutz 2001)).

An alternative ordinal model is the sequential model or continuation ratio

model which with random intercepts incorporated has the form
P(Yi = r|Yi > r, zy, b) = F(y0, + 25,7 + b;) (4)

where F'is an unidimensional distribution function which often is chosen as the
logistic distribution function. The interpretation of the model is different from
that of a cumulative model. Model (4) may be seen as a process model with
start in category one and consecutive modelling of binary transitions to higher
categories. The relationship to cumulative type models has been investigated by
Laard & Matthews (1985), Tutz (1991), Greenland (1994). Model (4) is again

of the general form (2) but with several advantages. The linear predictor in the
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cumulative model (3) has to be ordered, thus vy, < -+ < vy, has to hold. This
ordering which in more complex models causes problems is not postulated in the
sequential model (4). Moreover, the sequential model which basically is a model
for binary transitions may be estimated by software which handles binary mixed
regression models.

Univariate generalized mixed models (¢ = 1) comprise among others the bi-
nary logistic model, the Poisson model with log link, the normal model and
Gamma response models. The binary logistic model with random intercept is
given by

pit = Eyalza, b)) = F(v0 + a7y + by)
where y;; € {0,1}, Z;y = (1L,2]), B = (10,7") and F the logistic distribution
function. A more general form where the slope may vary across clusters is given
by
ttir = BEit|zi, bi) = F(v0 + 2y + (1, i) b;)
where I = (b1, b5) represents the random effects.

The specification of the random effects model is completed by specifying the
distribution of the random effect b;. Here two approaches will be considered. First
the widely used assumption of a fixed continuous distribution. Thus in addition
to the additive distributional assumption (1) and the structural assumption (2)
it is assumed that the cluster specific effects are independently identically dis-
tributed, with E(b;) = 0, cov(h;) = Q. A common assumption is that b; is a
multivariate normal random variable, i.e. b; ~ N(0,Q). The second approach
treats the mixing distribution in a fully nonparametric way as a finite mixture
yielding nonparametric maximum likelihood estimates (see Hinde & Wood, 1987,
Aitkin & Aitkin, 1996, Aitkin, 1999). The approach avoids the assumption of a
specific parametric form because of the possible sensitivity of conclusions to this
specification (see also Heckman & Singer,1984). Aitkin (1999) gives an exten-
sive review of current approaches to the modelling of mixture distributions and
demonstrates the usefulness of the purely nonparametric approach.

The usual assumption for random effects models is independence of observa-

tions within and between clusters given the random effects, i.e. f(y1,...,yn|b1,...,by) =
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H?:1 f(yi|bi) with f(yz'|bi) = HtT:1 f(yz't|bz') where sz = (yila - '7yiT)‘

2.2 The extension to semiparametric modelling

The linear predictor ), = (i1, - - -, Mitg) for model (2) has the form

Nit = 773 + 775

where 772-5; = 73 is the structured term and nZR = W;b; is the random term which
is connected to the random effects. The structured term for random intercepts

models of the type considered in Section 2 has the components

nistr:70r+l‘gt177 T:]-a"'aq'

In addition to the covariates x; let now wiTt = (Wit1, - - -, Wim) be an additional
vector of continuous variables. Instead of using a parametric term to incorporate
wy a more flexible term is

m

s T
Mitr = Yor + TV + Z a(j) (wis)

j=1

where a(;y are unspecified functions of the jth component of W. Thus the struc-

tured term decomposes into

Mie = My + Mty (5)

where 0k = 7o, + x5y is the linear term and 7} = > iy ag)(wij) is the non-
parametric additive term. That means part of the covariates, in particular all of
the categorical covariates are determined in a parametric linear form whereas the
continuous variables, or part of them, are allowed to influence the outcome ad-
ditively with the components being not further restricted. The model is referred
to as a partial linear additive model.

For univariate models the values in (5) are unidimensional and the index may
be dropped since r = 1. For the ordinal models the representation is restricted to
the case where covariates z;; have weights v that do not depend on the category.
Only the intercept is category-specific, meaning that the design matrix in the
linear term 7;; has the form Z; = (I;xq, 14x1 ® 21). More general models will be

considered in Section 4.



3 Estimation by penalized marginal likelihood

3.1 Penalized marginal likelihood

The structural parameters in the GLMM may be estimated by maximization of

the marginal likelihood which is given by

106, Q) = > log / F(wilbe)p(bs; Q)b

For the semiparametric model this approach cannot be used directly, since the
nonparametric parts of the model are functions instead of parameters. One way
to obtain a parametric form is the use of regression splines. If one assumes that
the knots are known and fixed, regression splines are easy to handle. But usually
knots are not given. Then, however, besides the number of knots their location
has to be determined, for example by forward and backward procedures, see e.g.
Friedman & Silverman (1989), Friedman (1991), Stone, Hansen, Kooperberg &
Truong (1997) for approaches in common regression. Alternatively, here a basis
function approach is used together with discrete penalization in the spirit of P-
splines (for penalized) as suggested by Eilers & Marx (1996), Ruppert & Carroll
(1999), Ruppert (2000), for previous work see also Whittaker (1923), O’Sullivan
(1986, 1988).

It is assumed that the smooth components ;) may be represented as a sum

of basis functions .
ag(w) =Y 0P (w) (6)
s=1

where ®;,(w), s =1,...,m, are basis functions connected to specific knots on an
equally spaced grid. Let wjiy < --+ < wj,) denote the knots then ®;; may be
a B-spline basis (e.g. De Boor, 1978), power functions or radial basis functions of
the type ®;5(w) = ® (Jlw — wj(5)|) where ® is a smooth fully specified function,
e.g. the Gaussian kernel function or thin plate splines with @ (jw — wj(,)|) =
(w0 = wi(s))* log (w — wj(s)]) -

The basic concept is to use a number of knots M; that is high enough to
ensure flexibility that is sufficient to approximate all functions of potential in-

terest and then penalize the variation of weights i, ..., a;a;. Ruppert (2000)
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demonstrates nicely how a very limited number of knots, say 30, yields approx-
imations to quite complex functions which are visually not distinguishable from
the function itself.

Instead of the marginal likelihood with the parameters S, @, {a;s} now esti-
mation is based on the penalized marginal likelihood (PML)

o (5. Q. {0]) Zlog/fmb (bi; Q)b — %Z Z (A0)? (1)

j=1  j=d+1

where A is the difference operator operating on adjacent coefficients of the basis
function, i.e. Aajs = ajs — ajs1, A%y = Aays — js-1) = Qs — 2051 —
@ s—2, etc. For simplicity the same order of the difference d is used for all of the
components in covariate w. Although one may experiment with different orders of
the penalty, satisfying results are usually obtained for d < 3. A special case, used
by Ruppert & Carroll (1999) is d = 0 where the penalty reduces to A%a;s = djs.
P-splines which are defined by use of a B-spline basis in (6) may fit polynomials
exactly. Whatever the values of A;, if one uses B-splines of degree k£ or higher
and the order of penalty is £+ 1 a polynomial of degree k may be fitted exactly.
If \; = oo the limit of a P-splines fit is always a polynomial. If the penalty is
of order £ and \; — oo the fitted curve will approach a polynomial of degree
k — 1, given the degree of the B spline is equal to, or higher than, k£ (for details
see Eilers & Marx,1996). The number of knots seems not to be of significant
influence. Ruppert (2000) investigated the influence of the number of knots and
found that in the case of monotonic functions the number of knots has little
effect. For more complex functions there is a minimal number of knots and low
mean averaged squared errors are found whenever the number of knots exceeds
the minimal number of knots. Highlighting on generalized cross validation for the
selection of the number of knots Ruppert (2000) found a default of min{n/4,35}
to perform very well.

Ruppert (2000) used a slightly different version for the smooth functions which

makes the connection to polynomial fitting more obvious. When using
M;
gy (w) = anw + -+ agw® + > aji(w — wje)k (8)

s=1

10



with (w)y = wFI(w < 0) it is easily seen that c;) is a kth degree polynomial on
each interval between two consecutive knots and has (k—1) continuous derivatives
everywhere, but the kth derivative takes a jump of size k! o, at knot w;(,). When
using (8) the roughness penalty is placed on the jumps a5, s = 1,..., M}, in the
kth derivative of a(;) by use of A\; 307 af,.

When maximizing the penalized marginal likelihood the predictor of the ith

observation has the form
Nie = Zin3 + ®jor + Wish; 9)

where the first component corresponds to the effects of x;; and the second com-

ponent corresponds to the additive structure with ®; given by
®; = (141 ® Diag (] (winr), - - ., @) (witm))

with @7 (wiy;) = (®j1(wir), - - ., Py (wirg)) and

af = (a1, ., ).

The third component is the same as in generalized linear random effects models.
When using the truncated series representation (8) the matrix ®; may be used
but with ®;,(w) defined as the truncated power series, i.e. ®;5(w) = (w—wj(5))k .
Then the first polynomial part in (8) is taken into the first component in (9) by
using instead of Z;3 the form Z;, with

_ : k k
Zit - (Zita ]-q><1 ® Dla‘g(witla sy Wiy - e Witmy - - - 7witm)) )

BT = (BT,aH,...,alk,...,aml,...,amk).

For derivations it is useful to have the penalty term in matrix form. With D;

being the (M; — 1) x M; contrast matrix

11



: M; M;
one obtains Y .7 Aay,)? = Y7 (s — ajs—1)® = o] Dj Djo; where o] =
(aj1, ..., ;). By using D;-i = D]-D?*1 and K; = (D;-l)TD;-i the total marginal

likelihood (7) is given by

Ip (B, Q, {js}) Zlog/f yi|b)p(bi; Q)d Z)\ Z af Koy, (10)

= s=d+1

For the truncated series approach (8) the matrix K is even simpler since it has
diagonal form given by K; = Inswr.

The penalized marginal likelihood used here should not be confused with
penalized quasi-likelihood as used by Breslow & Clayton (1993). Here the penal-
ization refers to the smooth component whereas in Breslow & Clayton (1993) the
focus is on shrinkage estimation of the random effects and penalization refers to
this shrinkage. A combination of the approach of Breslow & Clayton (1993) and
penalized smooth curves yields double penalization (see Lin & Zhang (1999) in

the context of smoothing splines).

3.2 Maximizing the penalized marginal likelihood

The marginal likelihood (10) depends only on the structural parameters of the
model. These are given by (3, a and @@ = cov(h;). Let ¢ be decomposed by
Q = Q'?Q"/? where Q'/? denotes the left Cholesky factor. By simple matrix

algebra the linear predictor (9) may be written in the usual linear form

Nt = Zub+ P+ VVz‘tQ%ei

s
= [Zu, @i e @ Wy |a (11)

6
where e; ~ N(0,I) is the standardized random variable and 6 = vec (QI/Q) For
univariate random effects the Kronecker product simplifies to ¢;WW; and 0 =
\/var(b;). By utilizing (11) all of the structural parameters are collected in 67 =

(BT, o, 67).

For the maximization of the penalized likelihood [p some approximation pro-

cedure is necessary. There are two essentially differing procedures: the direct

12



approach that uses a Monte Carlo or Gauss Hermite approximation of Ip (e.g.
Hedeker & Gibbonsg 1994, Hartzel, Liu & Agresti, 2000) or indirect approaches
based on the EM algorithm (e.g. Anderson & Aitkin, 1985, Booth & Hobert,
1999). Direct approaches work well in simple cases, for example GLMMs where
only the intercept is random, but for more complex models the EM algorithm is
a more robust alternative.

In the following the direct approach is shortly sketched since some of the
derived terms will be needed later. Let vy, 25, 9 = 1,..., G, denote the masses and
quadrature points respectively. More precisely one has v, = 9,/y/7, 2, = \/529
with z, denoting the gth zero of the Hermite polynomial of degree G and z, the
corresponding weight found e.g. in Abramowitz & Stegun (1972). Then the PML

is approximated by

Ip(§) = Zlog {ngHf(yit|zg, } - —Z)\ o] Koy (12)

where the random effects e; are replaced by the known quadrature points, or more
precise f(yit|z,,0) has predictor value 7;, = Zyy3 + ®;0 + WiQ/?2,. Tt should
be noted that if the random effect is vector valued z, is the quadrature point in
multinominal Gauss-Hermite quadrature and is also a vector.

The score function derived from Gauss-Hermite approximation to the penal-

ized marginal likelihood (7) is obtained by

sp(0) = 31P(5)/35 =

n

_ZZ% )010g [ (yil24:0)/00 + 0 (ZA o] Kaj> /95

i=1 g=1
n G

T
771
:Z Cig (0 Z ztg ) ztg(yzt fitg) — DS (13)

i=1 g=1

where
Zitg = [Zzt;q) Z ®W ] ’

79 g

Cig(0) = vgf (yil 295 ) / szf(yﬂzs, a)

13



and
D = Diag (0psp, M K1, - -, A Ko, Ojpjj0))

where 0p, is a p X p matrix of zeros (p denoting the dimension of 3) and 09 g is
a matrix of zeros with dimension corresponding to 6. Moreover, ¥, f1iry denote
evaluation at ny, = Zyf + ®;a + zg’ ® Wyf. This is equivalent to the score
function of a weighted multivariate GLM. For the derivation of the first term see
Fahrmeir & Tutz (2001), Section 7.4.

The problem with (13) is that the weights ¢;,(6) depend on the parameter.
Thus the straightforward use of the GLM framework is not possible. For example
the Fisher matrix which is based on the second derivatives of [p is difficult to
obtain for complex models and therefore the usual Fisher scoring algorithm is
not available. An alternative that can be used is the quasi-Newton algorithm
(Hartzel, Agresti & Caffo, 2001). Hartzel, Agresti & Caffo (2001) also reduced
the number of quadrature points by extending adaptive Gauss-Hermite (Liu &
Pierce, 1994, Pinheiro & Bates, 1995) to multicategorical data.

The alternative indirect approach which is based on the EM algorithm avoids
some of these problems. Since it is used in applications it is given more explicitely.

In the E-step of the (p + 1)th cycle one has to determine
M (5[6@) = E {log f (Y, E; 6)|Y; 6®)}
— [ 108 (£ 5 8) 1 (1Y, 69) dE

where
n n 1 m
log f(Y, B; 6) = ) _log f(uiles, ) + D log (g(ar) + 5 Y Aje] Kjo
i=1 i=1 j=1

is the complete penalized data log likelihood with Y = (yi,...,y,) denoting
the observed data and E = (eq,...,e,) denoting the unobserved data; ¢ is the
mixture distribution of the standardized random effects e;. Since the posterior

has the simple form

f (Ely,6®) = Hf(yi|€ia5(p))Hg(€i)/H/f (yiles, 670 g(es)de;

=

14



M (6/6®) simplifies to
5|fS Zk / log f(yilei, )+10g9(€z‘)]f (yi|€i75(p)) g(6;)de;
+ 5 Z)\j&ijOéj
=1

where k; = [ f(y;]e;6®)g(e;) does not depend on 4.

The integral in M ((5 |6(p)) may again be approximated in several ways: In a
Monte Carlo type algorithm it is approximated by the mean over drawings from
N(0,1), in a Gauss-Hermite type approximation which is used in the following

one has the approximation

M ((5|5(1’)) ~ M ((5|5(P)) — Z {Z Cig (log f(yilzg; 0) + logg(zg))}

i=1 g=1
1 m
T
— 5 Z )\jOéj Kjaj
j=1
where z, are the G' Gaussian quadrature points and the weights

Cig = U] yz|zga /Zf yz|zsa 5])

contain the masses v, which correspond to the quadrature points z,. The beauty

(14)

of this approximation is that M(§|6(®)) again corresponds to the penalized weighted
log-likelihood of a generalized linear model and therefore maximization (the M
step of the EM algorithm) is simply realized within the framework of GLMs.
Thus the method used by Hinde (1982), Anderson & Hinde (1988) of using the
weighted log-likelihood can be extended to the penalized marginal likelihood of
multivariate GSSMMs. Details of the easily implemented algorithm are given in

the Appendix.

3.3 Nonparametric maximum likelihood estimates

The nonparametric maximum likelihood approach (Aitkin & Francis, 1998, Aitkin,
1999) may be extended to a penalized nonparametric likelihood approach in a sim-

ilar way. Let vT = (v1,...,vg), Y ; v; = 1, be the vector which characterizes the
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proportions of the finite mixture on the mass points given by 27 = (z1,..., zq).
That means v, is the mixture proportion of mass point z,. Instead of the predic-
tor (11) which is based on random effects e; ~ N (0, I) now the density f(vit|2,, 0)
is determined by the predictor

Nitg = LB + @i + Wiyzg = Zjyy0p

(zf,...,2L) and Z;, = [ Z4, <I>l, 0,
., Wi, ...]. The corresponding vector of structural parameters 4! = (37, «

2T wT)

where z, is one mass point from the vector 27 =

now includes the mass points z and the mixture proportions v. To dis-
tinguish the nonparametric parameters as well as design matrices from previous
terminology sub- or superscript n is used. In the corresponding penalized likeli-

hood the finite mixture distribution is given by

Zlog {Z Uj Hf(yit|zga(5n)} :

Let 8, be split into 67, = (87, o™, 2") and &, = v. Then the derivative is
obtained by

G

0 n '
Z8P5 1 Z Z ng Z Zztg 77 tg (yzt Mitg) — Do,

i=1 g=1
where D,, = Diag(Opo, MK, )\ij, O2mxom) and

dlp(6 Xn: f (Wilzg, 6n f(Wilza, 0n) _ (Cig(5n) _ CiG(5n)>

RIS o by v )

j=1,...,G—1. In the latter equation it has been used that vg =1 — Z#G Vg
The total score function is given by sp(6,) = (9lp(6,)/067 1, 0lp(6n)/Ovr, . . ., Olp(6,)/Ove—1).
The latter part of equation sp(d,) = 0 yields o, = = > | ¢ig(0n). Thus only
the first part dlp(d,)/00,,1 = 0 has to be solved by finding a solution Snyl.

3.4 Inference

Inference may be based on the score function sp(d). However, the function sp ()

is not a score function in the usual sense since
E(sp(d)) = D¢
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which is not equal to zero. Let sp(d) be decomposed into

with s(0) denoting the first term in (13) which corresponds to a weighted multi-
variate GLM. Then a first order Taylor approximation yields

(0—8) = <— 8381;(;5)>1 5p(6) = — (3;§§> _ D)  (s(5) — D9

Using the approximation cov(s(8) — D&)) = cov(s(8)) = S0, 5:(8)s:(0)T = S(0)
where ;(8) = 320 €ig(8) Y20y Zity (0 (1hitg) /01) iz (g — big) and

E <_ a;(@) = cov(s(d)) ~ ;‘ 5i(0)s:(0)" = S(9)

~

one obtains as approximation of cov(d) the sandwich matrix

. . -1 . -1
v (8) = (5(5) + D) S(5) (5(5) + D) . (15)
For the special case \y = --- = \,;, = 0 which corresponds to a strictly parametric

setting without smoothing one obtains D = 0 and therefore
cov(d) = S(6)

which is equivalent to the proposal of Gourieroux & Monfort (1989) for the com-
putation of standard errors in mixed models.

The simple form (15) avoids the tedious task of deriving the derivative of sp(J)
which corresponds to the second derivative of the likelihood. The complexity of
these derivations has been the reason to use the EM algorithm instead of a direct

method based on these derivations.

3.5 Choice of smoothing parameters

One way of selecting the smoothing parameters is cross-validation. The basic
idea is to leave one observation out and measure the discrepancy between this
observation and its prediction based on the remaining n — 1 observations. After

this is done for every single observation the total discrepancy is built. Since
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observations within one cluster are correlated leaving one out means to leave
out one cluster at a time (see also Rice & Silverman, 1991). The observation of
one cluster is given by y! = (y;1,...,yr) drawn from the marginal distribution
(given Zj, ®;, Wy but not the random effect b;). An appropriate measure for
a wide range of distributions is the Kullback-Leibler discrepancy KL(fy-, fy) =
Ey- log(fy-/fy) where ¢*, 1 are parameters that determine the densities fy-, fy.
If the first argument in KL(.,.) is replaced by the degenerated distribution ¢;
which puts mass one on observation vector y; and the second argument by the

estimated density one obtains
KL(6;, f) = —log f (ys; ;)

with f(y;; %) = [TI=, f(Wit; ir)db; where the predictor 37 = (7, ..., fir) is
given by 7; = Zul3+ ®;&+ Wyb;. For the evaluation of f(yi; ;) the same Gauss-
Hermite or nonparametric approximation is used as in (12). One obtains the

cross-validation criterion
VA = ZIng Yi3 i)

which implicitely takes the correlation between y;q,...,y; into account. For
categorical data with ¢ + 1 response categories one has y! = (yJ,...,ylr) with
components ¥} = (Y1, . - ., Yiqg+1) and CV has the familiar form. In the less time
consuming form of m-fold cross validation the data are partitioned into m blocks
of approximately n/m observation and the discrepancy between observations and

prediction is computed for one block with estimates based on the remaining m —1
blocks.

4 Applications and simulations

4.1 Application to infectious disease data

For the binary response variable in the infectious disease data set (Application 1

in Section 1) Lin & Zhang (1999) considered the semiparametric logistic model
logit (P(yy = 1|b;) = x},v + a(age;,) + b
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Figure 1: Estimated effect of age for infectious disease data based on GH(8)
(above) and NPML(3) (below) with estimated 0.95 confidence bounds

where x;; contains an intercept, xerophthalmia, seasonal sine and cosine, gender
height and stunting. For comparison the same model is fitted with « specified
as a B-spline basis of degree 2 with 20 knots and differences of first order. The
model was fitted by Gauss-Hermite quadrature and nonparametric maximum
likelihood, abbreviated by GH(G) and NPM L(G) where G denotes the number
of quadrature or mass points used. Table 1 shows the parameter estimates for two
specific choices, GH (8) and NPM L(3); in addition the double penalized quasi-
likelihood estimates (DPQL) from Lin & Zhang (1999) are given. It is seen that
estimates are quite comparable. The same holds for Gauss-Hermite with G > 6
and NPML with G > 3 (not given). Although (frequentist) standard errors
from the DPQL approach are slightly smaller than for the other approaches the
conclusions on the relevance of covariates are substantially the same.

The estimated effect of age which was modeled smoothly is given in Fig. 1
with smoothing parameter chosen by cross validation. The curves which are based

on Gauss-Hermite quadrature and nonparametric maximum likelihood are also
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Figure 2: 11-fold cross-validation based on Kullback-Leibler loss for infectious
disease data (GH(8): upper curve, NPML(3): lower curve)

quite comparable to the curves given in Lin & Zhang (1999). The same holds for
the standard errors for Gauss-Hermite quadrature (G > 6) and nonparametric
approaches with less or equal four mass points and DPQ L. For the nonparametric
approach standard errors are somewhat increased if more than four points are
used. Usually for more than three or four mass points only three of them have
weights which can be considered as non-zero. This was also the case in the
analysis of the present data set.

The curves in Figure 1 are based on 11-fold cross validation. Fig. 2 shows
that cross validation works well yielding distinct minima. The smoothing pa-
rameters which yields the minimal value is about the same for Gauss-Hermite
and nonparametric techniques. However, since the nonparametric approach is
more flexible the distance between observation and fitted value is smaller yield-

ing smaller distances than for the Gauss-Hermite procedure.

4.2 Simulation study
In a small simulation study the underlying model was
logit(P(ys = 1|b;) = 7o + 37y + a(w;) + b;

where 79 =0, v =1, a(w) = sin(w), b; ~ N(0,0?),0? = 1. The binary variable
x; takes value 0.5 for half of the subjects and —0.5 for the other half from n = 80
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GH(8) NPML(3) | Lin/Zhang
Intercept -3.009 (0.232) | -2.934 -2.92  (0.23)
Vitamin A 0.502 (0.544) | 0.545 (0.535) | 0.52 (0.46)
Seasonal sine -0.152  (0.214) | -0.126  (0.234) | -0.16 (0.17)
Seasonal cosine || -0.594 (0.175) | -0.575 (0.179) | -0.58 (0.17)
Gender 0.521  (0.251) | -0.483 (0.244) | -0.50 (0.24)
Height 20.030  (0.026) | -0.043 (0.027) | -0.03  (0.02)
Stunted 0.424 (0.465) | 0.299 (0.473) | 0.39 (0.43)
& 0.888 (0.505)

Table 1: Estimates for infectious disease data based on Gauss-Hermite quadra-
ture, the nonparametric maximum likelihood approach and double penalized
quasi-likelihood, the latter taken from Lin & Zhang (1999)

subjects. For each subject T = 5 observations were drawn. The estimates are
based on a B-spline basis of degree 2 with 40 knots and differences of first order.
Table 2 gives the estimated fixed effects and the empirical and estimated standard
errors for Gauss-Hermite based techniques (GH(8)) and the nonparametric max-
imum likelihood approach (NPML(3)). It is seen that both approaches worked
quite well in estimating the fixed parameters. For the nonparametric approach
o and & were computed from the estimated mass points and the corresponding
weights. Moreover, estimated standard errors are quite comparable to empirical
standard errors for fixed effects. Only in the case of o which reflects the het-
erogeneity the estimated standard error is distinctly larger than the empirical
standard error. Fig. 3 depicts the true curve and the mean estimated curve.
The variation of estimates are seen from box plots. In addition, estimated and
empirical standard errors are given by plotting mean curve +1.966 . For both
approaches the estimates work quite well and estimated standard errors reflect

the underlying empirical error well.
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Gauss-Hermite (GH(8))

Parameters Mean  Empirical SE  Estimated SE

o —0.016 0.145 0.141 (0.013)
" 0.971 0.240 0.245 (0.023)
o 1.088 0.246 0.471 (0.082)

Nonparametric maximum likelihood (NPML(3))

Yo -0.015 0.172
" 0.988 0.241 0.246 (0.024)
o 0.897 0.330

Table 2: Means and standard errors over 100 replications

5 Extensions

In Section 2.2 the flexibility of the predictor has been increased by specifying
a partial linear form of the predictor. This extension represents a basic form
of semiparametrically structured smoothing of random effects models which has
been used to derive the estimation concept. In the following several extension of
the predictor form are given which may be treated within the general estimation

framework.

5.1 Smooth components varying across observations

In many applications the variables w;; in the additive part of the predictor will
be cluster-level covariates i.e. w;; = wj;, and the index ¢ for the subject or the
repeated measurement can be dropped. In order to avoid identification problems
in the following w; is considered to be a cluster-level variable and moreover only
one smooth component is incorporated

The first extension reflects that the effect of a variable is not necessarily

constant across the observations within a cluster. If the observations are repeated
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Figure 3: True and estimated nonparametric functions with empirical standard
errors (drawn) and estimated standard errors (dotted) for Gauss Hermite(GH(8),
upper picture), and nonparametric maximum likelihood (NP(3), lower picture)

measurements it is well conceivable that the effect decreases or increases across
time. Then the corresponding unspecified function of w has the form a(® (w).
That means w has different influence for each observation within a cluster. In a
parametric setting one may specify o (w) = wa; where ay is a coefficient which
varies across time if observations are repeated measurements. Then the model
may be considered as a mixed model with varying coefficients and can be fitted
with local smoothing techniques (Tutz, 1999).

In the nonparametric case only in very large data sets (T small, n very large)

one has enough information to use the form o) (w) in full generality. If there is
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enough information the function a® can be represented in the form

W) = 3 a0, (16)

where the use of ®; means that the same knots are used for each ¢, but the
weights agt) obviously have to depend on t. To reduce this general approach so

that it works also for reasonable sample sizes one can decompose the weights into

o = ol 4+ q, (17)

S

where the first term depends only on the index ¢ which stands for the observation

within a cluster and the second term depends on the knot index s. Simplification
(17) yields

M M
agg (w) = a® Z O, (w) + Z D, (w).
s=1 s=1

If @, are chosen as B-splines ¢ = ) ®,(w) is a constant which can be omitted

and one obtains

M
a(w) = o + )" a,®,(w).
s=1

Thus a(w) = 37 a,®,(w) is a function which represents the basic effect of w
not depending on the observation ¢ and ¥ represents the shifting of the function
a(w) connected to observation ¢. Thus a(® is just an intercept for observation
t. The latter form represents an extension which is easily incorporated into
the framework of the model as given in Section 2 by replacing the predictor

Nit = Zinf3 + $ia + Wib; by

Nit = ZuB + Pray + i+ Wigh;
where

D= (I ® 1?)

with
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The vector «y may be treated as a fixed effect and is incorporated into the
linear term by considering the predictor n; = Z—tB + &0 + Wib; with Z; =
(Ziy, ®), BT = (BT, aT). Then the estimation procedure developed in Section 3
applies directly.

However, if T is large, for example in panel studies, even the simplification
(17) may not work well because the number of parameters is too high. Then the
parameters o), ..., oT) which are connected to variable w vary strongly across
t =1,...,T and reflect noise instead of structure. This effect may be avoided by

penalizing the variation of a® across ¢ by using the extended roughness penalty

k(o o) = 30 Y (May)?

1~ 2
+ 5 > (Afa")

s=d+1

(18)

where the subindex in A? refers to the index which is used in the penalization,
ie. Aja® =) — oD The new second penalty term penalizes the variation
of ¥ across t = 1,...,T. The incorporation of the extended penalization is
a straightforward exercise which adds no new structure to the estimation and

inference concepts derived in Section 3.

5.2 Varying-coefficients modelling

The extension to effects which vary across observations as given in section 5.1
may be seen in the more general framework of varying coefficients models. Hastie
& Tibshirani (1993) extended the modelling of covariate effects by introducing
a form of interaction of variables where the effect of one variable is modified
smoothly by a so-called effect modifier. Let u; be a set of variables which modify
the effects of covariates x;. Then the rth component of the predictor in its

general form is given by

Nitr = Ny + Ny + 13y + 0y
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where 1%, n{, nf represent the linear, the additive and the random term and 7},

is given by

my =Y v ()
j

where v(;)(u) is an unspecified function. Thus the effects of covariates j (or part of
them) may vary with the variables u;;. Since the functional form of v(;)(u) has not
been determined a priori, this is a semiparametric model containing parametric
parts (weighted variables z;;) and nonparametric (unspecified functions u,;).
However, in contrast to partially linear models the structure is now multiplicative.
Use of an expansion in basis functions for v(;(u) and an additional penalty term
in the marginal likelihood is straightforward. The models given in Section 5.1 may
be seen as varying-coefficients models where the variation is across the repeated

measurements. The corresponding varying-coefficients term is given by
v
Nt = a

which is equivalent to a time variation of the intercept. For repeated measure-
ments with many repetitions time variation is the essential interaction effect

which may also have a semiparametric form. The term
Mt = Tigj&¥

specifics that the effect of variable ;; varies across time. In order to avoid prob-
lems of identification problems also the intercept should be specified as varying
across time if xitjag)) is included in the predictor.

In common regression modelling models which contain varying coefficients
form have been considered by Eilers & Marx (1999), Tutz & Scholz (2000) and
Kauermann & Tutz (2000). For mixed models Fahrmeir & Lang (2001) include

varying coefficients within a fully Bayesian framework.

5.3 Application to knee injury data

The ordinal response in Application 2, Section 1, has five response categories

which reflect the level of pain suffered when the knee is actively bent. Since the
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Cumulative model Sequential model
o) 4.529 (0.589) 4.361 (0.562)
a? 2.617 (0.541) 2.569 (0.520)
al® 1.462 (0.534) 1.431 (0.492)
Ya 0.708 (0.337) 0.604 (0.331)
Yr ~1.997 (0.286) ~2.047 (0.278)
o 8.897 (0.678) 8.509 (0.660)

Table 3: Estimated parameters for knee injury data (standard errors in brackets)

pain level should decrease during therapy the response 1 stands for severe pain
and 5 for no pain. In particular for the sequential model this is a more natural
ordering although for symmetric distribution functions in the link the reverse
ordering yields an equivalent model. The models considered are the cumulative
model

P(Y;t < 7"|$z't) = Nitr

and the sequential model
P(Yit = 7"|Yit <r, xit) = Nitr
where the nonparametric predictor has the form
Nir = Yor + 0P 4+ a(Age) + treatment x 7, 4+ gender x g

Table 3 gives the estimated parametric effects for both models where oY has
not been penalized but a(age) is estimated by penalization (A = 8, B-splines of
degree 2, 34 inner knots, first differences penalized).

It is seen that for both models the heterogeneity is rather strong reflecting
that the scaling of pain levels is a subjective response that varies across individ-
uals. If age is incorporated in quadratic form the effect is even stronger, yielding
0 = 9.423. Therapy is distinctly superior to placebo and there are ordered time
effects which reduce the probability of high pain levels over time thereby reflect-
ing continuity in improvement. Figure 4 shows the smoothly estimated age effect

which obviously is nonlinear. In particular for people above 35 years of age the
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Figure 4: Estimated effect of age in knee injury data (above: sequential model,
below: cumulative model)

probability for high pain levels is reduced, maybe reflecting higher tolerance for
pain or different scaling of pain levels. In the study the focus is on the effect of
therapy but of course the effect should be adjusted to potentially differing scaling
of pain.

Since the same effect has been found in other data sets it is noteworthy that
the confidence intervals for the cumulative model are slightly larger than for the

sequential model.

6 Concluding remarks

A concept of generalized semiparametrically structured mixed models has been
developed which allows to incorporate into the predictor additive terms of un-

known functional form as well as nonparametric interactions in the form of vary-
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ing coefficients. For additive models the approach represents an alternative to
the double penalized approach by Lin & Zhang (1999). The latter is based on
the Laplace approximation considered by Breslow & Clayton (1993). Although
this approach may produce biased estimators for non-normal data (Breslow & Lin,
1995, Lin & Breslow, 1996) it encompasses nested and crossed designs whereas the
present approach, because of the high dimensional integration needed in crossed
design, is adequate only for nested designs. As is seen from the comparison with
the approach of Lin & Zhang (1999) in this case the results are quite similar.

The penalized marginal likelihood approach considered here is wider by in-
cluding ordinal response variables and more general semiparametric terms in the
predictor. Moreover, it applies under normally distributed random effects as well
as in the form of nonparametric penalized marginal likelihood. In applications the
performance of these approaches was comparable if the number of mass points in
the nonparametric approach is kept low. If the number is increased by including
mass points which have low weights standard errors become larger.

The computation in the present approach makes use of GLM tools which
makes implementation rather easy. The approach encompasses ordinal response
models of the cumulative and sequential type. The latter is even easier to handle
because it may be embedded into binary GLMs by considering transitions be-
tween adjacent categories. As a consequence it is more stable because no order
restrictions in the predictor are necessary.

The approach can easily be extended to multicategorical mixed models with
nominal categories which have been proposed recently by Hartzel, Agresti & Caffo
(2001). For nominal models one has to estimate smooth functions for each of the
categories. Thus estimation procedures are more complex but the same principles
apply. For the simpler case of nominal data without mixing penalized functions

approach have already been shown to work by Tutz & Scholz (2000).
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Appendix

The M-step consists of maximizing M (5|6®) from (14) which is equivalent to
solving the equation M (5]6®) /96 = 0. M(5[6®)) is given by

M (8)6@ ZZZCW log(yit|2g; 0) + log g(z,) Z)\ o) Kja;

i=1 g=1 t=1

where y;;|2, has predictor

g
Nitg = [Zit, Pi, ZgT ® Wi |
6
Thus one obtains
oM (5]6®)) & mt
98 ZZZ 1925 = Sig (Uit — Hitg),
i=1 g=1 t=1
OM (5|6) i h(Dizy)
OO oSS o7 ), )~
J i=1 g=1 t=1
OM (6]6@ G AL Tah(mt )
WOO) S5 Sy (o7 o i) 20— ),
i=1 g=1 t=1 n
where ¥, (/ti1y) are the covariance (expectations) of y;; evaluated at 1, = Z;, 5+

(I)Z'CY+Z§ (59 Wztg

In closed form one obtains

OM (5]6®) n AL Oh(m;
( | chig (Zit,@i,Z;F@Wzt)T gntg)zztg(yzt Litg)
i=1 g=1 t=1 n

- Dlag (Opxp; )\IKI; SRR )\me; 0|0\><|0\) (5Ta aTa GT)T

where 0p, is a p x p-matrix of zeros (p denoting the dimension of 3) and 09|
is a matrix of zeros with dimensions corresponding to 6.
The first part corresponds to the weighted score function of a (multivariate)

GLM with observations y;; given ny, fori =1,...,n,t=1,...,T,9g=1,...,G.
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The second part is the block-diagonal matrix representing the penalty term. The

corresponding Fisher matrix is given by

n T
5|6 ZZZCZQ Zzt,(I)z,Zg ® W )T ahgz;tg)zw} (ahgz;tg)> (Zit, @i, 2] © W)
i=1 g=1 t=1

— Diag (Opxp, MKy ooy Ak, 0|9‘) .

Maximization of M(5|6®) may be obtained by pseudo-Fisher-scoring iterations

V. (p)
M (5(s+1)|5(1))) =M ((S(s)|5(p)) + F—l (5|6(P)) %

The estimate ;1) which results after iterations s = 1,2,... have converged
represents the next value 6" in the EM cycle. Thus one EM cycle contains a

completed Fisher scoring algorithm.
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