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Abstract

Smooth models became more and more popular over the last couple of years. Standard
smoothing methods however can not cope with discontinuities in a function or its first
derivative. In particular, this implies that structural changes in data may be hidden in
smooth estimates. Recently, Chu, Glad, Godtliebsen & Marron (1998) suggest local M
estimation as edge preserving smoother. The basic idea behind local M estimation is that
observations beyond a jump are considered as outliers and down-weighted or neglected in
the estimation. We pursue a different, but related idea here and treat observations beyond
a jump as tracing from a different population which differs from the current one by a shift
in the mean. This means we impose locally a mixture model where mixing takes place due
to different mean values. For fitting we apply a local version of the EM algorithm. The
advantage of our approach shows in its general formulation. In particular, it easily extends
to non Gaussian data. The procedure is applied in two examples, the first concerning the
analysis of structural changes in the duration of unemployment, the second focusing on

disease mapping.
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1 Introduction

In recent years a considerable number of papers dealt with models where a general
smooth structure is disturbed by one or several change points or discontinuities. For
statisticians a major focus of research has thereby been on testing the existence and
location of change points in smooth models, see e.g. Miiller (1992), Hall & Tittering-
ton (1992) or Miiller & Stadtmiiller (1999). Beside these inferential considerations,
the fitting of models with edges and change points has been considered by several
authors, see e.g. McDonald & Owen (1986) or Wu & Chu (1993). Recently, Foxall
(2000) and Aitkin & Fox (2000) discuss the use of Artificial Neural Networks for
the estimation of discontinuous functions. In image analysis a frequently used edge
preserving smoother is the sigma filter, see e.g. Lee (1983) or Godtliebsen (1991).
Chu, Glad, Godtliebsen & Marron (1998) enlighten the sigma filter by borrowing
results from robust statistics and suggest local M estimation in order to stabilise
the performance of the sigma filter. Further discussions of local M estimation can

also be found in Winkler, Aurich, Hahn, Martin & Rodenacker (2000).

The general method running behind local M estimation is a local robust estimate
which allows for outliers from a general smooth structure. Basically this means,
when fitting the value of a function on one side of a jump, observations beyond the
jump are treated as outliers and hence they are neglected or down-weighted in the
local mean estimate. The approach presented here is based on a similar idea. We
consider observations beyond a jump as tracing from a different population which

differs from the local one by a shift in the mean. In this respect the location of a



jump can be interpreted as cut-point between two populations and the jump height
is the difference in the population means. Beside jumps in the mean function we also
consider bends, i.e. jumps in the first derivative. In this case we fit locally a mixture
model with different intercept and slope parameters in the different populations.

Estimation in both cases is carried out by a local version of the EM algorithm.

Mixture models are generally discussed in Béhning (1999), Aitken (1999) or Tit-
terington, Smith & Makov (1985) and references given in there. They are also known
as mixture of experts as introduced in Jacobs, Jordan, Nowlan & Hinton (1991) (see
also Jacobs, Peng & Tanner, 1997). A ’classical’ mixture model thereby assume that
observations trace from different subpopulations with different mean and/or differ-
ent slope parameters. The a priori mixing distribution is thereby usually assumed
to be the same for all observations. Rosen, Jian & Tanner (2000) recently extended
this by modelling the a priori mixing distribution to depend parametrically on some
covariates. The approach suggested here can be seen as a smooth generalisation of
their work by allowing the mixing distribution as well as other parameters to depend

smoothly but nonparametrically on some covariates.

Unlike most methods for edge preserving smoothing, the approach of local mix-
ture modelling can directly be applied to non Gaussian response data simply by
embedding the approach in the framework on Generalised Mixture Models. This
appears as advantage, but we emphasise at this point that for Gaussian response
data local mixture modelling as edge preserving fitting routine can hardly compete

with available edge preserving smoothers like e.g. the sigma filter or local M esti-



mation. This is basically due to the required computational effort which arise from
local applications of the EM algorithm. On the other hand the simple generalisation
of the routine towards non Gaussian data makes the approach appealing and easily
applicable for a variety of data situations. In the paper we consider two examples.
The first shows the performance of the routine applied to discrete survival data giv-
ing the length of unemployment. As second example we consider disease mapping

where smoothing takes place spatially.

The paper is organised as follows. In Section 2 we introduce local mixture mod-
elling and discuss feature of the local EM estimation. Section 3 demonstrates the
applicability of our approach in simulations and examples. Section 4 gives some

extensions to estimate discontinuities in the slope, i.e. jumps in the first derivative.

2 Smooth Generalised Mixture Models

2.1 Local Mixture Modelling

The major ingredient of our modelling approach is the generalised smooth model

p=E(ylz) = hiy(x)} (1)

where h(-) is a known link function and ~(-) is an unknown but smooth function
varying with the covariate x. For simplicity of presentation we assume that x is
univariate and scaled such that it takes values between 0 and 1. The response y for

given x is assumed to be distributed according to the exponential family distribution

flyln) = exp[{yf — k(0)}/¢] (2)
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where § = 6(n) is the natural parameter, k(-) is the cumulant generating function
with 0k(0)/00 = u, ¢ is the dispersion parameter and 1 = () is the predictor. For
ease of notation we restrict ourselves in the following to natural link functions h(-),
i.e. we assume ) = (). Smooth estimation in model (1) by means of local fitting
is treated e.g. in Fan & Gijbels (1996), Fan, Farmen & Gijbels (1998) or Carroll,

Wang, Simpson, Stromberg & Ruppert (1998).

We extend model (1) by incorporating unsmooth jump effects. This is done by

adding a discontinuous step function A(x) to y(z), where

A(r) = Zgakl[tk_l,m(w), 3)

with 0 = ¢ < t; < ...%{,1 < 1 being the discontinuity or jump points and
Iit, 14 (2) is the indicator function taking value 1 if ¢,_; < x < #; and 0 oth-
erwise. The coefficients d; thereby give the jump heights. Both, the jump heights
as well as the jump locations are unknown and have to be estimated from the data.

The resulting discontinuous model has the form

Eyle,tr,...t) = h{y(x) + Alx)}. (4)

Let t(z) = {Lpou) (), Lty nt, 1) (@), 11,1 17(2) }T be the indicator functions or-
ganised as vector and let &(z) = {y(x) + d01,...,7(x) + §4—1,7(2)}T be the vector
valued smooth function resulting from ~y(x) shifted by the jumps. This allows to

rewrite model (4) to

p=E{yle,t(x)} = h{t(x)"&(2)}. (5)



The indicator vector #(x) is unknown and we make use of a Bayesian perspective
and assume that ¢(x) is random. A natural distributional assumption is to consider

t(z) as multinomially distributed, i.e.
t(x) ~ M(m), (6)

with 7(z) = {m(x),...m,(z)} as cell probabilities 74 (x) = P{t(z) = ex|x}, where e
is the k-th unit vector, i.e. e, consitsts of zeros except of a 1 at the k-th position. The
parameters 7(z) give the a prior probability for ¢t(x) which may vary smoothly with
x. For simplicity of notation we frequently write 7 only, i.e. neglect the dependence

on z. Estimation of w(x) and £(z) is now carried out by a local EM algorithm.

2.2 Local EM Estimation

Let wy; = K{(z¢g — x;)/h} denote some kernel weights with K(-) as unimodal,
symmetrical kernel function and h as bandwidth. The basic idea is to fit model (5)
locally at point zy by assuming v(z) & y(x¢) =: 7 for x close to xy where locally

here refers to the kernel weights w;. This means we fit locally the model

E{yilai, ()} = h{t(z:) &}, (7)

with § = (70 + d1,...,7% + d4-1,70). Marginalization over the unknown indicator

vector t(x) provides the marginal local likelihood function

lao) (B0) = Zwm‘li(@o) (8)

where 0y = (I, 7l) is the vector of parameters, my = m(x) and [;(6y) = log f(v:; o)

is the marginal log likelihood contribution with f(y;;60)= Y7 _; mox.f (yi|€ok). Direct
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maximisation of (8) is complicated since [;(6p) depends in a clumsy way on the
parameters & and my. Instead, the EM algorithm presents itself as an alternative (see
e.g.Bohning, 1999, Aitken, 1999 or Friedl & Kauermann, 2000). The major difference
between the local version applied here and the standard EM is that smoothing is
involved and additional smoothing weights wg; occur. The EM algorithm provides a
simple M step by maximising a weighted generalised linear model while the E step
results by simple density multiplication. We refer to the appendix for more details

and a discussion on the choice of starting values.

Posterior Mode and Posterior Mean Estimates
The local EM algorithm provides an estimate for the parameter vector 6y = (¢F, nl)7.
For the unknown step function in (4), this implies that I'(x¢) at point o takes value

&or with probability mo, for k = 1,...,¢. A prediction for the value of I'(zg) can

now be obtained from the posterior mean
~ q ~
FMezm(l‘O) = Z gOk%Ok\yo
k=1
or the posterior mode estimate
I vode(20) := §o with [ = arg max, {Toxy, }

where Ty, is a plug in estimate of the posterior probability

T _ f(yo|50k)7T0k
OFlyo iy fwoléo)mor

(9)

In simulations we experienced that the posterior mode estimate performs generally

more stable and it is therefore preferred subsequently.
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3 Examples

3.1 Simulation

Before applying the local EM algorithm to examples we first demonstrate its be-
haviour and performance in simulations. We draw data from the normal response
model y; = p(z;) +e€;,i=1,...,150, with p(z;) = v(z;) + A(z;) as seen from Figure
1 and ¢; independently N(0,0?) distributed with o = 0.025. Figure 1 demonstrates
the performance of the local EM estimate in comparison with a local M estimate.
For both fits we used a Gaussian kernel with bandwidth A = 0.1. Starting values for
the EM algorithm were chosen as suggested in the appendix. The local M estimate
is defined by fi(zo) = argmin, 3; woip(y; — u) where p(t) = 1 — exp{—1/2(t/0,)*}
with o, set equal to o. It appears that both estimates behave comparable. We
investigate the variation of the estimates by repeating the simulation 300 times.
The resulting simulation region for the estimates is shown in Figure 2. The per-
formance is rather stable. The small jump at 0.6 is detected in more than 50 % of
the simulations, the remaining jumps are also clearly found. The local M estimate
behaves similar, except that it does not uncover the small jumps at 0.6. This could
be corrected by choosing a smaller value for o,, which however makes the estimate

rather unstable and jagged, so that we did not pursue this setting.

3.2 Unemployment Data

In the following example we considers unemployment data taken from the German

socio economic panel. The data have been analysed previously in Kauermann &
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Tutz (2001) with the focus on smooth modelling. Here we investigate possible
discontinuities in the model. Participating households in the socio economic panel
record on a yearly basis if and how long they have been unemployed in the last
observation period (1 year). We consider households where at least one member has
been unemployed and restrict the analysis to German citizens. The focus of interest
is on estimating the chances to return to professional life. Let y; denote the reported
duration of unemployment by the i-th individual. We consider the discrete survival

model
Plyi<z+1lyi>z) = h{y(z)+Az)}

with h(-) as logit function and x = 1,2, ... giving the duration of unemployment in
months. The fitted curves are shown in Figure 3 separately for males and females.
For comparison we also show a smooth fit based on a fitting a model like (1) to the
data, i.e. setting A(z) to zero (smooth fitting and variance estimation is carried out
using local likelihood methods, see e.g. Fan, Farmen & Gijbels, 1998 or Kauermann
& Tutz, 2000). The curves plotted are calculated for bandwidth h = 5. The
structure of the curves however remains basically unchanged for different, reasonable

settings of the bandwidth.

Overall, the chance for returning to professional life is decreasing over time. The
smooth structure is however disturbed at month 3 where a jump occurs in both
genders. This means a relatively large number of unemployed individuals report to
return to professional life exactly after 3 months of unemployment. A second smaller

jump occurs after 12 months but interestingly enough only for males. Interpretation



of such bumps can be a delicate issue due to political implications. To us, three
explanations appear plausible for the observed phenomena. First, the peaks can
mirror calendar a effect or reporting bias, meaning that even if an individual is
unemployed less than or longer than 3 months, the time of unemployment is rounded
quarter-year-wise in the questionnaire of the panel. A second explanation for the 3
month peak could be that unemployed people require some time to get orientated
on the job market, since fluent transition of jobs does not lead to unemployment.
The time period to get orientated is thereby about three months. A final possible
explanation for the 3 month peak is that the jump occurs due to seasonal workers
who are often unemployed over winter months. In general, further investigation on
an individual basis seems necessary to find a valid explanation. The discontinuous
pattern is however concealed in a smooth fit and is discovered by discontinuous

smoothing.

3.3 Spatial Smoothing and Disease Mapping

The second example considered concerns spatial smoothing in form of disease map-
ping. For a general overview about statistical methods in disease mapping we refer
to Lawson (2001), Lawson, Biggeri, Bohning, Lesaffre, Viel & Bertollini (1999)
or Bohning (1999) and references given there. Nonparametric Maximum Likeli-
hood estimation respectively mixture modelling in the context of disease mapping
was suggested by Clayton & Kaldor (1987) and further developed among others

by Schlattmann & Bohning (1993). We investigate data giving the mortality rate
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from oral cancer for males in Germany in the years 1986-1990. The data have
been analysed before by Knorr-Held & Rafier (2000) with Bayesian methods using
MCMC methods. Their focus has been on finding clusters of districts with the same
risk. Figure 4 shows the observed standard mortality rates (SMR) for 544 German
districts. The SMR is thereby defined by the observed death counts y; divided by
the expected cases e;, where the expected cases are calculated on the basis of an
external population stratified for different ages (see Clayton & Hills, 1993 for more
details and Knorr-Held & Rafler, 2000 for an exact description of the strata used
in the considered data). There appear a considerable amount of variation and no
smooth structure can be seen from the raw SMR. Fitting a local mixture model
yields the results shown in Figure 5. The local weights are thereby constructed
from the distances t;; between districts ¢ and j. As distance we thereby define the
smallest number of borders one has to pass when going from district ¢ to 5. Hence,
direct neighbours have distance ¢;; = 1 and we define ¢;; = 0. Weights used to obtain
the fits in 5 were chosen as w;; = (8 — t;;)/8 for t;; < 3 and w;; = 0 for ¢;; > 3.
We experienced other weights with larger neighbourhoods, i.e. larger bandwidths
as well, but the results were rather similar. The local mixed model (4) used in this

example has the form

E{yilt(z:)} = h{vi+~(0) + A%}

where h(-) = exp(-), v; = log(e;) is serving as given offset and ~(i) is a spatially
smooth function over the districts. In Figure 5 we plotted the relative risk RR; =
exp{7(i) + A(i)}, where values RR; > 1 indicate that the fitted mortality is above
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the expected and vice versa. The starting values were chosen as suggested in the
Appendix. Sensitivity on the starting values was checked, but didn’t prove to be

apparent.

In general, regions with higher risk are the north-eastern part of Germany as
well as the south-western part. A similar finding is reported in Knorr-Held & Rafler
(2000) who name tobacco smoking and alcohol consumption as the potential risk
factors for oral cancer in the north-eastern part (see also Becker & Wahrendorf,
1997). For the south-western part the high risk extends over to France (see e.g.
Blot, Devesa, McLaughlin & Fraumeni, 1994). Beside the general smooth structure,
some districts distinctly distinguish from their neighbours. These are in particular
larger cities, as e.g. Hamburg (HH), Kiel (KI) and the western part of Berlin (WB).
In the western part of Germany the cities Krefeld (KR), Diisseldorf (D) and Cologne
(K for K6ln) and east of them the industrial area along the River Ruhr (Ruhrgebiet)
also show a higher risk. The local mixture model can cope with these discontinuities

while fitting generally a smooth surface.
Simulation

It appears worthwhile at this point to investigate the performance of the estimate
used in this example above. In particular we investigate, if the discontinuities ob-
served for some of the cities occur only due to a variation in the expected mortality
rate v;. We simulate data from the model E(y;|z;,v;)) = h{v; + v(z;) + A(z;)},

i=1,...,150 and z; equally spaced on [0, 1]. The expected log moralities v; serve
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as given offsets in the estimation and they are drawn once from a contaminated nor-
mal distribution as seen from Figure 6. The fitted relative risk exp{F(z;) + A(x;)}
and the true curve are shown in Figure 6. Clearly, there is no indication that the
extreme values of v; disturb the reconstruction of the discontinuous structure. This

also shows in the larger simulation based on 150 simulations also shown in Figure 6.

4 Extensions and Discussion

4.1 Jumps in the Derivative
Local Linear Mixture Modelling

In the same fashion as local constant smoothing can be extended to local linear
smoothing (see e.g. Fan & Gijbels, 1996), local EM estimation can readily be ex-
tended to local linear EM estimation. The basic idea behind local linear smoothing
is that v(z) is expanded linearly about g, i.e. y(z) & v(x¢) + 7' (x¢) (o — ). Trans-

ferring this to model (4) and (7) yields the local linear mixture model

E{ylws, t(r)} = h{t(z:i)éo + (vi — 20)70} (10)

with 74 = 7'(z¢). Model (10) can be seen as mixture model with random intercept

and parametric slope parameter -y corresponding to the covariate x; — .

The next step is now to extend (10) to accommodate jumps in the first derivative.
Assume therefore that the smooth function y(x) in (1) is disturbed by jumps and/or

bends. We model this by adding two discontinuous step functions to both, y(x) and
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its first derivative. This yields the model

B{ylet@)} = h{7(@)+M(@)+ [ Asu)du} (11)

where A;(x) for [ = 1,2 are step functions as defined in (3). We rewrite model (11)

to

El{ylz, ()} = h{t(x)7€(x) + /Ozt(u)T(SQdu}

with ¢(z) and £(z) defined as above and d; = (021, . .., d24_1,0)” as vector containing
the jump heights in Ay(x). Local linear mixture modelling can now be used to
fit (11). We expand I'(z) = ~y(z) + Ai(z) + [y Aa(u)du about xy, where zy €
(0, )\{t1,...,t,} which yields ['(z) = t(z0)& + (v — x0){7 (z0) + ¢(2)Td2}. This

provides the local linear mixture model
B{yilzi, t(z:)} = h{t(z:) € + (2 — wo)t(w:)" o} (12)

where & = &(z0) and & = {7/ (x0) + da1, ...,V (w0) + d2g—1,7' (7o) }*. In contrast to
model (10), in (12) both, the intercept as well as the slope parameter are tracing
from mixtures. Following a Bayesian framework (6) we model that (¢(x)7&, t(2)T&))
to come from a discrete valued distribution with masspoints {(&o1,&p1), - - - » (€og> $04) }

and masses (71, - - -, Toq)-

Fitting of (12) can again be carried out with a local EM algorithm. The only
practical difficulty occurring is the choice of appropriate starting values. We give

some guidelines in the Appendix.
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Simulation

We demonstrate the procedure with a simulation study. We draw data from a normal
distribution model as seen from Figure 7 (left plot). We set bandwidth A = 0.05
and use ¢ = 5 with the starting values as suggested in the Appendix. The local
linear mixture model clearly detects the bend at 0.3. Also, the first bend at about
0.2 is oversmoothed. The smooth structure of the function between 0.3 and 0.8 is
fitted smoothly and the jump at 0.8 is detected. In Figure 7 (right plot) we also
show the posterior mode estimate for the estimated first derivative, i.e. &, with
I = arg max{7oky,} and 7oy, as defined in (9) but for the local linear mixture
model. The estimate clearly mirrors the jump at 0.3 in the first derivative while the
quadratic structure between 0.5 and 0.8 is nicely reproduced in a linear fit for the
first derivative. We run a simulation study to investigate the overall performance.
The results are shown in 8. The conclusion remains unchanged in that the local
linear mixture modelling detects the jumps in the function and/or in the derivative

except of the fist obtuse bend at 0.2.

4.2 Discussion

In the paper we showed how mixture models and smoothing models can be com-
bined to cope for discontinuous effects in a function. The procedure is in particular
applicable to non normal response data, as it allows for simple estimation using the
EM algorithm. The examples demonstrate the practical impact one achieves when

allowing a generally smooth structure to have some breakpoints.
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Inferential arguments using local mixture models in order to test for jumps are
somewhat weak still. This is mainly due to non standard asymptotic behaviour
of a likelihood ratio statistics in mixture models with different numbers of com-
ponents (see e.g. Aitken, 1999). An ad hoc solution to circumvent the technical
difficulties is to rely on bootstrap procedures. This however will demand for further
computational effort. To us, there seems room and need for further research in this

area.
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A Algorithmic Details

Local EM algorithm

The following algorithm results directly from the parametric EM algorithm as ap-
plied in mixed models (see e.g. Béhning, 1999, Aitken, 1999 or Friedl & Kauermann,
2000). Let f(y;, t;;60) denote the joint density of y; and t; := t(z;), where the de-
pendence on x is notationally neglected. Note that log f(y;, t;;0) = log g(t;|y:; 0) +
log f(yi; 0) where g(-|-) is the conditional density of ¢; given y,;. Taking expectation
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on both sides of the equation and using kernel weights provides the relation
> weiQi(0,6%) = > woiHi(0,0%) + L2y (0)
i=1 i=1

where Q;(0,0%) = [log f(yi, ti; 0)dG (t:|yi; 07) and H;(0,0%) = [log g(tily:; 0)dG (tilyi; 07).
Using arguments as applied in the standard EM setting one finds H;(#,60*) >
H;(0%,0%) so that increasing Q4 (0,0*)=>i_, we;Q;(0,0*) provides an increase of
the marginal likelihood. Inserting the multinomial distribution for ¢; allows now

to rewrite Qag) (0, 0%) to Qze)(6,0%) = iy Yk—y woiwik (67){log f (yil€ox) + log mi}
where wi, (6%) = f (&) ) X0 f(al€)mp with 0% = (&*", 7*")T. The E step of the
EM algorithm is now pursued by the calculation of the weights wg,(0®)), while the M
step follows by finding #¢ ) which maximises @ ;o) (0¢*Y,01) = maxp Q 4, (0, 01).

It appears that £#+1 is updated by solving the weighted score function

N
0 = Zzq:wowik(e(t))si(fz(fﬂ)), (13)

i=1 k=1

where s(n) = 0log f(yi|n)/0n is the standard score as found in generalised linear
models. Hence, the solution of (13) can be calculated using standard software for
generalised linear models by simply incorporating weights. Finally we update m
by 7r,(ct+1) =N > wewi(09) /) XN we;. In practice the local EM algorithm is
not required to be carried out for all observed values of z, but instead it can be

calculated over a grid of points spanning the observed x values

Starting Values
The application of the EM algorithm requires the specification of (i) a number of
masspoints and (ii) starting values for the parameters & and 7. Since local esti-
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mation is pursued, only a fraction of the data is used for fitting. This implies, that
not all jumps occurring in the data show in the local kernel window. Hence locally
q can be less than the total number of jumps. In our examples and simulations we
experienced that choosing ¢ = 3 (or ¢ = 5) provides an appropriate performance.
This holds as long as the jumps are not clustered and well separated. Secondly,
starting values 7T((]0) and &(]0) for my and &, should be chosen such that the EM algo-
rithm converges desirably quickly to the (global) maximum of (8). We suggest the
starting values based on the following considerations. Observations beyond a jump
are considered as tracing from a different population which differs from the local
one by a shift § in the mean, say. For ¢ = 3, for instance, we therefore suggest the
starting value & = (£ — 6,6, & + 6) with § > 0 as shift in the mean and
{?S(O) as a rough estimate for the local mean of the data. For instance if estimation
at point xy = z; is carried out one may use ES(O) = h~1(y;) and take shift § as a
multiple of the standard deviation of y, e.g. § = 30. As starting values for the
probability m we suggest to give the initial mean estimate 55‘(0’ a higher probability
than the shifted values, e.g. for ¢ = 3 we set 7. = (@1 = 2:0 ) for some
small, positive £ (with 0 < £(® < 1/2), e.g. ¢® = 0.1. Hence the setting of the
starting values mirror the situation where t(z;)&, takes the general mean 55‘(0’ with
high probability 1 — 2¢(® while the extreme values (outlieres) & + & occur with
small probability (®. In general it is advisable to fit the model also with different

starting values to investigate their impact on the fit.
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Starting Values for Local Linear Mixture Model
For local linear mixture as in (12) we suggest a similar choice. Choosing ¢ = 5, for

instance, and set

g((]O) = (ES(O) - 67 ES(O) - 67 ES(O)J ES(O) + 67 58(0) + 6)

0 = GO -8G5 GO0 -850 1)

where (ES(O), 50*(0)) result from a local linear fit of the data. The coefficients § and ¢’
give the shift in the starting values for the intercept and first derivative. Moreover,
as starting value for 7y we suggest mp = ((®,e® 1 — 4 2O £0) for some small
£ with (0 < £® < 1/4). The setting mirrors the situation where we give large

probability to a local linear fit and low probability to shifts of this fit.

Estimation of the Dispersion Parameter

For normal response models the dispersion parameter ¢ has to be estimated in
order to apply the EM algorithm. Assuming independent observations variance
estimation can be carried out by the difference based estimator as suggested in
Gasser, Sroka & Jennen-Steinmetz (1986). Let ¢; = a;y; 1 + biyir1 — y; with a; =
(Tip1 — ;) /(xip1 — xiq) and b; = (v, — x; 1) /(i1 — 1), for i =2,...n — 1 and
ordered x values z; < z;41. The variance is then estimated by a weigted mean of
€2 with weights 1/(a? + b? + 1). In the situation where the underlying function has
jumps, it is preferable to substitute the weighted mean by a robust weighted mean,

e.g. by a trimmed mean, in order to avoid biased variance estimates.
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Figure 4: Standardized Mortality Rate for German districts
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Figure 5: Local EM estimates for relative risk for German districts.
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Figure 6: Simulated and fitted Poisson data from model E(y;|z;, v;) = h{v;+v(x;)+
A(x;)} (upper plot) with v; drawn from a contaminated normal model (middle plot).
Bottom plot gives simulation confidence intervals based on 150 simulations.

27



0.0

0.0

0.02 0.03

0.01

-0.01

-0.02

0.02 0.03

0.01

-0.01

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
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