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Abstract

This paper discusses point estimation of the coefficients of polyno-
mial measurement error (errors-in-variables) models. This includes
functional and structural models. The connection between these
models and total least squares (TLS) is also examined. A com-

pendium of existing as well as new results is presented.
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1 Introduction: The model

Perhaps the most widely used models in applied statistics are regres-
sion models, linear or nonlinear. Measurement error (errors-in-variables)
models are important alternatives to ordinary regression models because
measurement error (ME) models assume both response and explanatory
variables are measured with error, while ordinary regression models as-
sume only the response variable to be measured with error. In many
situations, ME models are more realistic than ordinary regression models.

The linear ME model has found extensive treatment in the literature,
see, for example, the early review papers by Madansky (1959), Moran
(1971), Kendall and Stuart (1979), Chapter 29, and, more recently, Cheng
and Van Ness (1994); see also the monographs by Schneeweiss and Mittag
(1986), Fuller (1987), and Cheng and Van Ness (1999).

Since the mid-80’s, non-linear measurement error models have been
extensively studied. Most results are summarized in Carroll et al (1995).
The present article reviews the polynomial ME model, which is the most
natural extension of the linear model towards a nonlinear model.

The model we investigate can be described as follows. Assume that
there are unobservable ‘true’ variables (&;,7;) that satisfy a polynomial

relation,

nz:BO+ﬂ1§z++ﬁk£Zka 7’:177”7 (1)

for k > 1. One observes (z;,y;), which are the true variables plus additive



errors (0;,€;); that is
xl:§Z+627 Yi =10 + €4, ZZI,,H, (2)

where (d;, ;) are independent identically distributed with mean zero and
covariance matrix

2
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If the &;’s are unknown constants, then the model is known as a func-
tional relationship, while if the &;’s are independent identically distributed
random variables and independent of the §;’s and ¢;’s, then the model is
known as a structural relationship. The “structural parameters” are the
intercept Sy, the slope coefficients 1, ..., Bk, the error variances and co-
variance, o3, 02, and 5., and (in the structural model only) the param-
eters of the distribution of the ;. In the functional model, the unknown
constants & are known as “incidental parameters”.

In addition to the measurement errors 0 and &, we may also have an
“error in the equation”, ¢ say, which is to be added to the right hand side
of (1). Although this error can be absorbed into the measurement error €
of the response variable, it is often worthwhile to distinguish between the
cases with and without errors in the equation, see Section 3.1, see also
Carroll et al (1995, Section 2.3.2) for further comments.

The focus of this paper is the estimation of the structural parameters,

especially the intercept and the slope coefficients, which are the parame-



ters of major interest. It is well known that ordinary least squares (OLS)
will produce inconsistent estimates, e.g., Griliches and Ringstad (1970).

We are interested in constructing consistent estimators.

2 Identifiability and estimation without prior
knowledge

We discuss the problem of identifiability only in the context of the struc-
tural relationship. For the functional relationship, identifiability is always
satisfied, in a sense, but is of no use, as it does not guarantee the exis-
tence of consistent estimates, see Cheng and Van Ness, 1999, p. 162 and
Appendix A.

We assume that (J;, ;) is jointly normal and, for simplicity, that os5. =
0 unless specified otherwise.

Recall that in the simple linear ME model, Reiersgl (1950) showed
that the model is not identifiable if and only if &; is normally distributed,
see Bekker (1986) for an extension of this result to the multivariate case.
Therefore, we need extra information in order to find estimators that are
consistent also when ¢ is normal. The most commonly used additional
assumptions are: ¢2/0% = X is known or o7 is known.

As for the general nonlinear ME model, that is,

nZ:g(élaﬂ)a 7’:177”7 (3)



where 8 = (B0, B1,...,8k)T is the unknown parameter vector and g is
a real-valued known function, there is no identifiability characterization
corresponding to that in the linear ME model. However, in the polyno-
mial ME model, Kendall and Stuart (1979, pp. 435-437) use a method of
cumulants to find a consistent estimator in the structural model without
additional assumptions. Their results imply that the structural polyno-
mial model with k > 1 is identifiable if the errors (J;,¢;) are normal.

Van Montfort (1989, Chapter 2) uses higher moments instead of cu-
mulants to estimate the parameters of a structural polynomial regression,
see also Cheng and Van Ness (1999), Chapter 6. Recently, Huang and
Huwang (2001) constructed a consistent estimator by regressing both y
and y? on the powers of  when ¢ is normal. In the latter regression the
parameters depend on those of the first regression. See also Huwang and
Huang (2000) for the corresponding Berkson model.

If one wishes to use ML estimation methods, the immediate problem
encountered is that one needs to find the joint distribution of (z;,y;).
This is not as straightforward as in the linear case. To the authors’ best
knowledge, there are no articles that deal with ML estimation in the
polynomial ME model.

Although the above estimators are consistent, their efficiency may be
rather low because they do not use knowledge of the error variances. In
many situations such knowledge may well be available and can be used to

construct more efficient estimators. We now turn to such estimators.



3 Functional methods

We start with the functional variant of the ME model, i.e., the &’s are

taken to be fixed unknown quantities. The estimation methods developed

on this basis can, however, also be used in the structural case, in par-

ticular, if no specific distribution has been assumed for the random §&;’s.
2

We consider two major cases: when oj is known and when both error

variances o3 and o2 (or their ratio) are known.

3.1 Regressor error variance known

If there is an error in the equation, g, it is very unlikely that its variance
would be known a priori. On the other hand, the variance of the mea-
surement error, §, might well be known or at least estimable either from
replicated data or from validation data. In this subsection we assume o3
to be known (and possibly also higher moments of §). In case o5 # 0,
this parameter should also be known.

If only o3 is known, maximum likelihood estimation breaks down and
does not yield sensible estimators, just as it happens in the linear case
(Moberg and Sundbert, 1978). The problem with maximum likelihood
estimation in the functional relationship is due to the presence of the inci-
dental parameters &;, whose number increases with sample size (Neyman
and Scott, 1948). It is well known that in the presence of incidental pa-

rameters, the maximum likelihood estimator need not exist. Even if it



exists, it need not be consistent.

Nevertheless consistent estimation of the model parameters is possible.
One approach is based on a variant of the corrected score function ap-
proach, see Stefanski (1989), Nakamura (1990), and Buonaccorsi (1996).
The following discussion is adapted from Cheng and Schneeweiss (1998a),
see also Cheng and Van Ness (1999), Chapter 6.

If we provisionally assume that the &;’s are known, then the model will
return to the ordinary polynomial regression model, and ordinary least

squares (OLS) induces the following unbiased estimating equation

n

> Wil = Botl - Bl — = Bt =0, (4)

i=1

for j = 0,...,k. The problem with (4) is that the terms &I, are not
observable. If o5 = 0 and if we can find unbiased estimates t,; of &
which do not involve any unknown parameters, then we can replace £ by
t; in (4) and solve the system for the estimators of 8o, 51, - - ., B-
In the following discussion, we omit the observation index i for ease of
notation. Because x = £ + §, we have, by the binomial theorem,
"\ . .
r_ jsr—j
" = jz:% (J)f 0" . (5)
After replacing &/ in (5) by t; and 8"/ by its expectation, we can solve

for t;. The first five terms of ¢;, for example, are

to=1, ti=x, ty=2x"—03, t3=21"—3w0;—ES,

ty = 2* — 62203 — 42ES® — E§* + 607},



Under the normality assumption of the error §, we only need to know
o2 in order to find ¢;. In this case we also have a recursion formula for
obtaining ¢;:

tj+1 = .Z‘tj — Jgjtjfl,

with tg = t_; = 1, see also Stefanski (1989). Once the 8’s have been esti-

2

mated, the unknown error variance o

can also be estimated consistently.
If 05 # 0, the term y&/ has to be replaced in (4) by an expression h;
involving os. such that Eh; = n&’. For o5 =0, h; = yt; and for normal
(0,€), hj = ytj — osejtj—1.

To sum up, let us introduce the matrices H; with elements (H;);; =
titi gl = 0,... ki = 1,...,n, so that EH; = (gg'*’)jlzo___k, and
the vectors h;, with Eh; = (n,ﬁf) . The “corrected” (;r “;Ldjzusted”

yeeny

estimating equation that replaces (4) can then be written as

n n
Z Hif s = Z h;.
i=1 i=1
Its solution, BALS, is the so-called adjusted least squares (ALS) estimate
of 8. Chan and Mak (1985) proposed a similar approach for the € known
case.

Under some regularity conditions (Huber, 1967), the resulting esti-
mators are consistent and asymptotically normal. See also Carroll et al
(1995, p 261 ff.), Fazekas et al (1999) and Baran (2000). The asymptotic
covariance matrix of 3 ALs is given by the formula

>, =‘g'vE’ 6
Bas ™ ©)



with H = %zn:H,, U= %zn:(Hi,@ALS — hy)(H;B 415 — hi)T. Because of
its form, (6)ii:sloften calle(f{:a1 sandwich formula, see Carroll et al (1995).
For small samples, 3 ArLs turns out to be rather unstable in particular
if 07 is large and if k£ > 3. In fact, the moments of B ars do not exist, see
Cheng and Van Ness, 1999, Chapter 2, for the linear case. Using an idea
of Fuller’s (1997), the estimator can be improved for small samples by the
following modification, see Cheng et al (2000). We use the concepts and
notations of Subsection 3.2, see in particular (9). Then the modified ALS

estimator of /3 is given by

Buars = (M — aﬁ)fl(mty — av),
(n—a)/n if p>14+1%
pln—a)/(n+1) if p<1+ 4,
where j is the smallest positive root of det(M — p W) = 0 with

a_ [ et
v |4
and some « to be chosen so that an estimator of good small sample prop-
erties results, e.g., a = k + 5.
A multivariate extension of the ALS procedure including a small sample
modification has recently been provided by Wall and Amemiya (2000).
Actually the authors study a factor analysis (or “structural”) model where

the common factors obey a polynomial relation instead of the usual linear

relation.



3.2 Ratio of error variances known

Consider now model (1) and (2), i.e., a polynomial without an error in the
equation but with measurement errors in both variables. We can assume
that in such a model € is known.

Let us first consider maximum likelihood (ML), assuming the errors are
normally distributed. For the general nonlinear model (3), with 5. = 0,

ML is equivalent to minimizing the function

Q(B) =>_ minl(y; - 9(&- 8))* + Alzi = &)’]
i=1
with respect to 3, where A = 02/0%. This method is called total least
squares (TLS). Geometrically this means that in case A\ = 1 one has to
minimize the sum of squares of the perpendicular distances from the data
points to the regression curve. TLS was first proposed by Adcock (1877)
and then re-discovered by many authors since. Golub and Van Loan
(1980) proposed numerical methods for TLS in a general linear framework.

The more recent work is summarized in Van Huffel and Vandewalle (1991).

In the linear case, minimizing () reduces to minimizing the function

4(B) = Z (yi — Bo — Pra;)? (7)

2
O¢

with e; = €; — $16;. This procedure, which corresponds to the algebraic
side of TLS, is also called generalized or weighted least squares (WLS)
and was introduced by Sprent (1966).

Kendall and Stuart (1979, p. 434) applied ML to the quadratic (k = 2)

10



measurement error model. They did not find a closed form solution but
had to resort to iterative methods just as in the general TLS approach.
For numerical procedures in the polynomial ME context see O’Neill et al
(1969), see also Britt and Luecke (1973).

In the linear model, the ML estimates of intercept and slope parameters
are consistent. This is no more true for the nonlinear model, see Fazekas
et al (1998).

Despite the inconsistency of the TLS estimate of 3, it might still be
useful to use this method in practice, especially when og is small. In such
cases the bias, though still existent, might be almost negligible. In fact,
there exists a small-o5 theory for TLS, see Wolter and Fuller (1982b).

However, consistent estimation is possible. One can extend the WLS
approach to the polynomial ME model. The idea comes from Wolter
and Fuller (1982a), which they applied to the quadratic functional model
with normal errors and known covariance matrix. Cheng and Schneeweiss
(1998b) extended it to a polynomial of any degree, and the restriction of
normally distributed errors was lifted. To be more specific, model (1)-(2)

can be re-written as
yi =CiB+ei, ti=C+m, (8)

where Cz = ( ?, e ,lec)T, t; = (t()i,. . .,tki)T; and ™ = (7r0i;- . ,7T]“')T is
implicitly defined by (8). Note that the new measurement errors 7,; have

mean zero, covariance matrix V; = E(m;w]), and covariance vector v; =

11



E(m;e;). Cheng and Schneeweiss (1998a, 1998b) gave unbiased estimates

of V; and wv;, which were
V, = t;t' - H, v; = tiy; — h;.

Let z = (y;, t/)7 and let W; be the error covariance matrix of z; and

. AT
. ol v
W, =
vV

its estimate. Moreover, let M = n 'Sz;zl, my, = n 'Sy, My =

n~1¥t;t! and my, = n~'3y?, then the estimate of B is given by

ﬂ = (Mtt - ’%V)il("nty - ’%;})7 (9)
where & is the smallest positive root of
det(M — & ﬁ’) =0;

see also Moon and Gunst (1995).

As pointed out by Wolter and Fuller (1982a), the estimate (9) is the
B that minimizes the function w(@) = 6" M6O/(6" ﬁ’@)’l, where 87 =
(1,—B%). In other words, the estimate (9) can be viewed as a WLS
estimate of the (“linearized”) polynomial ME model (8). Note that if
k =1, then w(0) reduces to (7).

The estimate (9) is consistent and asymptotically normal and its asymp-

totic covariance matrix is given in Cheng and Schneeweiss (1998b).

12



When the errors (d;,&;) are normal, then it is possible to relax the
assumption of € being known to knowing € up to a proportionality factor.
One can assume that, without loss of generality, this unknown factor is

2
oZ and

where a and b are known constants. Note that the unknown factor o2 can

be estimated by

Therefore, we need to estimate 8 and o2 simultaneously. The exact nu-
merical procedure has not been studied yet. It should be noted that we
need the normality assumption of (d;,&;) because then all moments of

(i,€;) will be known up to some powers of o2 once a and b are known.

4 Structural methods

In this section, we study the structural variant of the polynomial ME
model. We assume that the & are iid N(ug,0?). The errors are also

assumed to be normal with o5. = 0. Jg is supposed to be known. g (= ptz)

2

and 07 (= 02 — 03) can be estimated from the z; alone without having

resort to the model.

13



The method we present here is based on a quasi score function, which
is derived from a conditional mean-variance model corresponding to the
polynomial model. The following presentation is essentially due to Thamerus
(1998), see also Carroll et al (1995).

Note that the error-free model (1) can be written as a mean-variance
model

E(yi | &) = Bo+ br&i + - - + Br&}
Vi | &) = o2

Now, the conditional distribution of &; given x; is also normal.

(10)

EGilwi ~ N(pi(zi),7)
m(x) = pe+ (1—03/02) (@ — pa)

o= o= afal)

Therefore we can easily derive from (10) a conditional mean-variance

model of y given x:

k
E(yi | z:) =Y _Biu;(w:) =: m(wi, B)
. =0 (11)
V(i | @) =02+ Y BiBi{mvi(ws) — py(wi) (i)} =: v(zs, B, 02)

4,1=0
with
r : r * r—j
pr(x) =B | 2) = j pj i ()
0 if jis odd

1-3---(j =17/ if jis even.

14



The following estimating equations can then be set up:

n

Z[{yi —m(x;, B)} v(ws, B, 02)m(x;) =0
n (12)
o7 = %Z[{yz —m(zi, 8} — Zﬁjﬂl{/ﬁ]aﬂ(.ﬁi) — () (2s)}]

Vs

T

where p(xz) = (po(x),...,ur(z))". They can be solved by iteratively

reweighted least squares and give rise to the so-called structural least

squares (SLS) estimators of 8 and ¢2. It should be noted that u, and o2

have to be replaced by their estimates in the estimating equations (12).
The estimator ,@ s1.g 1s consistent and asymptotically normal with asymp-

totic covariance matrix

EﬁSLS = LE{pu(@@)p" (z)/v(z,B,02)}] ' + O(a}). (13)

The term O(c}) is due to the estimation of u, and o2 and can be neglected
in a first approximation, see Kukush and Schneeweiss (2000).

The SLS method can be generalized to encompass models where the &;
follow a finite mixture of normal distributions and where the measurement
errors could be heteroscedastic, Thamerus (1998).

A very simple approximate method to SLS is the regression calibration
(RCAL) method, Carroll et al (1995). In this method, the &; in equation
(1) are simply replaced by their conditional means p;(z;) = E(&]|x;)
and the resulting polynomial regression is estimated by OLS. The RCAL

estimates are not consistent but their biases are typically very small.

15



5 Comparison of functional and structural

methods

Since functional methods can also be used in a structural model, we can
compare functional and structural methods within the context of a struc-
tural polynomial ME model. In particular Kukush et al (2001) compare
ALS and SLS in a structural model with normally distributed ;. It might
be expected that SLS is more efficient than ALS in this case, as it uses
the information on the distribution of the &;. However, it turns out that
the asymptotic covariance matrices of ALS and SLS, see (6) and (13), are
equal up to the order of og.

Comparisons with respect to OLS and to RCAL can also be carried
out, see also Moon and Gunst (1995).

When the £; are not normally distributed, SLS breaks down, i.e., it
leads to inconsistent estimates. Thus while SLS might be more efficient
than ALS when the & are normal - but only in terms of order O(o}) -,
the latter procedure is more robust with respect to the distribution of the

&;, see Kuha and Temple (1999), Schneeweiss and Nittner (2000).

6 Miscellaneous topics

We only studied point estimation. Another important issue is interval

estimation. However, little is known in the polynomial ME model. In

16



principle, one can use the asymptotic normality of the estimates of the 3’s
to obtain (approximate) confidence regions on the parameters. But there
is a serious problem regarding this approach due to the zero confidence
level effect (Gleser and Hwang, 1987). For details, see Cheng and Van
Ness (1999), Section 2.4.

The models we studied so far are all characterized by having additive
measurement errors. Iturria et al (1999) investigated a polynomial ME
model with multiplicative measurement errors, that is, z; = &;6;.

When we surveyed the structural polynomial ME model in Section 4,
we restricted our attention to the case of normally distributed &;. It is
known that in the linear model a nonnormal distribution of ¢ will produce
a nonlinear regression function in the observables y and z, i.e., E(y| z) will
be nonlinear, see Lindley (1947). Chesher (1998) extends this result to
the polynomial regression and gives explicit formulas for E(y|z) for any
distribution of « and normal measurement errors. These relations might
be exploited to find consistent estimates for the 3;’s as long as they are
identifiable from E(y|z) even if 0% is not known.

In this paper we only studied polynomial ME models where either no
further knowledge was available or where some knowledge about the error
variances could be used. A further possibility to consistently estimate
the (’s is the use of instrumental variables and of indicator variables.
The usual instrumental variables approach for the linear model breaks

down in nonlinear models, see Amemiya (1985). Nevertheless consistent

17



estimation using higher moments is possible, see Hausman and Newey
(1991) and Hausman et al (1995) with an application to the estimation of

Engel curves.
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