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Summary

We present a nonparametric Bayesian method for fitting unsmooth and
highly oscillating functions, which is based on a locally adaptive hierarchi-
cal extension of standard dynamic or state space models. The main idea
is to introduce locally varying variances in the state equations and to add
a further smoothness prior for this variance function. Estimation is fully
Bayesian and carried out by recent MCMC techniques. The whole approach
can be understood as an alternative to other nonparametric function esti-
mators, such as local or penalized regression with variable bandwidth or
smoothing parameter selection. Performance is illustrated with simulated
data, including unsmooth examples constructed for wavelet shrinkage, and
by an application to sales data. Although the approach is developed for
classical Gaussian nonparametric regression, it can be extended to more
complex regression problems.

Keywords: adaptive smoothing, MCMC, nonparametric Bayesian regres-
sion, random walk priors, unsmooth functions, variable smoothing parame-
ter

1 Introduction

Nonparametric methods for fitting smooth curves, such as kernel, local or
spline regression, are now widely available and accepted. However these
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methods can have bad performance when estimating unsmooth functions
which have jumps, edges, or are highly oscillating. Nonparametric regression
approaches that adapt to such spatial heterogeneity have gained considerable
interest. Local regression with variable bandwidth (Fan and Gijbels, 1995) or
adaptive ridging (Seifert and Gasser, 2000) and wavelet shrinkage regression
(Donoho and Johnstone, 1994) are two prominent approaches.

In this paper, we present a Bayesian nonparametric approach, which is
more closely related to spline fitting with locally adaptive penalties. Abramo-
vich and Steinberg (1996) generalize the common penalized least squares
criterion for smoothing splines with a global smoothing parameter by intro-
ducing a variable smoothing parameter into the roughness penalty. For esti-
mation, they propose a two-step procedure: First a smoothing spline is fitted
with a constant smoothing parameter chosen by generalized cross-validation.
Then an estimate for the variable smoothing parameter is constructed, based
on the derivatives of this pilot estimate, and is plugged into their locally
adaptive penalty to fit the smoothing spline in a second step. Ruppert and
Carroll (2000) propose P-splines based on a truncated power series basis
and difference penalties on the regression coefficients with locally adaptive
smoothing parameters. The latter are obtained by linear interpolation from
a smaller number of smoothing parameters, defined for a subset of knots and
estimated by generalized cross-validation.

Our approach is fully Bayesian and uses a two-stage prior for the unknown
regression function. The first stage are first or second order random walk
models as a discretized Bayesian version of the common roughness penalty
for smoothing splines. The second stage consists of analogous smoothness
priors for varying variances of the random walk model errors used in the first
stage. Varying variances correspond to variable smoothness parameters and
make the prior more flexible for modelling functions with differing curvature.
A similar idea appears in stochastic volatility models (e.g., Shephard and
Pitt, 1997), where variances of observation errors follow a similar stochastic
process prior.

Alternative Bayesian models that allow for varying variances are robusti-
fied state space models with (discrete or continuous) mixtures of normals as
error distributions, see Carter and Kohn (1996a, 1996b) for a fully Bayesian
approach or Fahrmeir and Künstler (1999) for posterior mode estimation.
These models have good performance for regression functions with jumps. We
compare them to our approach in a simulation study in Section 4. Lang and
Brezger (2001) propose such normal mixtures for spatially adaptive Bayesian
P-spline fitting.

Other competing methods are regression splines with adaptive Bayesian
knot or variable selection, see Smith and Kohn (1996, 1997), Denison, Mallick
and Smith (1998) and Biller (2000). The number and the location of knots are
unknown random variables, and function estimation becomes flexible through
model averaging.
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The rest of the paper is organized as follows. Locally adaptive dynamic
models with varying variances are introduced in Section 2. Inference is fully
Bayesian and uses recent MCMC techniques, combining Gibbs sampling with
efficient block moves (Rue, 2001) for functions and a Metropolis-Hastings
(MH) algorithm with conditional prior proposals (Knorr-Held, 1999) for vary-
ing variances. Details are given in Section 3. Performance is investigated in
Section 4 by a simulation study. In particular, we compare our approach with
fitting based on models with variances changing independently according to
a mixture of normals and with results in Ruppert and Carroll (2000). The
method is illustrated with an application to sales data analysed previously
in the literature.

Although we focus here on a simple Gaussian observation model suitable
for one-dimensional curve fitting, the basic idea can be adapted to more gen-
eral settings. Some of the resulting extensions, for example to non-Gaussian
observations or to surface estimation, are mentioned in the conclusions.

2 Locally adaptive dynamic models

Consider first the classical smoothing problem for a response variable, where
observations y = (y1, y2, . . . , yT )′ are assumed to be the sum

yt = αt + εt, t = 1, . . . , T (1)

of a smooth trend function or regression curve, evaluated at the observation
or design points t, and independent Gaussian errors εt ∼ N(0, σ2

ε ). We denote
the vector of the function evaluations by α = (α1, . . . , αT )′ and use the same
symbol for the whole curve. For simplicity, we assume equidistant design
points. Extensions to non–equally spaced designs are shortly outlined at the
end of the section. In a standard dynamic or state space modelling approach
for estimation of the unknown function α, more exactly its evaluations αt,
the observation model (1) is supplemented by a Gaussian random walk of
first order

αt = αt−1 + ut, ut ∼ N(0; q2) (2)

or of second order

αt = 2αt−1 − αt−2 + ut, ut ∼ N(0; q2), (3)

denoted as RW(1) respectively as RW(2). The errors ut are mutually in-
dependent and independent of observation errors εt. In addition we will
assume diffuse priors for initial values α1, α2. From a Bayesian point of
view, the random walk models (2) and (3) define smoothness priors on first
and second differences αt − αt−1 = ut respectively αt − 2αt−1 + αt−2 = ut

that help to regularise the estimation problem. For given variances σ2
ε and

q2 the famous linear Kalman filter and smoother computes the posterior
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means α̂t = E(αt | y1, . . . , yT ) as optimal smoothers, together with poste-
rior variances. Since the posterior is Gaussian, mean and mode coincide,
and therefore the estimates α̂t, t = 1, . . . , T , can also be obtained by max-
imizing the posterior. Taking logarithms, this leads to the classical opti-
mal smoothing problem already considered by Whittaker (1923): Choose
α̂ = (α̂1, α̂2, . . . , α̂T ) as the minimizer of

T∑
t=1

(yt − αt)2 +
σ2

ε

q2

T∑
t=2

(αt − αt−1)2 (4)

for model (2), and

T∑
t=1

(yt − αt)2 +
σ2

ε

q2

T∑
t=3

(αt − 2αt−1 + αt−2)2 (5)

for model (3). From (4) and (5), the close correspondence to spline smoothing
becomes clear: The ratio λ = σ2

ε /q2 is a global smoothing parameter and the
penalty terms are the discretized versions of corresponding penalty terms
for quadratic and cubic smoothing splines, see Kohn and Ansley (1987) for
details. Already with a moderate number of observations, estimates α̂t are
practically undistinguishable from spline smoothing estimates.

Priors (2), (3) and penalties (4), (5) can also be written in matrix notation.
Priors for α = (α1, . . . , αT )′ are multivariate Gaussian,

p(α|q2) ∝ exp(− 1
2q2

α′Kα), (6)

where the precision matrix K has band structure. For a RW(1) model, with
a diffuse prior for the initial value, it is tridiagonal and given by

K = D′
1D1,

where D1 is the (T − 1) × T upper two-diagonal matrix with entries (-1,1)
defining the vector of first differences D1α = (α2 − α1, . . . , αT − αT−1)′. For
a RW(2) model, K = D′

2D2 is pentadiagonal, with D2α = D1(D1α) defining
the vector of second differences. Note that rank(K) = T − 1 or T − 2,
respectively.

The basic idea for estimation of nonsmooth functions is to replace the con-
stant variance q2 in (2) and (3) by locally varying variances q2

t that are con-
sidered as evaluations of a variance function q. This corresponds to replacing
the global smoothing parameter by a local smoothing parameter λt = σ2

ε /q2
t .

To estimate the unknown variance function automatically together with the
unknown curve α, we reparametrize by

ht = log(q2
t ) ⇐⇒ q2

t = exp(ht)
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and add a second smoothness prior in form of first or second order differences
for h = (hk, . . . , hT )′, implying also a smoothness prior for q = (q2

k, . . . , q2
T )′.

The index k depends on the choice of the prior for α, for a RW(1) k = 2
and for a RW(2) k = 3. Thus we will arrive at the following locally adaptive
dynamic models.

Observation model for y = (y1, . . . , yT )′:

yt = αt + εt, ε ∼ N(0, σ2
ε ) (7)

Smoothness priors for α = (α1, . . . , αT )′:

αt = αt−1 + ut, or αt = 2αt−1 − αt−2 + ut (8)

with ut ∼ N(0, exp(ht)).
Smoothness priors for h = (hk, . . . , hT ), k = 2, 3:

ht = ht−1 + ηt, or ht = 2ht−1 − ht−2 + ηt, ηt ∼ N(0, σ2
η). (9)

We assume mutually independent errors εt, ut and ηt and diffuse priors
for initial values α1, α2, hk, hk+1. The model definition is completed by the
common assumption of independent inverse Gamma hyperpriors

σ2
ε ∼ IG(a1, b1), σ2

η ∼ IG(a2, b2) (10)

for the variances σ2
ε , σ2

η. By appropriate choice of a1, b1, a2, b2, these hyper-
priors are made highly dispersed.

Again, smoothness priors for α and h can be written in multivariate form.
For α, we obtain

p(α|h) ∝ exp(−1
2
α′Kα)

where K = D′
dQDd, d = 1, 2, and the diagonal matrix Q has entries 1/q2

t =
1/ exp(h2

t ). Priors for h are completely analogous to (6), i.e.

p(h|σ2
η) ∝ exp(− 1

2σ2
η

h′Lh)

where L = D′
dDd, d = 1, 2.

As mentioned in the introduction, models with independently changing
variances may be another alternative for fitting regression functions with
jumps. Reparameterizing q2

t to γtq
2, we assume a continuous mixture of

normals
ut|γt, q

2 ∼ N(0, γtq
2) (11)

for the error distributions. Assuming i.i.d. inverse gamma priors

γt ∼ IG(ν/2, ν/2), (12)
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the marginal distribution of the errors is a Student distribution with ν degrees
of freedom. The case ν = 1 of a Cauchy distribution is of special interest
as a robust prior and is used for the rest of this paper. The multivariate
(conditional) Gaussian form is the same as for variances with RW-priors. For
the scale parameter q2, we make the usual prior assumption q2 ∼ IG(a, b).

Figure 1 illustrates the improvement in function estimation that can be
achieved through locally adaptive models with variable smoothing parame-
ter. The underlying ”true” function is the so called Doppler function, which
is highly oscillating near the origin, see Section 4.2. The function estimates
in Figure 1 are taken from the simulation experiments in Section 4.2, and
both runs correspond to the median in the log10(MSE) boxplots in Figure
9 b). The advantages of locally adaptive models are obvious: Whereas vari-
able variances can adapt to changes in curvature of the underlying function,
models with global variance are too rough in the areas where the function
is smooth and have problems in following rapid oscellations near the origin.
Section 4 also compares our approach to models with independently varying
variances. Again, our models show inproved estimation properties.

Although we will focus on the locally adaptive model (7)-(10), some exten-
sions are immediate: First, we may generalize the observation model (7) and
the state equation (8) to the standard form yt = z′tαt + εt, αt = Ftαt−1 + ut

of linear Gaussian state space models. Assuming again varying variances
for ut and appropriate hyperpriors as in (9), we obtain locally adaptive state
space models. Secondly, unequally spaced observations can be dealt with by
adjusting the variances q2

t = exp(ht). For example in the case of a first order
random walk, the necessary modification is q2

t = Δt exp(ht), where Δt is the
difference between the t-th and the (t − 1)-th design point.

3 Nonparametric Bayesian inference via
MCMC

Fully Bayesian inference is based on the posterior of the unknowns given
the data p(α, h, σ2

ε , σ2
η|y). Due to the hierarchical structure of the model

summarized in (7) - (10) its unnormalized form is easily derived as

p(α, h, σ2
ε , σ2

η|y) ∝ p(y|α, σ2
ε )p(α|h)p(h|σ2

η)p(σ2
ε )p(σ2

η).

To sample from the posterior, we use a hybrid MCMC algorithm. The pa-
rameters α = (α1, . . . , αT ) are sampled as an entire block from their Gaussian
full conditionals p(α|·) given the other parameters and the data. From the
Gaussian observation model and the prior for α we obtain

p(α|·) ∝ exp
(
− 1

2σ2
ε

(y − α)′(y − α)
)

exp
(
−1

2
α′Kα

)
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Figure 1: Illustration of the improvement of locally adaptive models with
variable smoothing parameter (lower panel) compared to models with a global
smoothing parameter (upper panel). Shown are the respective posterior means
together with 80 % pointwise credible intervals.

From this it is easily derived that the posterior is multivariate Gaussian
α|· ∼ N(μ,Σ) with

μ =
1
σ2

ε

Σ y, Σ =
(

1
σ2

ε

I + K

)−1

.

Since the precision matrix P = I/σ2
ε +K is a band matrix, posterior samples

for α can be efficiently drawn by using a Cholesky decomposition of P as
suggested in Rue (2001). The resulting O(T ) forward-backward sampling
scheme is closely related to the block move Gibbs samplers of Carter and
Kohn (1994) and Frühwirth-Schnatter (1994).

Full conditionals for the variance function h = (hk, . . . , hT )′, k = 2, 3, are
not in closed form. We use an MH-algorithm with conditional prior proposals
of Knorr-Held (1999) for drawing from the full conditionals p(hrs|·) for blocks
hrs = (hr, . . . , hs)′, partitioning h into a sequence of subvectors. MH steps
consist of drawing a proposal h∗

rs from the conditional prior and accepting it
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with probability

min

⎛
⎜⎜⎜⎜⎝1,

r∏
t=s

p(αt|αl<t, h
�
t )

r∏
t=s

p(αt|αl<t, ht)

⎞
⎟⎟⎟⎟⎠ .

The conditional distributions p(αt|αl<t, ht) are Gaussian, defined by the
priors (2) or (3). The conditional distribution of hrs given the rest hl, l /∈
{r, . . . , s}, is a multivariate Gaussian distribution. Its mean and covariance
matrix can be written in terms of the precision matrix L of h. Let Lrs

denote the submatrix of L, given by the rows and columns numbered r to s
and let L1,r−1 and Ls+1,T denote the matrices left and right of Lrs. Then
the (conditional) mean μrs and the covariance matrix Σrs are given by

μrs = σ2
η

⎧⎨
⎩

−Lrs
−1Ls+1,T hs+1,T r = k

−Lrs
−1Lk,r−1hk,r−1 s = T

−Lrs
−1(Lk,r−1h1,r−1 + Ls+1,T hs+1,T ) else

and
Σrs = σ2

ηLrs
−1,

respectively. Details about efficient computation of the mean μrs and the
choice of the block size s− r + 1 can be found in Fahrmeir and Lang (2001).

The full conditionals for the variance parameters σ2
ε and σ2

η are inverse
gamma distributions given by

σ2
ε | y, α ∼ IG

(
a1 +

T

2
, b1 +

1
2

T∑
t=1

(yt − αt)2
)

and

σ2
η | h ∼ IG

(
a2 +

rank(L)
2

, b2 +
1
2
h′Lh

)
.

Thus, updating of σ2
ε and σ2

η can be done by simple Gibbs steps.
In the case of a hierarchical t-formulation outlined in (11) and (12) we

have to update the independent weights γt instead of variance parameters ht.
In contrast to the ht’s the full conditionals for γt are known distributions.
The inverse gamma distribution of γt|· is given by

p(γt|·) ∼ IG(
ν

2
+

1
2
,
ν

2
+

u2
t

2q2
)

where ut is the error term in (8). Similar to the γt’s the full conditional of
q2 is again an inverse gamma distribution, i.e.

q2 ∼ IG(a +
rank(K)

2
, b +

1
2
α′Kα),

with K = D′
dQDd and the diagonal matrix Q = diag(1/γk, . . . , 1/γT ), k =

2, 3. Once again, updating of γt and q2 can be done by simple Gibbs steps.
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4 Simulations und Application

To gain experience and to study performance, we applied our locally adaptive
approach to simulated and real data. Section 4.1 reports on results for un-
smooth functions constructed for wavelet shrinkage by Donoho and Johnstone
(1994). In Section 4.2 we present and compare results for highly oscillating
functions given in Ruppert and Carroll (2000) and others. Section 4.3 con-
tains an application to a time series of sales data from West and Harrison
(1989).

4.1 Unsmooth functions

To demonstrate the practicability of our approach for unsmooth functions
we use a variant of the blocks function considered by Donoho and Johnstone
(1994). The true function consists of 256 time points and is shown in Fig-
ure 2 together with noisy observations generated according to the Gaussian
observation model (1). For simulations we used σ2

ε = 0.952 which corre-
sponds to a signal to noise ratio of 4. We simulated 250 replications of the
model. Usually the best results were obtained with a RW(1) prior for α and
a RW(1) prior for varying variances (denoted in the following as rw1vrw1).
The presentation is therefore restricted to this case. For comparison we also
present results obtained by using the hierarchical t-formulation in (11) and
(12) (trw1), and using a simple RW(1) with global variance (rw1).

Figure 3 shows function estimates averaged over the 250 replications
for rw1vrw1 (a), trw1 (b) and rw1 (c). For comparison the true func-
tion is always included in the plots (solid lines). Figure 4 displays box-
plots of log10(MSE) where the emirical mean squared error is defined by
MSE = 1/T

∑T
t=1(αt− α̂t)2. Figure 3 reveals that both approaches with lo-

cally adaptive variances perform more or less equally well but are less biased
than the simple approach with a global variance. In terms of the MSE the
hierarchical t-formulation trw1 slightly outperforms the approach rw2vrw1
where variances are dependent. Additionally, Figure 5 shows the average of
estimated variances and weights for rw1vrw1 and trw1 based on the respec-
tive posterior mean estimates. Obviously, the discontinuities of the blocks
function are well detected in both approaches.

We also investigated the coverage of pointwise credible intervals. In a
Bayesian approach based on MCMC simulation techniques credible intervals
are estimated by computing the respective quantiles of the sampled function
evaluations. For a nominal level of 80% the average coverage is approximately
81% for the approach with global variance and 87% for both approaches with
locally adaptive variances. This indicates that our Bayesian approach yields
rather conservative credible intervals. We should stress, however, that in the
case of a RW(2) prior for α the average coverage is below the nominal level
for all estimators although for the approaches with locally adaptive variances
the average coverage is very close to the nominal level (78%).
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4.2 Highly oscillating functions

In order to demonstrate the usefullness of our approach for estimating highly
oscillating curves, we mainly refer to Ruppert and Carroll (2000) who propose
P-splines based on a truncated power series basis and quadratic penalties on
the regression coefficients with locally adaptive smoothing parameters. In
their first simulation example they used the functions shown in Figure 6.
Figure a) corresponds to a function with low spatial variability and Figure
c) to a function with severe spatial variability. Figures b) and d) show noisy
observations generated according to the Gaussian observation model (1) with
σ2

ε = 0.22. As for the blocks function we simulated 250 replications of both
models. In contrast to unsmooth functions, like the blocks function inves-
tigated in Section 4.1, for highly oscillating but smooth functions the best
results are usually obtained with a RW(2) prior for α and still a RW(1) prior
for h (rw2vrw1). In analogy to the previous section we compare our ap-
proach with the hierarchical t-formulation in (11) and (12) (trw2), and using
a simple RW(2) prior with global variance (rw2).

Figures 7 and 8 compare the true functions (solid lines) with the av-
erage function estimates (dashed lines) for low respectively severe spatial
variability. Fe focus on rw2vrw1 (a), trw2 (b) and rw2 (c). Figure 9 display
boxplots of log10(MSE). Figure 10 shows for rw2vrw1 and trw2 the average
estimated variances and weights based and the respective posterior mean es-
timates (Doppler with severe spatial variability only). From Figures 7 - 10 we
can draw the following conclusions: For low spatial variability the estimators
with global and locally adaptive variance perform equally well in terms of
the bias. However, in terms of the MSE our proposed esimator rw2vrw1 is
clearly superior to the estimator with global variance and the hierarchical t-
formulation. For severe spatial variability the estimators rw2vrw1 and trw2
obviously reduce the estimation bias compared to the estimator rw2 with
global variance. The lowest MSE is obtained with rw2vrw1. The estimators
trw2 and rw2 seem to have more or less identical MSE’s.

For the Doppler function with low spatial variability, Ruppert and Carroll
(2000) obtained a value of approximately -1.5 for the median of log10(MSE).
Both their global and local penalty estimator perform equally well in this sit-
uation. For the function with severe spatial variability their local penalty
estimator has superior performance compared to their global penalty estima-
tor with a median value of approximately -1.25 for log10(MSE). They claim
that their estimator performs slightly better than the Bayesian method of
Smith and Kohn (1996) and the stepwise selection method of Stone et al.
(1997). All of our estimators outperform their P-splines approach by far.

The Doppler functions were also used in a simulation study in Lang and
Brezger (2001). For low spatial variability the Bayesian P-splines approach
therein and the approach presented in this paper perform equally well. For
severe spatial variability, however, the estimator rw2vrw1 performs slightly
better than the best estimator in Lang and Brezger (2001).
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In analogy to the blocks function we also investigated the coverage of
pointwise credible intervals. Average coverage rates for the various estimators
range from 84% to 85% for the function with low spatial variability and from
81% to 83% for the function with severe spatial variability. Hence, for all
estimators the average coverage is slightly above the nominal level of 80%.

4.3 CP6 sales data

The monthly CP6 sales data (West and Harrison, 1989) shown on the left in
Figure 11 indicate an additive outlier and a change of the slope in December
1955 as well as further change points in January 1957 and 1958. The best
fit for the trend α displayed in Figure 11 was obtained here by a second
order random walk for α and a first order random walk for h. Goodness of
fit is measured by the deviance information criteria (DIC) recently proposed
for Bayesian model comparison by Spiegelhalter et al. (2001). Adaption to
the change points and to smooth trends between them seems to be quite
adequate. Also the changepoints are detected by the peaks in the fit of
the variance function. The estimates are based on a sample size of 105000
iterations and a burn in period of 5000 iterations. For estimation we used
every 100th sampled parameter after the burn in period. The block sizes for
sampling the ht’s were chosen randomly in every iteration between 10 and
15. The computation took only a few seconds on a Pentium III computer
with 850 Mhz. To demonstrate the mixing behaviour of our proposed block
move samplers, we display in Figure 12 the sampling paths for a particular
parameter αt and the corresponding variance parameter exp(ht). Obviously,
the mixing is quite satisfactory. Similar sampling paths have been obtained
for the other parameters.

5 Conclusions

The results in Section 4 provide strong empirical evidence that locally adap-
tive dynamic models are a promising and conceptually simple approach for
nonparametric estimation of unsmooth curves. In particular, the results for
unsmooth and highly oscillating curves, such as the Doppler, are very en-
couraging.

In applications, a decision has to be made about the order of random
walk priors. For a subjective choice, we recommend to use a RW(2) for
regression functions with possibly high curvature but without jumps. For
regression functions with jumps a RW(1) prior should be considered as an al-
ternative. For the variance function, a RW(1) model is usually a good choice.
Obviously, some data driven method for model choice, in particular giving
support for deciding about the types of random walks, would be helpful. The
recently proposed DIC criterion (Spiegelhalter et al., 2001) is a rather general
tool in connection with MCMC techniques, which we routinely compute from
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the MCMC output. It is a generalization of the classical AIC criterion for
complex hierarchical models. More practical experience is needed, however,
before DIC can be used as a standard tool for Bayesian model comparison. In
particular, reasonable estimates of the MC error of DIC are needed. There-
fore, we currently consider DIC values as a guideline which has to be used in
connection with subjective priors.

Apart from the extensions already mentioned at the end of Section 2,
the following generalizations could offer a field for future research: First, the
Gaussian observation model (7) can be replaced by non Gaussian observa-
tion models. In particular, choice of distribution from the exponential family
defines a large class of locally adaptive modifications of standard dynamic
generalized linear models (e.g. Fahrmeir and Tutz, 2001, Ch.8) or generalized
additive mixed models (Fahrmeir and Lang, 2001). A further possibility is
the introduction of varying variances in the observation model, as in stochas-
tic volatility models (Taylor, 1986). Another generalization concerns Markov
random fields for spatial data analysis. Here local adaption for unsmooth
surfaces could be achieved by introducing unknown weights or scale factors
in pairwise difference priors (see e.g. Besag, Green, Higdon and Mengersen,
1995, Section 3), together with spatial smoothness priors for them, and es-
timating these weights simultaneously with the surfaces. Aykroyd (1998)
follows this idea, additional research on performance and applicability is nec-
essary, however.
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Figure 2: Blocks function: Figure a) displays the true function and Figure b)
a typical replication.
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Figure 3: Blocks function: average estimates (dahsed lines) and true function
(solid lines).
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Figure 4: Blocks function: boxplots of log10(MSE) for the three estimators.

a) rw1vrw1

 

x
0 50 100 150 200 250

0

5

10

b) trw1

 

x
0 50 100 150 200 250

0

10000

20000

30000

Figure 5: Block function: average estimates of the variance or weights for
rw1vrw1 and trw1, respectively.
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a) Doppler function with low spatial variability
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c) Doppler function with severe spatial variability

 

x
0 100 200 300 400

-1

-.5

0

.5

1

d) typical dataset

 

x
0 100 200 300 400

-1

-.5

0

.5

1

Figure 6: Doppler functions: Panels a) and c) display the true functions and
panels b) and d) typical replications.
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Figure 7: Doppler function with low spatial variability: average estimates
(dashed lines) and true function (solid lines).
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Figure 8: Doppler function with severe spatial variability: average estimates
(dashed lines) and true function (solid lines).
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a) low spatial variability
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Figure 9: Doppler function: boxplots of log10(MSE) for the three estimators.
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Figure 10: Doppler function with severe spatial variability: average estimates
of the variance or weights for rw2vrw1 and trw2, respectively.
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a) estimated trend function 
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Figure 11: CP6 sales data: Figure a) shows the posterior mean together
with pointwise 80 % credible intervals for α. The observations are marked
by circles. Figure b) displays the posterior mean estimates for the locally
adaptive variances.

a) sampling path for alpha_16
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Figure 12: CP6 sales data: Figure a) shows the sampling path for the param-
eter α16 and Figure b) for the variance parameter exp(h16).


