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1 Introduction

“We prove an analogue of Blackwell’s Renewal Theorem or the Key Renewal Theorem in
the following setup: (z,)n>0 is a Markov chain with separable metric state space S and
(un)n>o is a sequence of random variables such that the conditional distribution of w;,
given all the z; and u;, j # 4, depends on z; and z;41 only. Here the v, = > u;, n € N,
take the role of the partial sums of iid random variables in ordinary renewal theory. The
Key Renewal Theorem in this setup states that limy o, E; > o g(x,,t — v,) exists for
suitable functions ¢ and is independent of x.”

This is quoted from the abstract of Kesten’s famous paper [14], which has attracted
vast attention in particular in the area of random recurrence equations; see e.g. Ver-
waat [21], Goldie [8] and Goldie and Maller [9]. Such equations play an important role in
many applications as e.g. in queueing; see Brandt, Franken and Lisek [3] and in financial
time series; see Engle [5]. The Key Renewal Theory is used in such models to derive the
tail behaviour and study extreme value theory of a stationary version of (z,),>9. Some
special examples have been worked out as ARCH(1) and GARCH(1,1); see Goldie [8], de
Haan et al. [10] and Mikosch and Starica [16].

In this paper we review and modify Kesten’s paper [14] motivated by examples more

general than the above. We consider multivariate random recurrence equations of the type
Yn = AnYn—l + Cn, n e N, (].].)

where the Y,, and ¢, are column vectors of size ¢ and A,, are (¢ X ¢) matrices. Moreover,
we assume that ((4,,(,)) are iid.

Under appropriate stability conditions (see Goldie and Maller [9]) equation (1.1) has
a stationary distribution defined by

k=2

Questions of interest concern the tail behaviour
P'Y >t) as t— o0 (1.3)

for every x € S = {2z € R? : |z] = 1} and the extremal behaviour of the corresponding
stationary distribution and process respectively. Here | - | denotes any norm in RY.

In the one-dimensional case (¢ = 1) Goldie [8] has solved the problem in a very elegant
way and found the tail behaviour (1.3). But for the multivariate model (¢ > 1) renewal
theory is called for. One can show (see, for example, Kesten [13] and Le Page [18]) that

the function P(2'Y > t) is asymptotically equivalent to a renewal function, that is

P(z'Y > 1)~ G(z,t) =By Y _g(wn,t—v,), t— 00, (1.4)
=0
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where ~ means that the quotient of both sides tends to 1. Here g(-, ) is some continuous
function satisfying condition (2.4). In the context of model (1.1) the processes (z)n>0
and (v, )n>o are defined as

A’nxnfl An st All'

= S n = = , > 1, 1.5
To=T €O, x |An$n—1| |An---A1:B| n = ( )

and vy = 0 and for n € N,
Uy = ZUZ =log|A,---Ajz|, with u, =log|A,z, 1] (1.6)
i=1

To obtain the asymptotic behaviour of G(z,t) we apply the Key Renewal Theorem to
(1.4). Unfortunately, to apply this theorem one has to check a “direct Riemann integra-
bility” condition for the function g(-,-); see Kesten [14], equation (1.11). This is a difficult
task because it requires the explicit form of the infinite distributions of the processes (1.5)
and (1.6). For matrices with non-negative elements Kesten [13] proved that his notion of
“direct Riemann integrablity” is equivalent to our condition (2.4) below, which is in gen-
eral weaker than Kesten’s condition. Since models like ARCH(1) and GARCH(1,1) play
a prominent role as volatility models in finance, which are by nature positive, Kesten’s
results apply. When we consider more general models like autoregressive models with
GARCH errors or random coefficient autoregressive models, elements of A,, are often nor-
mally distributed, and this means model (1.1) falls outside the scope of Kesten’s work.
The tail behaviour and extreme value theory of an AR(1) model with ARCH(1) errors was
investigated in Borkovec and Kliippelberg (2001) by different (purely analytic) methods.
It seems to be difficult, if not impossible, to extend these methods to higher order pro-
cesses of this kind. For this reason we come back to Kesten’s methods as an appropriate
remedy. Our generalisation in this respect goes in the same direction as le Page [18].

On the other hand, all models we want to consider have compact state space; indeed,
our models have state space S = {z € R? : |z| = 1}. Kesten and le Page, however, work
with Markov chains with general state space (which can be unbounded). Hence, in our
context, Kesten’s conditions and also proofs can be simplified considerably.

The result of this paper is applied to various models in the accompanying paper
Kliippelberg and Pergamenchtchikov [15].

Our paper is organised as follows. In Section 2 we state the conditions and the Key
Renewal Theorem, which is our main result. In Section 3 we prove the for us necessary
version of the Choquet-Deny lemma similar to the one used already in Feller [6] for
the proof of the classical Key Renewal Theorem. Section 4 ensures the existence of a
limit for a time changed version of the Markov chain (z,),>¢ under investigation and

the overshoot of the corresponding time changed process (v, )n>0. Some properties of the
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renewal function are investigated in Section 5 and, finally, the Key Renewal Theorem is
proved in Section 6. Some technical results are summarized in the Appendix as not to

disturb the flow of arguments in the paper.

2  Main result

We consider a filtered probability space (2, F, (F,)n>0, P);i.e. (F,)n>0 is a non-decreasing
family of sub-o-fields of F. Let (z,)n,>0 be a homogeneous Markov chain with compact
state space S C R?, on which a o-field G is given. We suppose that (z,)n>0 is an F,-
adapted process; i.e. z, is F,-measurable for all n € Nj.

For this Markov process we denote the transition probabilities

P,(I) =P(z; € llzg =2), P{() =Py €llax =2), keN,

x

for every x € S and every measurable set ' C S.

We also consider the (F,),>o-adapted stochastic process (uy)nen. We request certain
further conditions on the processes (xy)n>o and (uy)n>o. These are the following.

C,) For every bounded measurable function f : R x II22,(S x R) — R and for every

Fn-measurable random variable n

E(f(777 xn+1; un+1, LRI ;mn+l, un+l, .. )|fn)
= Exnf(n;xn+1,un+1,...,$n+l,un+l,...) (21)
= &, ),

where ®(a,x) = By f(a,x1,u1, ...,z ...) for everya € R and x € S.

We assume further that

m* = sup E |u;| < oco. (2.2)
TES
Now consider the sequence
vo =0 and vn:Zui, n>1. (2.3)
i=1

Property (2.1) implies that the bivariate process (z,, vn)n>0 is @ Markov process.

We study the asymptotic properties of the renewal function

Ezzg(l‘k;t - 'Uk);

00
k=0



where the function ¢ : S x R — R satisfies the following uniform direct Riemann integra-

bility condition

sup sup |g(z,t)| < 0. (2.4)

1o, TES I<i<iH1

With this notation we can formulate the following conditions:
Cy) There exists a probability measure 7w(-) on S, which is equivalent to Lebesgue

measure such that

IPE() = 7()l| =0, n— oo, (2.5)
for all x € S, where || - || denotes total variation of measures on S. Note that this implies

that (2, )n>0 s recurrent.

Moreover, there exists a constant B > 0 such that for all x € S

. U
lim — =7 P, — as.
n—oo 1

C3) There exists a number m € N such that for allv € R and for all § > 0 there exist
Yvs €S and g9 = go(v,0) > 0 such that V 0 < e < &g

inf Pu(|zm — yusl <& |vm —v|<0)=ps=pes, >0, (2.6)

IGBE,(;J,

where B.s, ={x € S: |v —y,5| <e}.
Cy) Let @ : SXR X R — R be a bounded measurable function. Then there exists
some l € N such that the function ®1(x,t) = E,®(x;,v;,t) satisfies the following property:

sup sup |®y(z,t) — 4(y,t)| =0, &—0.
lz—y|<e teR

The following is the main result of this paper.

Theorem 2.1. (Key Renewal Theorem for Markov chains with compact state space)
Assume that conditions C, — Cy are satisfied. Then for every continuous bounded function

g satisfying condition (2.4)
(o) 1 00
lim By 3 g(op,t — v) = —/W(dx)/ g(z.t)dt, Vres. (2.7)
t—o00 o ﬁ S oo

Remark 2.2. (a) For a non-negative sequence (uy,),>o, this theorem follows directly from
Kesten [14]. This case was also considered in Shurenkov [20] by analytic methods, and he

proved this result for g satisfying a weaker condition than (2.4).
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(b) This type of result can also be obtained by regeneration methods for Markov chains
as developed in Athreya, McDonald and Ney [1] and Alsmeyer [2]. In these papers almost
sure convergence of (2.7) with respect to the stationary distribution 7 was shown. Fuh
and Lai [7] finally found the rate of this a.s. convergence. Unfortunately, we cannot use
these results, since we want to apply Theorem 2.1 for a single value of x € S to obtain the

tail behaviour of certain models; see Kliippelberg and Pergamenchtchikov [15] for details.

3 The Choquet-Deny lemma

In this section we prove an analogue of the Choquet-Deny lemma for our situation under
conditions C; — Cy4. Such a lemma is prominent in proofs of renewal theorems as in
Kesten [14], Section 2, but also already in the classical case; see Feller [6], Lemma XI.2.1
and Corollary to Lemma XI1.9.1.

Define for ¢ > 0,

N(t) =inf{n >0: v, >t}, N(0)=0, (3.1)
and
Z(t) = mN(t) y W(t) = UN(t) —t. (32)

By (2.5) we have immediately for all ¢ > 0 that N(¢) < co P, - a.s. for all z € S and that
Let f : S xR, — R be a uniformly continuous bounded function. Define Hy and H
by

HO('I‘J t) = Ea:f(Z(t)v W(t))X{tzo} ) (33)

where yp denotes the indicator function of a set B, and
H(x,t) = / Hy(z,t+ 5)0(s)ds, (3.4)

where 6(-) is some continuous function with compact support.

Lemma 3.1. Assume that conditions C; — Cy are satisfied. Then every sequence (t)nen
which tends to infinity as n — oo contains a subsequence (t,, )ken such that for every
s € R,

lim H(z,t,, + s)

k—o0

exists and 1s independent of x and s.



Proof. Take [ € N fix. We first investigate for x € S and ¢t > 0 the function

/ Hoy(z,t+ 5)f(s)ds

with
Hoy(z,t) = E,f(Z(1), W)X (nwy>i X0
00
= E,; Z f Tj, Vj — X{N() 5}
j=l+1
= E Z f Ty, Vj — X{v1<t ..... vj_1<tv; >t}
J=Il+1
= EuXp <t <o B (0, 2141, w1, - )| F)
where
f(,Ul) $l+1) 'U,l+1, . ) = Z f($j+l7 Uj+l — v = (t - Ul))X{UlSt,...,Uj+l_1—’l)lft—vl,vj+l—1)l>t—’ul}
g+l
= Zf <x]+l7 Z U; — t_ Ui ) X{vl<t ..... Zi+ll+11ul<t vy, Zl l+1“ >t7vl} :
i=l+1

By (2.1) we obtain that

HOJ(‘I‘? t) = EwX{vlgt,...,vl_lgt}q)(xla vy, t) )

where
O(z,v,t) = Ezf(v, T, U, .. .)
= X{w<t} Z f@j v — (=) X{w1 <t—v,...;0; 1 <t—v,0; >t—v}
=1
= Xpoeny 2 F (@50 = (0= 0) Xn(w)—i
j=1
= Xpeny B (Z(t = 0), W(t = v)) (3.5)
= Hy(z,t—v).
Hence,
Hoi(z,t) = EzHo(z,t—v)—0(z,t)
with

5(2,) = Ba(l = Xgpy <ty <y Holr, t = ).
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By the dominated convergence theorem §(z,t) — 0 as t — oo for all z € S. Therefore
Hya, 1) = /Oo Hoy(, u)0(u — t)du = Hy i (,8) — A, 1)
0
where
Hyo(z,1) = /OO By Ho(anu— 0)0(u— t)du, Az, t) = /OO 5z, u)(u — t)du.
0 0
Notice that the function Hy (z,t) (by condition Cy) satisfies the property:

sup sup |Hyy(z,t")— Hyy(y,t")| =0, 6—0, ¢—=0
|lz—y|<e |t/ —t"|<0

and A(z,t) — 0 as t — oo for every x € S. Therefore we can (by standard diagonal
selection methods (Rudin [19], Theorem 7.23)) find a subsequence (t,, )ren for which

lim H(x,t,, + s)

k—o0

exists for every x € S and s € R.

Since f is bounded we get for every [ € N and z € S
Hy(z,t) — Hoy(x,t) = 0, t— o0. (3.6)

But this means that H(z,t) — Hi(z,t) — 0 as t — oc. Therefore, for every (z,s) € S xR,

there exists the limit
G(z,s) = lim H(x,t,, +s).

k— 00

By (3.5), since u; = vy,

Ho({L‘,t) - EmH()(l'l, t— Ul)
= Ho(l’, t) — Ho,l(l', t) + Ho’l(l‘,t) — E:,;Ho(l'l,t — Ul)
= o(l) = d(z,t) - 0, t—o0.
From this we conclude for every x € S,
tlim (H(z,t) —E H(z1,t —uy)) =0
—00
and we have that
G(z,s) = E,G(x1,s —uy) = E,G(x9,5s —v9) =--- =E,G(x;,s —v), [>1. (3.7)

By condition Cy this function satisfies the following continuity condition:

sup sup |G(z,t)—G(y,t")] =0, §—=0, ¢—=0. (3.8)
|lz—y|<e |t'—t"|<0



We show now that for each x € R,
G(z,s) =G(z,s+v), vekR. (3.9)
Suppose that there exist 7o € 5,59 € R, € R such that
G(xo, s0) < G(x9, S0+ V).
Set G(z,5) = G(x, s + ). Notice that the sequences

(G(xna So — vn))neN and (é(xn; So — Un))neN

are bounded martingales, which converge P, -a.s. to random variables G, and éoo such
that for all n € N

G(z9, 50) = EpyG(xp, S0 — V) = EyyGoo, G(T0, 50) = Eyy G(Tn, 50 — vn) = EIOGOO.
Since G < éoo, there exists a < b such that
P, (G <a<b<Gy)=1>0. (3.10)
Further define

A = {(z,v) : G(z,s0—v)<a} CSxR,
B = {(z,v) : G(z,50—v)>b} C SxR,

and C'= AN B. Denote by z, = (x,, v,) the bivariate Markov chain on S X R with initial
value zyp = (o, 0).

We shall use the following probabilistic fact.

Lemma 3.2. (Jacod [12], p. 89) Let (I';)n>0 be a sequence of the measurable sets of the
filtered probability space (0, F, (Fpn)n>0, P). Then

nh_)rgoP (ﬂ Ty | fn) =Xr. G5,
k>n
where x_ denotes the indicator function of the set I'y = liminf, o T'y := Uj>1 Ni>; Ty
Setting F,, = 0{20,...,2n}, I'n = {2, € C}, n > 0, and taking into account that
(2n)n>0 is a Markov chain we obtain

o0

nlgglo P.. (ﬂ{zk < C}> = Xiiminfyooo{znec} Pz — a5
k=0



From this and (3.10) we conclude
P, (lim P, <m{zk € C’}) = 1) >7r > 0. (3.11)

Let v € R be as before. Taking (3.8) into account, we can fix § > 0 and £ > 0 such that
Yus € S 1s as in Cz and

b—a

sup  sup |G(z,t')—G(y,t")| <

3.12
|lz—y|<e |t/ —t"|<d 4 ( )

By condition Cy we have m(B;,,5) > 0 ((zn)n>0 is recurrent), therefore for every z € .S,

P, (ﬂ Utz € Bg,u,5}> =1. (3.13)

I1>1n>l

By (3.11) there exist 2} = (7, v}) such that lim, ,o P, ((Nr—o{zx € C'}) = 1. Hence for

n’ - n

all p > 0 there exists some ng € N such that P,. ((,—o{zx € C'}) > 1—p/2 for all n > ny.
Combining this with (3.13) there exists z, = (x., v,) with z, € B, , 5 such that

P.. (ﬁ{zk € C}) >1—p/2.

k=0

This means that z, € C = AN B; i.e.
G(x,,51) <a, and G(z,,s) > Db,

and for every k € N either

P, (G(mk,so — ) < a, é(mk,so —vg) > b) >1-— g
or
P,. (G(mk,sl —) < a, é(mk,sl —vg) > b) >1-— g,

where s; = sy — v,. Setting k = m, p = p, > 0 as in (2.6) and taking into account that

Z. € B. s, we get

Pa:* (G(l‘m; S1 — Um) <a, é(l‘m, S1 — Um) > b) > 1= %7
Pl’*(|xm_yy,(5|<6, |Um—1/|<6) > Ds -

Since the event in the following probability is the intersection of two events, one with

probability 1 — p,/2 and the other with probability p., we conclude
P, (G(@m, 51— vm + V) > B, |Tm — yus| <&, |vm —v| <0) >p/2>0.
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On this event we have that

b—a < G(zp,s1—vm+v)—Gx,,s)

< |G(@m, 51— Vm + V) — G(Yus, 51 — v + V)]
+|G(yl/,(57 51— Unm + V) - G(.'L'*, 81)|
<2 s swp [Glt) - Gt
‘wfy‘<57 wryeBE,é,u ‘t’*t”‘<5
b—a
< .
- 2

By means of this contraction we obtain for every x € S and s € R,
G(z,s) = G(z,0)
and therefore, by condition Csy, for each z € S and s € R,

G(z,s) = G(z,0) = E,G(zp,—v,) = E,G(x,,0)
= lim E,G(z,,0) = /G(z, 0)r(dz) .

n—oo

O

Corollary 3.3. Assume that conditions C; — Cy4 are satisfied. If there exists a measure
uwoon S X R of finite total mass mqy such that

lim H(z,t — w)pu(dz, dw) =7,

t—o0 SxR

then
lim H(x,t) =v/myg.
t—o00

Proof. Let xy € S and (t,)nen a sequence tending to infinity as n — oo such that

v = lim H(xg,t,) .

n—oo

By Lemma 3.1 there exists a subsequence (%, )xen such that

lim H(z,t,, —w)="".

k—o0
Hence, by the dominated convergence theorem,
lim H(z,t, —w)u(dz,dw)=myy"
k— o0 SxR "k

and v* =v/my. O
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4 Change of time theorem

In this section we obtain a limit theorem for the process (Z(t), W(t));>o as defined in
(3.2).

Theorem 4.1. Assume that conditions C, — Cy are satisfied. Then there exists a random

vector (zZe, Weo) Such that for every initial value x € S
(Z(t), W(t) = (200, Weo), t— 00, (4.1)
where = denotes weak convergence with respect to the measure P,.

Proof. Let f : S x (0,00) = R be bounded and uniformly continuous. Define Hy(z,1)
and H(x,t) as in (3.3) and (3.4) with continuous #(-) satisfying for some 7 > 0

6(s) >0, 6(s)=0, |s|>n, and /_OO O(s)ds =1. (4.2)

o0

As we show in the Appendix, there exists a probability measure p on S xR, (the invariant
measure of (Z(t), W(t))i>o) such that

lim H(z,t —w)p(dz,dw) = / [z, w)p(dz, dw)
SxR4

t—00 SxR
1 vy
— 5 [otws, [t e, @3
BJs 0
where
vy =inf{n >0 : v, >0}

and o(-) is some measure on (S,G) with 0 < ¢(S) < oco. Thus, if f is bounded and

uniformly continuous, then Corollary 3.3 applies and

t—o00

lim H(z,t) = /S . f(z,w)p(dz, dw), =ze€S. (4.4)

We apply (4.4) first with f(z,w) = k(w) for some uniformly continuous function k(-)
satisfying 0 < k(w) < 1 and for some 7 > 0,

E(w)y=1if 0<w<4n and k(w)=0 if w>5n.
For ¢ > n the corresponding H satisfies

Hn ) = /oo 0(s)EL k(W (t + 5))ds

o0

> /OO O(s)P,(W(t+s) < 4dn)ds

o0

> P, (W(t+n) <27).

12



Thus by (4.4),

limsupP, (W(t —n) <2n) < tlim H(z,t—2n)

= /SXR+ k(w)p(dz,dw) = %/Sa(dy)Ey /Ovu1 k(w)dw < 5no(S)/p
:61(77)—>0, 77—>0

Observe now that there is no ladder hight of (vy)n>0 in (¢t —7n,¢+ 1) and hence we have
for |s| < n on the set

{W(t—mn)>2n} ={vngq >t+n}

the following identities
N(t+s)=N@E) =Nt —1), Z{t+s)=2Z(1)=Z{t—1n), W(t+s)=W()—s.
Thus
H(zt) = B, /_Z FZ(E+ 5), W (t+ 5))0(s)ds
= By [ X FZ0.W (0 - 05105

+E, /_ Xowony<om F(Z(E+5), W(t + 5))0(s)ds

o0

From this we obtain

B f(Z(t),W() = H(z,0)] < sup sup |f(z8) = f(2,8)|+2 sup [f(zDler(n):

2€S [t—s|<n z€S, teR

Taking (4.4) into account and letting n — 0, the right-hand side converges to 0 and we

obtain (4.1) for every random vector with distribution p. O

5 Properties of the renewal function

In this section we study the properties of the renewal function

o0

G(z,t) =E; Y g(tn,t —vn). (5.1)

n=0

Proposition 5.1. Let g : S xR — R be a bounded (by g* € R) jointly continuous
function such that g(x,t) = 0 for |t| > L for some L > 0. If conditions Cy and C4 hold,
then the function (5.1) is bounded and jointly continuous on S X R.
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Proof. For [ € N define the sets

Cj = {.’IIG S P, (ﬂ{va—vl 2m/y}> > 1/4} , jGN, (52)

m2>j

which constitute an increasing sequence, and by condition Cq,

P, (ﬂ {Vmsr — v > m/j}) = E,P (ﬂ {Vmsr — v > m/j}m) =E,®;(x),

m>j m2>j
where ®;(z) = P,y(Np>;{vm > m/j}). By Cy the integer [ € N can be chosen such that
the function P (0,5 ;{vm+1—v > m/j}) is continuous in x and therefore the C; are open

sets (in the topology on S). By condition C, we have that
s=J¢;.
i>1

Since S is compact, there exists some k € N such that
k
S=JC=Ck. (5.3)

j=1
As a first step we show for each b > 0

SUpSU B, D Xy civny < AR(L+L+b+Im’) +41 = M, (5.4)
z n=0

where the constant m* is defined in (2.2). By (5.3) every x € S belongs to Cy, i.e. we have
for every n € N by (5.2), invoking Cy,

P (m {Vmti4n — Vign > m/k} |}—n> =P, (ﬂ {vms — v > m/k}) > 1/4

m>k m>k

Define the stopping times
7o =min{n >0 : v, € [t,t + 0]}

and for j > 0 (recall that &,/ € N are fixed by the construction),

]
Tj+1:min{n27'j+k+l: vn € [t,t+ 0], Un—UTj+l<%}.
Further

P(Tj+1 < o0 ‘f’rj) = X{Tj<oo}P(7—j+1 < o0 ‘fq—j)

e Tjg1—n —1
< ZX{Tj:n}P <UTJ+1 — Unp1 < ]T |‘7:”>
n=0

© 3 e (1P () =0z iy 7))
n=0 m>k
3

S ZX{TJ- <oo}
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and therefore for z € S
3
P,(1j11 < o00) = Ea:X{Tj<oo}P(7'j+1 < oo|lF,) < ZPm(Tj < 00) .

We obtained that for all j € Nand z € S

P, (r; < 00) < (j) . (5.5)

Further we have
ZX{tSUnSHb} = ZX{T]-@} Z X{t<v, <t+b}-
n=0 7=0 T <n<Tj41

Ift<wv, <t+band 75+ k+1<n <74 then

n—1;—1

k

n—1;—1

t+bZ'UnZUTj+l+ Lk )

> A1)+t +
that is
n — Tj S l + (b — A](l))k,

where A;(l) = v, 1 — vr,. Thus

Z X{t<on<tiby < b+ 1+ Z X{t<va<tto} S k+1+ 0+ 1A4;(D])k

7, <n<Tj41 T +kH<N<Tj 41
and we obtain
E, Z X{tgvngt—l—b} < My Z PI(Tj < OO) +k Z EIX{Tj<oo}|Aj (l)|a
n=0 §=0 §=0

where My = k + [ + bk. Taking into account that for every j € N

EoXir, <00} A (D] < Py(1j < 00) sup E.vy < Py(7; < 00) Isup E.|uy,
z€S 2€S8

by (2.2) and inequality (5.5) we obtain (5.4).
Since the function g(z,t) = 0 for |t| > L, we have g(x,t — v,) = 0 for |t — v,| > L. From
this we conclude that

lg(w,t —v,)| < g*X{|t7'un|§L} = Q*X{thgunng}

which implies that |G(z,t)| < ¢" Y2, 51 Xyt 1<v,<t+1}- BY (5.4) this sum is bounded uni-
formly in z and ¢ by M. From this we conclude that the function G(z,t) is bounded.

We show next that the function G(z,t) is continuous. For n € N and L > 0 (given by the

assumption) set
w=inf{n>N : t—L<w,<t+L}. (5.6)
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By this definition and the fact that g(z,t) = 0 for |t| > L we have

E, Z g(xp,t —v,)| = |Ey Z 9(@n,t —vp)| < BaX{ry<oc} ®(@ry s Vry) 5
n=N n=1TN

where
+oo
O(z,v) = E, Zg(xn,t— v— ).
n=0
Taking again into account that g has bounded t-support,

B(z,0)| < Ep Y |g9(@nt =0 =v)l S 9Ea > Xqp v vnj<r) < 9 Fa D X{ ap<m <21} »
n=0

where the last inequality holds for |t — v| < L. We use this estimate for v = v,; i.e.
|t —v| = |t — v, | < L. This yields finally the estimate

Ea: zoo: g(wn,t - 'Un)
n=N

00
< Ea:X{q—N<oo}Ea:-rN Zg(xnat = Ury — Uﬂ)
n=0

< Q*Ea:X{TN@o}Ea:TN ZX{szgungL}

n=0

< ¢'MP,(1y < o0),

where we have used inequality (5.4) in the last step.

Further, for some 0 < € < 3,

P.(tn < 00) < P,(1y < 00, sup |9,| <€) + Pty < 00, sup |d,| > ¢€),
n>N n>N

where
5, = _ g
n

Therefore, for the first probability on the right hand side we have for N > ?%Le that
Uy > N(B —¢) >1+ L, hence

P.(tny < o0, sup |0, <€) =P, (t— L <wv;,, <t+ L, sup|d,| <e€)=0.
n>N n>N

This means that for this N

< g"MP,(sup |9,| > ¢€). (5.7)

n>N

Ea: io: g(l'n, t— Un)
n=N

By C, the probability on the right hand side tends to zero as N — oo for each x € S.
Further, notice that for N > [ by Cy,

Un
P,(sup |— — | > ¢) = Py(sup |0,| > €) = E, Py (z;, 1),

n>N N n>N
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where

Oy (x,v) =P, < sup

n>N—1

Uy + U
- > .
n+1 B‘ 6)

Therefore, by C, the function P,(sup,y [6,| > €) is continuous for each N > [. Since

the function g(x,t) is jointly continuous, for every N < co the function

N

Gy(z,t) =E,; Zg(mn, t— vy)

n=0

is jointly continuous on S x R. Now we have that for N > (2|tg| + L)/(8 —¢€) + 1

Gla,t) = Glaosta) < |Gl ) = Gl to) |+ 9" MIPL(sup [8,] > €) = Puy(sup [8n] > o)

+2g* MP . (sup |0,] > €).
n>N

By letting first + — x9 and ¢ — t;, and then N — oo we obtain joint continuity for
G(z,t). O

6 Proof of the renewal theorem 2.1

First we prove this theorem for a function g satisfying the conditions of Proposition 5.1.
In this case, using (2.1),

G(z,t) = E, Zg(xm t—vyp)
n=0
— E.”E Z g(.’L‘n, t — Un)
n=N(t—L)
= E.E[ ) gl@nt—v.)|Frno-i]
n=N(t—L
= E,G (Z t—L),t— UN(t—L))

= E.f(Z(t-L),W(t— L))

where f(z,w) = G(z, L — w). By Theorem 4.1 and Proposition 5.1 the following limit

exists and is independent of x:

lim G(x,t) = lim B, f (Z(t = L), W(t - L)) = Guo . (6.1)

t—o0

Then by the boundedness of G(-,) and the dominated convergence theorem,

. e
Goo:Tll_{lgo Sw(dx)T/O G(z,t)dt.

17



Further we have

1 T oo 1 T
T/o Gt = B.Y g [ gfwnt— v
n=0
1 Mo(T) T
- TE‘T /g(xn,t—vn)dt+E$A1(T)
n=M(T)* 0
1 MZ(T) o0
= B / (s )t + By AL (T) — BuAo(T),  (6.2)
n=M(T)"” ~*
where
1M1(T)—1 T
AT) = = /g(xn, - dt+— > / 9(Zp, t — v,)dt
0

n>M2

N =

00 0
AT) = ([ sttt [ gtont=uar)
n=my (1) T —o0

We set,

win -], w15

where [a] denotes the integer part of a. By substituting the first term in (6.2) in the

integral with respect to the stationary measure 7(-) we have

/S Z/

TLM1

= /Sﬂ(dl‘) /_00 g(x,t)dtMZ(T) ; Mi(T)

o0

1-2 o
— 3 c 7r(d:1:)/ g(z,t)dt, T — oco.
S —0o0

Further, since g(z,t) = 0 for |[t| > L the last term in (6.2) is bounded by

Ma(T)
E,|Ay(T gf Z o(vy >T — L)+ Py(v, < L)),

n=M,
where g} = sup,cg [ |g(x,t)|dt. By condition C,, for every & > 0,

lim E,|Ay(T)| =0, z€S. (6.3)
T—o00

Moreover, concerning E,A;(T) we have

Z / G(zn, t —vy)dt| < gie/p.

18



and
2 1 g
Z / 9(2p, t — v,)dt| < Egl +Eq | > /0 9(2p, t —vy)dt| |
n>Mz n>M3z(T)
where M3(T') = [(1+¢)T/f]. Now by (5.7),
/ Z g(xp,t —vp)|dt < g"MP, | sup |§,| > p

TL>M3 "ZMS(T)

for p < fe/(1+ ¢) and sufficiently large T — oo. By condition Cy we obtain that

291

limsup/sﬂ(dx)Ez|A1( )| <

T—o0

Since E;|A(T')] is bounded, and recalling convergence (6.3), we find upon letting ¢ — 0

}B&G“ 5/ dm/ g(x,t)dt.

Now let g be an arbitrary continuous bounded function on S x R, satisfying condition
(2.4) and let A : R — [0, 1] be a continuous function such that A(¢t) =1 for |t| < L —1
and A(t) = 0 for [¢| > L. Then, making use of inequality (5.4), we obtain that

E, Zg(mn, t—uv,) —E, Zg(xn, t—vp) At — vp)

< Z E, Z|g Tp, T — |X{t+]<vn<t+]+1}

lil>L-2  n=0

IN

(o)
sup  |g(2,t)| B E X {t4i<on<t+i+1)
z€8, j<t<j+1 0 -

lj|>L—2

< M D sup sup |g(zt)].
T 2€8 j<t<j+1

This last expression tends to zero as L — oo, because g satisfies inequality (2.4). O

APPENDIX

In this section we prove the relationship (4.3) by a modification of the proof of Lemma 2
in Kesten [14]. First we need to construct a measure o on G. We imitate the construction
of Kesten [14] simplifying at the appropriate places for our special situation of a compact

state space.
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A.1) Construction of the measure o.

Consider the measurable space (X, X'), where
X=MI"_(SxR) and X =1I*_(G x B),

and B is the Borel o-field in R. Denote (Z,, @,)nez the coordinate process in this space.
We also define F, = of{Z;,u; : —oo <i <k}
By Kolmogorov’s theorem we can construct the stationary measure on this space,

which has the following finite dimensional distributions

P(Try1 € T1 kg1 € Ary oo Tign € Doy gy € Aa)

= / 7(dy)Py(z1 € Th, us € Ay, ..o, Ty € Ty, U € Apy) (A.1)
s

for every —oo < k < .
It follows from (A.1) that for every bounded measurable function f : II° (SxR) — R

E(f(Zpy Uy - - - s Thogms g - - - | Fr) = f1(E, Gg) , (A.2)

where
fi(z,u) =By f(x, uy 21, U, . ooy Ty Uy - - -) -

To construct the functions of this process we set

Sor g, if n>1;
U, =14 0, if n=0; (A.3)
— S, if n<0.
Set
Py =max{n <0 : ¥, >sup?;} (=—oo if nosuch n exists).
j<n
Now we define the measure o on G by
o) =P =0,i€l), I'eg. (A.4)
Further we need to introduce a sequence of stopping times by

vo=0, vi=inf{i>v;_y v, >wv,_}, jEN, (=00 ifnosuchn exists). (A.5)

Notice that condition C; implies that for every bounded measurable function f : R X
RxS—Randfori>0

E(f(ViJrl = Vi Uy — Uiy wl/i+1)|f’/i) = W(f)(l‘,,i), (A6)
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where 7(f)(z) = E,f(v1, vy,, x,,). This means that the process (z,,);en is a Markov
chain. Now we need the following lemma, which is proved in Kesten [14], p. 368, under

different conditions.

Lemma A.1l. If conditions C; — Cy hold, then
P,(y; < o0)=1 Ve e S, Vi>1, (A.7)

and

P(7y=0) > 0. (A.8)
Further, o is an invariant measure of the Markov chain (z,,)i>0, i-e.
[ ot = [ fata) (A.9)
for every bounded measurable function f on S. Finally,
/S o (dy)Eyv,, = (A.10)

Proof. First notice that condition C, implies (A.7). Further, from Cy and (A.3) it follows
that P(i% > —oo) = 1; that is, taking (A.1) into account, we obtain

1 = P(io=-n) < > P(i_, >supi;)
n=0 n=0 j<n
= P(i, > supv;) = P(i, = 0).
nz: (To j<IO> i) nz; (0 )

From this we get (A.8).

Further, from (A.4) we obtain that for every bounded measurable function f : S — R
[ oA, £(21)) = By 2(n)
s

where ®(y) = E, f(z,,) = Ey fi(z1, 01, ..., Ty U, - - ),

o
Ji(@, ug, o Ty Uy - L) = Z f(‘rk)X{mSO,...,vk_lSO,vk>0}‘
k=1

Therefore, by (A.2) we have that

/S:O-(dy)Eyf(le) = ZEf(i‘k)X{supj«)ﬂj<0}X{171SO,...,ﬁk_1§0,5k>0}
k=1

o0
= § E)f(a"(])X{supj<7,C 17]'<U—k}X{1~1—k+1Sﬁ—k;mﬂjflSﬁ—k<0ﬂ~)—k>0}
k=1

= ZEf(jO)X{DO:O}X{/\:—k} ’
k=1
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where A = inf{l < 0 : @ = sup,,¥;}. Notice that by condition C, we know that

P(A > —o0) = 1, therefore we obtain

/5 o (A9)Ey f(0r) = B Go)Ximny > Xpne sy = B (o)X oty = / o(dy)f (4).

Taking also (A.6) into account, we obtain (A.9).

We show now that
/ o (dy) By = 1. (A1)
s

Indeed, by the same method as above one can obtain that

/a(dy)Eyl/1 = ) kP( =08, <0,..., 051 <0, > 0)
S

k=1

EP(supd; < 0,8 < 0,...,0_1 < 0,7, > 0)

[
WE

k=1 IO
o k-1
- E P(Sup 6] < 6—7"7171—7“ S 6—7“7 s 76k—T—1 S Oaﬁk—T > 0)
k=1 r=0 J<°T
oo k—1
= E P(ﬂOZ—T,ﬂlzk—’r),
k=1 r=0

where 7y = inf{l > 0y : 0, > ¥U3,} (= oo if no such n exists). Notice that the definition
of 7y implies that v; > 1 a.s.. Indeed, if 7y = 0, then 7; > 1 by definition. Now assume
that 75 =1 < 0. Then

supv; < Uy, Ul S Upye.., 01 SO
j<i

and v, > 0. This follows from the fact that o; < 0 implies sup,ov; < 0 = 9. But this

means that 7y = 0 which contradicts 7y = [ < 0. Hence, 71 > 1 a.s.
Condition C, implies that P(i < co) = 1. Therefore,

/Sa(oly)Eyy1 =Y Y Poy=-r,in=j) =1

r=0 j=1

Now let Q(-) be the probability measure on (2, F) defined by

Q) = [ sanP,(a),
where & is probability measure un S, i.e.

sry— 70 __olD)

o5 " Pa=0) |9

22



Define the stochastic process
}/j = (V] - Vj—IJ Ul/j - UU]‘_17 :I"l/j) 9 j 6 N (A12)

By (A.6) this process is a homogeneous Markov chain in R* with respect to the measure
(@, which is strictly stationary by Lemma A.2 below. Hence, by the Birkhoff-Khinchin

theorem (see Doob [4]) we have

n
v, i—1V; —Vj-1
lim = = lim 2= Vs Y = v = E°n|T) Q—as.,
n—oo M n—00 n
n
. v . = Uy, —V j —
lim — = lim 2= % = Vs = v = E90,|T) Q-as,
n—oo N n—00 n

where Z is the Borel field of invariant sets, E¢(-) denotes the expectation with respect to
the measure Q).
Condition C, implies that v,, = fvs. Therefore

/ o(dy) By, = P = 0)E%,, = P(i = 0) E%u
S

— BP(7 = 0) B9 — BP(ip = 0)E% — 4 / o (dy) By .
s
Taking (A.11) into account we obtain (A.10). O

Lemma A.2. The process (Y;)jen is a strictly stationary process; i.e. for all m,k € N

and 1y < ... < i,
EC LY, ) foYiim) = BCA(Y,) - fi(Y,) (A.13)
for all measurable bounded functions (f;)1<i<k-

Proof. First notice that (A.6) implies that for all n € N
E(f(Yjn) Yo, ..., Y5) = T"(F)(Y5) ,

where T"(f)(-) is nth power of the operator T'(f) which is defined for every bounded

measurable function f : R® — R as

T(HY)=7(H)ys), Y=y R, w(f)ly) =E,f(N).

We prove (A.13) by induction. For £ = 2 we have
B, ) oVin) = [ GBIV, ) (Vi)
= [ AW, o BV YoV )
= [ B A ).
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where f1(Y) = f1(Y)T?~%(f,)(Y). Thus by (A.6) and (A.9) we obtain

B, ) Vi) = [ S@B(R),,)
= [ aB(F)e, ) = [ SN = B2AK)AT).

We assume now that (A.13) is true for some fixed & € N and prove that it is true for

k + 1. By the same method as above we obtain

B2 F1(V,, ) Se Vi) Fiot Vi) = BOAY ) - FoVi )
where f,(Y) = fu(Y)T%+1~%(f,,1)(Y). By assumption we obtain that
E?f1(Y, ) oY) it (Vi) = BAYG) - f(Yy)
= [ SARAW) AT ) )
= [ HWEAG) - R (Y
which gives (A.13) for k+1. O

A.2) Invariant measure for the process in continuous time (3.2).

In this section we show that the measure p as defined in (4.3) (with o defined in (A.4))

is an invariant measure for the process (Z(t), W (t))i>o.

Recall the definition of v; in (A.5) and consider the function

@(z,F,t):ZPZ(x,,i el v, <t), 25, TegG,t>0,

1=0

and O(z,I[',t) = 0 for ¢ < 0. Notice that the inequality (5.4) implies that

O(z,T,t) <Y Pylv, <t) <Y Pyly;<t)<oo, 2€S,Teg,t>0.
=0

1=0

For every measurable bounded function f : S X R — R we define the operator
t 00
O(f)(2,1) = / Flot = 1Oz de,dr) = 3 Buf* (5t — 1),
0 i=0

where fT(x,t) = f(x,t)x{tzo}.
We show first that the function ©(f)(z,t) satisfies

O(f)(z,t) = [T(2,t) + E.O(f)(xp,, t —vp,), 2€S,t>0. (A.14)
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Notice that (A.6) implies that for every bounded f : S x R — R-measurable function
and for every i € N,

E(f(wViJrl 7UVi+1)|fVi) = 7To(f)(wl/i ’,UVi) )
where 7o(f)(x,v) = Eg f(x,,, vy, + v). Therefore, for every n € N,

E(f (v s 0v )| Fn) = 76 (F) (20,5 0)

where 7l (f)(x,v) = E.f(z,, ,v + v,,). Moreover, we have for ¢t > 0

o o

@(f)(zat) = f(.%‘,t) +EZZE(f+('TVi+1=t_ vVi+1)|fl/1) = f(.%‘,t) +Ezzwi(‘%‘u17t_ szl) )

i=0 1=0
where ¢;(z,t) = E,f*(z,,,t — v,,). From this (A.14) follows.

Since o is an invariant measure for (z,,);eny we obtain

[ ettt - wutdy.dv)
1 vy AL
_ B/a(dy)Ey/ O(f) (s, t — w)dw

- 5/ dy/ )yt - )dw—%/ dyEy/UUlM@ )@y, t = w)dw

t— Uu1
= (dy) / fly,w)dw + - / (dy)Eyx, / @y, t—w—wv,)dw
i) Ry )

t—vy,
_E/S (dy)EyX{ul, <t}/(; O(f)(xy,, w)dw.

By change of variables, setting u =t — w — v,, in the second integral in the last equality,
we obtain that

Of) (v, t — w)u(dy, dw) = / (dy) / F(y,w (A.15)

SxR

We show next that the measure y is invariant for (Z(t), W(t)).>o; i.e. for every bounded
measurable function f : S xR - R

/S REZ,wf(Z(t) W () p(dz, dw) = f(z,w)pu(dz,dw), t>0, (A.16)

SXR

where E,,, denotes the expectation by the distribution of the process (Z(t), W (t),t >
0) under the initial condition Z(0) = z,W(0) = w. Notice that condition (2.1) and
definitions (3.2) imply that for every measurable bounded function f and t > 0,
flz,w—1), if 0<t<w;
E.of(Z(t), W(t)) = - (A.17)
E.f(Z(t—w), W(t—w)), if t>w;
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Indeed, taking into account that on the set {N(0) = n} for t > w we have v, = vy =
W(0) = w < t we conclude

Ez,wf( ( ) ( )) = Ez wE(f(Z(t) ) W(t))|fN(0))
= szx{N —n B (Z(1), W(D)[F,)

= Ez,wZX{N(O):n}E( Z f(@r v, = )X{N k}|f)

k=n-+1

= szX{v1<0 Vn 1<0vn>0}E Z f(@g v, — )X{vngt,...,vk_lgt,vk>t}|fn)‘

k=n—+1

By condition (2.1) we have also that

+o00o
E..f(Z(t),W(t) = EZ,wZX{N(O):n}q)(‘Tn?Un) = E. @@y, vne) = P(zw0),
n=1

where for t > v

q)(x, U) = E; Z f(mk Uk T U — t)X{UlSt_va~~~:vk—1§t—v,vk>t—v}
k=1
+oo

= B ) fwr, on+0 = )X np o)k}
k=1

= Ea:f(xN(t—v) s UN(t—v) T 0 — t)
= E.f(Z(t—v),W(t—v)).

From this we obtain (A.17).

It remains to show (A.16). Indeed, by definition N(t) = v; for some i € N. Therefore, for
t>0,

Ea?f(Z(t) ) W(t)) = ZEmf(le y Uy — t)X{N(t):yi}
- Z EwX{vui St}f+($’/i+1 1y Uripr — t)

1=0

- Ea: ZX{vuigt}g(wui ,t— 'Uui) - @(g)(:l?, t) )
=0

where g(z,u) = E, f"(x,, ,v,, — u). Therefore, taking (A.15) into account we obtain that
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Vyy

1
o, (20 W (0)du + / o(dy)E, / Ea, wf(Z(t), W(t))dw

vy A

o
Qo
o
s
=
N4
O\e
A4
2

Uy AL 1 Uy —t
= 5 [otawm, [ et —wdw+ 5 [ onBg, Ly [ o
0 .

1 'u,,lft
= [ et oy dv)+ 5 [ o,y [ o

SxR

1 t 1 Uul—t
— B/sa(dy)/o g(y,w)dw+E/So(dy)EyX{%Zt}/o Flay, ,w)dw
_ l t + . l Uylft
= B/SO—(dy)EyA f (l‘ul y Upy U))dw+ B/SO—(dy)EyX{UU1>t}/(; f(xul,w)dw

1 Uy vy —1
= _ / o(dy)E, / f(zy, ,w)dw + X{v, >t}/ f(z,, ,w)dw
ﬁ S Vyy =V At 1= 0

— %/Sa(dy)Ey/0 " F,  w)dw = SXRf(y,w)u(dy,dw),

From this equality (A.16) follows.

A.3) Proof of (4.3).

For the function (4.2) in the definition of H for ¢ > n we have

H(z,t—
SxR

K
[

Jp(dz, dw)

w)
< Z(t+ s —w), W(t—l—s—w))x{t+s>w}u(dz,dw)> ds
SxR N

88

</SXR E..f(Z(t+s),W(t+s))u(dz, dw)) ds —4(t),

where

50 = [ 06) [ 5=t = etz dw)ds.

0 SxR
Taking (A.16) and the definitoin of the function () in (4.2) into account we obtain that

the first integral in the last equality is equal to the right hand side of (4.3), and by the
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dominated convergence theorem we get §(t) — 0 as ¢ — oo. Hence the relationship (4.3)
holds.
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