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Abstract

In this paper we analyse data originating from the German Deep Drill Pro-
gram. We model the amount of 'cataclastic rocks’ in a series of measurements
taken from deep drill samples ranging from 1000 up to 5000 meters depth.
The measurements thereby describe the amount of strongly deformed rock
particles and serve as indicator for the occurrence of cataclastic shear zones,
which are easily speaking areas of severely ground’ stones due to movements
of different layers in the earth crust. The data represent a 'depth series’ as
analogue to a ’time series’, with mean, dispersion and correlation structure
varying in depth. The general smooth structure is thereby disturbed by peaks
and outliers so that robust procedures have to be applied for estimation. In
terms of statistical modelling technology we have to tackle three different pe-
culiarities of the data simultaneously, that is estimation of the correlation
structure, local bandwidth selection and robust smoothing. To do so, existing
routines are adapted and combined in new ’two stage’ estimation procedures.

KeEYwORDs: Local Bandwidth, Local Smoothing, Robust Smoothing, Smoothing
Correlated Data.
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1 Introduction

1.1 The data

During the course of the German Continental Deep Drilling Program (Kontinen-
tales Tiefbohrprogramm der Bundesrepublik Deutschland, KTB) two scientific bore-
holes were drilled into the crystalline crust near the village of Windischeschenbach
(Bavaria, Germany). One of the holes was drilled down to 4 km depth and the sec-
ond down to 9.1 km depth. The scientific aims of the project are manifold including
e.g. the evaluation of geophysical structures and phenomena, investigation of the
thermal structure of the continental crust, in-situ investigation of rock fluids and
their contribution to formation of ore deposits, and elucidation of the structure and

evolution of the Earth’s crust and many more.

The KTB project was one of the most extensive and expensive research pro-
gram in geosciences ever undertaken in Germany. Data coming from this project
have been extensively analysed before, mainly in the geophysical literature. The
budget amounted to approximately 380,000,000 EURO from 1982 until the comple-
tion of drilling activities in 1995. For further description of the project and results
we refer to Emmermann & Lauterjung (1997). Updated information about the
project as well as data access is available on the project web-page http://icdp.gfz-

potsdam.de/html/ktb/.

Technically, investigations in the KTB field laboratory on-site revealed about
68 variables of lithological components, petrophysical properties and geochemical
composition from drill cuttings. Drill cutting samples are a mixture of material
from the drilled sections comprising a segment of several meters depth. They are

transported by a special liquid (”drill mud”) to the surface during circulation. The



drill hole conditions vary widely with depth. Bore-hole diameter (caliper), hydraulic
pressure, strength of the rocks, and drilling rate can influence the drill cuttings

sample until it reaches the surface.

One current issue of research is the frequent occurrence of cataclastic shear zones
which are important structures in the upper and middle crust of the Earth. In such
zones the minerals are severely deformed due to the movement of greater blocks
and layers. They can represent seismic reflectors, zones of high electrical conduc-
tivity, fluid pathways, and in consequence, exhibit secondary mineralisation. The
structure and composition of cataclastic shear zones were investigated by laboratory
investigations on drill core samples e.g. by Zulauf, Palm, Petschick & Spies (1999).
An important variable addressing cataclastic shear zones is the ’amount of cata-
clastic rocks’” (CATR) in the drill cuttings, observed by microscopic investigations
of the samples. Simply speaking this variable measures the proportion of strongly
deformed rock particles in the sample at a certain depth. In Winter, Adelhardt,
Jerak & Kiichenhoff (2002) the relationship between this variable and other geo-
physical and geochemical variables has been analysed with respect to two different
lithologies: gneiss and metabasite. In this paper we analyse CATR in the depths
between 1000 and 5000 meters. The data thereby form a non equidistant “depth
series” consisting of 2748 observations with depth differences between two measure-
ments ranging from 0.5 to 6 meters. The main focus of our analysis is how the mean
structure of CATR changes with depth. In particular we are interested in possible
relations to lithology, technical operations, etc. Interesting features in the data are

step-like variations and peaks which may yield relevant information.



1.2 Modelling Approach

The data considered have a number of peculiarities which demand for careful con-
sideration. First, the data are not free of outliers and moreover the mean structure,
even though mainly smooth, does contain peaks or spikes. This makes smooth es-
timation complicated, as first observations corresponding to spikes or outliers have
to be classified. Secondly, observations are correlated, which has to be considered
in a data driven bandwidth selection for the smooth fit being applied. Finally, the
complexity of the mean structure changes with depth so that a global smoothing
parameter appears not adequate and local bandwidth selection has to be employed.
Even though each of these three problems is treated in different depth in the liter-
ature it is not straightforward to apply the suggested routines in a data situation
where all three peculiarities occur at the same time. We will adapt some of the
available routines as well as develop new ones to cope with the data constellation in
our example. The emphasis is on practicability and rigorous theoretical justification

is not given, even though simulations are shown which support our approach.

Local smoothing is a widely developed area and treated extensively in the lit-
erature in the last couple of years. We refer exemplary to Fan & Gijbels (1996)
or Simonoff (1996). Local robust smoothing has been recently used in Chu, Glad,
Godtliebsen & Marron (1998) as edge preserving smoother. Local approaches for
smoothing correlated data have been suggested by Chiu (1989), Altman (1990) or
Hart (1991). An general overview is given by Opsomer, Wang & Yang (2001). The
central problem occurring for correlated errors is that data driven bandwidth se-
lection requires the knowledge or estimation of the correlation structure. This can
lead to substantial problems in practice since nonparametric fitting of the mean

structure induce strong correlation in the fitted residuals even if the true residuals
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are independent. We refer to Opsomer, Wang & Yang (2001) for a nice illustration
of this problem. On top of that, methods based on fitted residuals or frequency
periodograms are hardly robust enough to cope with outliers in the data or jumps
and peaks in the mean function. We will therefore go a different route by employing
a two step procedure. First we estimate the correlation structure directly from the
empirical correlations of consecutive data pairs y;,y;11. In particular, we consider
small clusters of data and calculate their empirical pairwise correlation. In a second
step a robust local smoother is applied to diminish the variability in the raw pair-
wise correlations and down-weight outliers. The idea is discussed in more detail in
a forthcoming PhD thesis by Christina Yap from the Department of Statistics, Uni-
versity of Glasgow. In general, the approach shows some similarities to variogramm

estimates (see e.g. Diggle, Liang & Zeger 1994).

Beside the occurrence of correlation we observe a locally varying amount of com-
plexity in the mean function. This implies that when using a global bandwidth,
overfitting occurs for some areas of the data while other areas suffer from under-
smoothing. To avoid this we use local bandwidths. For independent observations
local bandwidth selection is treated e.g. in Staniswalis (1989), Fan & Gijbels (1995)
or Herrmann (1997) and references given in these papers. The basic idea is to de-
rive locally the optimal bandwidth by asymptotic arguments which are then used
for plug in procedures or local estimates. The asymptotic results thereby typically
require that the locations at which the measurements are taken become infinitely
dense and the response variables are measured independently. Both prerequisites
are not met in our data example. A first proposal for local bandwidth selection
in dependent data is given in Yao & Tong (1998). We here make use of the idea

proposed in Fan & Gijbels (1995) but adopt it for dependent data. Moreover, we do



not rely on asymptotic results but optimise a local Akaike criterion. Again, a two
step estimation is applied, i.e. first we optimise the Akaike criterion locally, leading
to rather variable results due to the small amount of information used. Secondly
we smooth the raw local optimal bandwidths to achieve a smoothly varying local

bandwidth estimate.

The methods applied in this paper are somewhat heuristically in nature and not
proved to be optimal in a rigorous mathematical sense. We emphasise however,
that available routines for which a theoretical framework is known are tailored for
special data constellations and require particular regularity requirements, none of
which is met in our data example. Despite of a formal theoretical justification we
think however there is practical justification of our routines as we investigate them

in simulation studies, some of which are reported here.

The paper is organised as follows. In Section 2 we consider the correlation and
dispersion structure in the data. The mean structure is analysed in Section 3.

Section 4 gives some conclusions.

2 Modelling Correlation and Dispersion

2.1 Correlation Structure

Measurements of the response variable give proportions of cataclastic rocks, i.e. they
take values between 0 and 1. Instead of working with the proportions directly, we
consider the empirical logit of the observed proportions, where we shrink observed
values to the interval [0.01,0.99] so that the logit is properly defined. We define by
y the corresponding empirical logit of the measurement and model the mean of y

for given depth measurement = by

Eylr) = pl) (1)



with p(z) as unknown but fixed function in xz. At this point we do not postulate
that pu(-) is generally smooth in z, as we allow for breakpoints, peaks or spikes and
outliers. We assume however that p(-) is smooth except of a limited number of
discontinuity points. Beside the mean structure (1) we allow the variance of y also

to depend on the covariate x, that is
Var(ylz) = o*(z). (2)

with o%(z) as smooth function. Finally, we also impose a smooth model for the
correlation structure. We embed this by assuming the correlation of y to mirror an

AR(1) process. Letting y; denote the measurement at x;, i = 1,...,n, we set

COT(yia yi+1) = p(i‘z)hh*z”rl‘ (3)

where p(+) is considered as smooth function in z and z; as center of z; and z;,1, i.e.

Ty = (i + Tip1)/2.

Estimation of p(z) is a peculiar problem, as we have to decompose y(x) in its
functional and its stochastic component. To avoid problems resulting from using
fitted residuals (see e.g. Opsomer, Wang & Yang 2001) we suggest to estimate p(z)
without any prior specification of a mean model. The only assumption we make
is that the mean model is smooth at least in most parts, even though it may con-
tain jumps or outliers. The procedure we suggest consists of two steps. First, for
estimation of p(z() at a particular point z, we consider data pairs (y;,y,4+1) in the
neighbourhood D(xy,r) = {j : x; € [xg — 1,20 + 7]} around z, with r as bandwidth
defining the size of the neighbourhood. The value of 7 is chosen rather small, e.g.
such that the number of elements in D(zg,7) takes a value lying between 10 and
50. The idea is now to use the empirical correlation of these data pairs to obtain

a first rough estimate for p(xy). The assumption implicitly used thereby is that
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all y; with j € D(x¢,r) have approximately the same mean. This is true as long
as the bandwidth r is small and u(x) is sufficiently smooth. We will however see
empirically that the smoothness assumption is only conceptionally needed here and
the procedure is easily robustified to cope with outliers, discontinuities or spikes in

the mean function.

We define the empirical correlation of the data pairs (y;,y;4+1) in the standard

form as
> W= 90) Wi+ — )
. j€D(xo,r
PD(zo,r) — JCDmT) (4)
> Wi- > Wi — )
Jj€D(xo,r) Jj€D(xo,r)
with 4y = 3 jep(ae,r) Yi+t/Mo for [ = 0,1. Since data points are not equidistant, we

also have to adjust for unequal spacing of the x measurements. It is not difficult to

show that with (3) the expectation of (4) is approximately

E{pon}t ~ — 5 plao)® (5)

™0 jeD(zo,r)

with d; = |z —x;| as difference of two measurement locations. From (5) a moment
based estimate for p(zo) is then easily obtained by solving the empirical version of
(5), i.e. by solving

PD(wo,r) = ple) (6)

JED(wo,r)

for p(xg). The solution of (6) is analytically available only if d; is constant, i.e. if
x values are equidistant. If this is not the case a simple Newton algorithm easily

allows to solve (6) after a very few steps.

It will be seen that the resulting estimate p(zo) are rough and rather variable.

This has basically two reasons. First, bandwidth r defining the neighbourhood



D(xg, ) has been chosen as small value so that only a few observations give infor-
mation about p(zg). Secondly, if y(x) is not smooth but discontinuous at or close to
xo the basic assumption of smoothness used in (5) is violated and p(z() will be biased
due to the discontinuity on u(x). It is therefore necessary to proceed with a second
estimation step in order to smooth the values of p(xg). Let therefore zgy, ..., zonx be
a grid of points at which the empirical estimates p(x¢;) are calculated, [ =1,..., N.
We smooth the values by a robust estimate in order to down-weight extreme values
of p(zg). To be more specific we make use of the local M estimate as suggested in

Chu, Glad, Godtliebsen & Marron (1998) and calculate

p(zg) = arg min ;K(xo };xm)m(p(ml)f; '6(%)) (7)

where K (-) is a kernel function with h, as bandwidth and m(-) is a robust distance
function with h, as bandwidth. For m(y) = y* standard kernel smoothing results
while a robust version is obtained if m(y) is bounded for y — 400 (see Hampel,
Ronchetti, Rousseeuw & Stahel 1986). We use m(y) = 1 — exp(—y?) below. Addi-
tional consideration of the resulting estimates is sometimes required to check that

the ’global’ optimum of (7) has been achieved and not a ’local’ version.
2.2 Estimation of the Dispersion

In a similar fashion as above we estimate the dispersion function o?(z). We first
calculate the rough empirical variance at xo as 63, ) =2 jep(aosr) (¥ —F0)*/ (o —1).
Let Py = I,,, — 1n01£0/n0, where [,,, is the ny dimensional identity matrix and 1,
is the ng dimensional unit vector, where ng is the number of elements in D(zg, ).
Moreover, with Ry we denote the correlation matrix with entries p(xo)® %l for

4,1 € D(z9,7). Assuming now o?(z) to be sufficiently smooth we get with simple



calculation
E(é—%(axo,r)) ~ 02($0)tr(P0R0P0). (8)

A rough estimate 52(x) is then obtained by solving the empirical version of (8), i.e.
52 (xg) = 6%(w07r)/tr(P0}A?,0Po), where Ry is a plug in estimate of the correlation cal-
culated above. Rough estimates 6%(z¢;) are now calculated for a series grid of points
Zo1, - - -, oy from which the final estimate 62(30) is achieved by robust smoothing in

complete analogy to (7).
2.3 Simulations and Application to Deep Drill Data

Simulation

Before applying the procedure to the deep drill data we want to experience its per-
formance at simulated data. In Figure 1 (upper plot) we show normally distributed
data tracing from a quadratic mean model with equidistant x values. The pairwise
correlation increases linearly from value 0.4 at =0 to 0.8 at x = 1000. The left
panel in Figure 1 shows the rough estimates p(xg,) for different values of bandwidth r
ranging from r = 5, 10, 20, 30, 50 to 100, top downwards. The second step estimate
p(z) resulting from (7) is shown as standard kernel smoother (wicked curve) and as
robust local M estimate (dotted curve). The true correlation function is shown a
solid line. We see generally a promising behaviour of p(z) as long as the bandwidth
r is reasonably sized. For small values the correlation is somewhat under-estimated
while in contrast for large values of r it is over-estimated. The first effect can be
corrected by a small sample adjustment applied to p(xg), which is however not
further considered in this paper. The reason for over-estimation in the later case is
that correlation is calculated for observation pairs from a too wide range of x values.

Consequently the implicit assumption of a joint mean level is violated and empirical
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correlations are biased.

In the right panel we show the rough estimates v/32(xy;) accompanied by a stan-
dard kernel smooth (wicked curve) and a local M estimate (dotted curve). Moreover
we fit the rough estimates by a global M estimate, that is a robust estimate using
all data points. This is shown as dashed line. As reference the true dispersion of
value 0.3 is given a straight line. The estimates appears to perform reasonably well,

except for large bandwidths r.

We run the procedure again in a second simulated data set, this time with dis-
continuous effects, as shown in Figure 2. The performance is very much the same
and hardly disturbed by the breakpoints. This demonstrates the robustness of the
routine towards breakpoints and outliers. Finally, we investigate how the procedure
copes with independent observations in case of varying dispersion. The results are
shown in Figure 3. The performance is very much the same as in the first two

simulations.

Deep Drill Data

We now apply the routine to the deep drill data. In Figure 4 (left panel) we show
the fitted correlation structure for bandwidths » = 10, 30 and 100, top downwards.
Standard kernel estimates show as wicked curves and local M estimates are given
as dotted curves. The correlation increase in the first 2000 meters and keeps a
constant level of 0.8 between 3000 and 5000 meters depth. The pattern can nicely
be explained by technical features of the drill experiment. With a special liquid
the rock samples are washed from the drill location to the surface. Due to this
washing the rocks to some extend technically mix up with remaining rocks from

higher level locations. This puts an additional source of autocorrelation to the data
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which increases as the distance of transport increases.

In the right hand panel of Figure 4 we show the fitted dispersion for the three
different values of bandwidth r. The curves represent a standard kernel estimate
(wicked line), a local M estimate (dotted line) and a global linear parametric fit
given as dashed line. Clearly, the dispersion decreases with depth, which goes along
with the technical explanation just given. Based on the experience we collected in
the simulations we consider the results for » = 30 as appropriate choice, even though

overall differences for the different bandwidths are marginal.

3 Modelling of the Mean Structure
3.1 Detecting Spikes and Outliers

The above results can now be used to check for spikes and outliers in the data. We
therefore consider pairwise differences y;.; — y;. Assuming p(z) to be smooth we
have E(y;11 — ;) ~ 0, as x;41 — x; is small. If however p(z) has a spike or an
observation is an outlier this shows in significantly large or small values of y; 11 — ¥;.

Note that by assuming smoothness for o(x) and p(z) one gets

Var(yin — ) = (@) + 0% (@in) — 2p(3:) "o (2:)o (2i11)

~ o*(@i){2 - plz)"}. (9)

Inserting plug in estimates in (9) yields the standardised differences z; = (y; —
Yir1)/VVar(yis1 — ;) which are plotted in Figure 5. As horizontal line we include
thresholds based on assumed standard normality of z;. The dotted line corresponds
to a local 99% level, the solid line gives an overall 90% level, based on a Bonferoni
adjustment. In Figure 6 we plot the data and indicate the locations detected as

breakpoints on a local 99% level by vertical bars.
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The detected breakpoints are not necessarily identical with peaks in the data but
they may mark changes of trends. Individual breakpoints can be related to technical
operations which occurred in the drilling, e.g. in depths 1100 to 1300 meters bore-
hole breakouts (extended caliper) took place; at 3000 meters the bore-hole diameter
was reduced due to casing of the upper part. Technical explanations however do not
hold for all detected breakpoints. For instance the breakpoints found at 4000 and

4900 m can clearly be related to prominent cataclastic shear zones.
3.2 Fitting the Mean Structure

We now finally examine the mean structure (1) in the data. In a first step we exclude
observations (and their neighbours) which were classified as outliers or peaks above
as these observations were found not to match to the smooth model (1). Based
on the remaining observations we apply a simple kernel smoother. The bandwidth
is thereby chosen data driven. Remember that appropriate bandwidth selection
in correlated data is known to be an important step and the correlation generally
forbids to use standard routines like e.g. cross validation. Since we however have
already estimated the correlation structure, even without mean structure specifica-
tion, it is now straight forward to apply an Akaike criterion based on a factorisation
of the likelihood. We assume y; ~ N(M(l‘l),O'Q(.’El)) and for 1 < i < n we set
Yirr|yi ~ N(u(@in|yi), 0 (@i |ys)) with p(@inlyi) = w@ie) + p% (Uﬁi)(yi - M(«fi))
and 0?(z;41|yi) = 02(wi41) (1 — pPdi (mz)) The Akaike criterion is then defined as
n—1

AIC(h) = —2log{4(y:) H S(Wir1lyi, h)} + 2df () (10)

with ¢(-,h) as normal distribution density with moments as specified above and

fitted mean value dependent on h. The degree df (h) of the model is thereby defined

in the standard way as df = Y1, 1/>7_ K{(z; — x;)/h} with K(-) as kernel
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function (see e.g. Hastie & Tibshirani 1990). The resulting Akaike curve is shown in
Figure 7. There is a clear minimum at df = 100 which corresponds to the bandwidth

h = 40.

The resulting fit is shown in Figure 6. Apparently, the fit does not look satis-
factory, since the estimate is rather jagged in some areas. Note that this happens
despite of the fact that we explicitly considered the correlation structure in the
bandwidth selection. The data however demand for local bandwidth selection since
the complexity of the mean structure apparently changes with depth. We make use
of a procedure comparable to Fan & Gijbels (1995) by choosing the bandwidth by
locally optimising the Akaike criterion. Note that the elements in (10) decompose

additively to

n—1

AIC() & 23 (=108 (yisilys, 1) + df(h)) (1)

by neglecting the contribution of the first observation and df;(h) = 1/>; K{(z; —
x;)/h}. A local Akaike criterion is now achieved by replacing the sum in (11) by a

locally weighted sum, that is

n—1 e
AIC(20,h) ~ 2ZK(xZAIjZ)(—10g¢(y¢+1|yz~,h)+df¢(h)) (12)
=1

with harc as bandwidth giving the locality of the criterion. In practice we set ha;c
as small value and in the example we use the global optimal bandwidth resulting
from (10). We define with h,, the minimiser of (12). In practice h,, can be obtained
from a grid search over different bandwidths. Locally optimal bandwidths are now
calculated over a grid of points zqy, ..., xon. It is obvious that the resulting outcomes
ha, will be rather variable as only a small number of observations is used for local
bandwidth selection. This can also be seen from Figure 8 where we plot the raw

estimates Bwo for the deep drill data. As previously we therefore apply a second
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step to smooth hg, yielding a smooth bandwidth curve h(z). We use simple kernel
smoothing as well as local M smoothing. The final bandwidth estimate ?L(.’E) is then
used for further fitting. This means we estimate the mean structure with the locally
chosen bandwidth h(z). The result is shown in Figure 9. The positive effect of local

bandwidth usage becomes obvious.

The data are now appropriately smoothed, meaning high complexity areas are
fitted with a lower bandwidth, while low complexity areas get a larger bandwidth.
The first point appears that peaks are more clearly pronounced, the latter shows
in smooth fits for the remaining regions. The peaks in the local bandwidth fit now
clearly mark shear zones, at e.g. 1170, 1550, 1980, and 4000 meters. In addition,
some of the high gradients can be explained by changes in lithology, e.g., in the
sections from 3150 to 3400 m and 4380 to 4420 m. Moreover, the peak at 4800

meters can be related to a enhanced occurrence of the radioactive element Thorium.

Simulation

Finally, we want to demonstrate the effect of local bandwidth selection in a sim-
ulation study. In Figure 10 we show data resulting from a model with varying
complexity over the range of x. The data are correlated and we use the true cor-
relation structure in the following calculation. We first minimise the global Akaike
criterion yielding the estimate shown as dotted curve in the upper plot. Clearly, un-
dersmoothing become apparent in the flat areas of the function while oversmoothing

occurs in the peaks. We now calculate raw local bandwidths hg,, for a range of grid

Zol
points g1, . .., Ton, shown in the bottom plot of Figure 10. We use local kernel es-
timation and local M estimation to smooth the raw bandwidths. The latter robust

estimate is taken to resmooth the mean structure using a local bandwidth which is
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shown as solid curve in the upper plot. The positive effect becomes apparent, as
undersmoothing in the flat regions is avoided and the structure in the peak regions

is satisfactory fitted.
4 Conclusion

The analysis presented in this paper gave interesting new insight in the structure
of depth related drill cuttings. The trend of increasing autocorrelation with depth
could clearly be related to technical aspects of drill cuttings sampling. The break-
point analysis gave at some depths hints for possible relations to bore-hole conditions
whereas at other depths changes in lithology or shear zones were represented. Gen-
erally, the interpretations hold for distinct peaks only and a unique explanation
seems yet not possible. This will be subject of further interdisciplinary research in
this area. The analysis of the mean structure with its peaks uncovered cataclastic
shear zones. Some additional links to lithological changes could be observed locally
and the effect of overlapping of several influence variables seems to be present. This
can be resolved by multivariate analysis taking other variables into account (e.g.,
Winter et al., 2002). In general, mean structure analysis and breakpoint analysis

are procedures which give a new methodical input to the analysis of drill hole data.

In terms of statistical technology the paper demonstrated the analysis of a dataset
with various peculiarities. We were faced with correlated errors, spikes and outliers
as well as the necessity to determine the bandwidth locally. Each of the three topics
is separately well developed in the literature. Their application to our data problem
seemed however questionable since for instance estimation of correlation based on
fitted residual can hardly cope with spikes or outliers. We demonstrated how the

problems occurring in the data could be handled by two step estimation routines.

16



First rough local estimates were calculated which were then smoothed by a second
smooth fit. Further investigation is required to justify this approach on a theoretical
basis. The simulation conducted (only a part of them are shown here in the paper)

let us however hope that we were doing the right things.
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Simulated correlated data (upper plot) and estimated correlation struc-

ture (left column) and dispersion structure (right column) for different bandwidths
r (from top down: r = 5, 10, 20, 30, 50, 100) Wicked lines gives standard ker-
nel smoother, dotted lines shows local M smoother, solid lines shows true curves.
Dashed line in right panel gives a robust parametric fit.
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Simulated correlated data (upper plot) and estimated correlation struc-

ture (left column) and dispersion structure (right column) for different bandwidths
r (from top down: r = 5, 10, 20, 30, 50, 100) Wicked lines gives standard ker-
nel smoother, dotted lines shows local M smoother, solid lines shows true curves.
Dashed line in right panel gives a robust parametric fit.
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Simulated independent data (upper plot) with increasing dispersion. Es-

timated correlation structure (left column) and dispersion structure (right column)
for different bandwidths r (from top down: r = 5, 10, 20, 30, 50, 100) Wicked line
gives standard kernel smoother, dotted line shows local M smoother. Solid line in
left panel shows true value 0, solid line in right hand panel give true curve \/(72(1‘)
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Figure 4: Estimated correlation (left panel) and dispersion structure (right panel)
for different bandwidths (from top down r = 10, 30, 100). Wicked line gives standard
kernel smoother, dotted line shows local M smoother. Dashed line in right panel is

a robust parametric fit with linear slope.
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Figure 5: Standardised difference estimates with local threshold based on 99%
threshold (dotted line) and global threshold based on 90%



logit CATR

1000 2000 3000 4000 5000
depth

Figure 6: Deep drill data with significant breakpoints
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Figure 8: Local bandwidths h,,, and their corresponding kernel smooth (dotted line)

and local M smooth (solid line). Optimal global bandwdith (log(40)) is shown as
horizontal line.
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Figure 9: Smooth Mean Structure with local bandwidth (solid curve) and global
bandwidth (dotted curve)
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Figure 10: Smooth mean structure (upper plot) with local bandwidth (solid curve)
and global bandwidth (dotted curve). True curve is given as dashed line. Local
optimal bandwidths h,,, (lower plot) with kernel smooth (dotted line) and local M
smooth (solid line). Global optimal bandwidth is indicated as horizontal line



