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Model Selection for Dags via RJMCMC

for the Discrete and Mixed Case

Eva�Maria Fronk

Abstract

Based on a reversible jump Markov Chain Monte Carlo �RJMCMC� algorithm which was devel�

oped by Fronk and Giudici ������ to deal with model selection for Gaussian dags� we propose a new

approach for the pure discrete case� Here� the main idea is to introduce latent variables which then

allow to fall back on the already treated continuous case� This makes it also straightforward to tackle

the mixed case� i�e� to deal simultaneously with continuous and discrete variables� The performance

of the approach is investigated by means of a simulation study for di	erent standard situations� In

addition� a real data application is provided�

Keywords� Bayesian model selection� dag models� reversible jump Markov Chain Monte Carlo�

� Introduction

Model selection for graphical models is confronted with the problem that the search space increases more

than exponentially with the number of variables incorporated in the analysis� Due to the huge number of

possible models� it is not feasible to judge them all by a goodness of �t criterion like the AIC or the BIC

and to �nd the best model with respect to this criterion� Therefore� it makes sense to focus on parts of

the search space� e�g� to reduce the search space to a special class of models� or to restrict it successively

in course of the search� Madigan and Raftery ����	
 e�g� reduce the search space by looking only at

decomposable graphs� The latter concept can be found in approaches like the stepwise selection strategy

of MIM �Edwards� ����
 or the Edwards
Havr�anek strategy ������ ����
 �

In the context of directed acyclic graphs �dags
� another problem arises by the so
called Markov equiva�

lence� which means that di�erent graphs can re�ect the same statistical model� These equivalent graphs

form equivalent classes which can be represented by one unique graph� the essential graph� which is a

chain graph with special properties �Andersson et al� ����a
� Performing model selection in the space of

essential graphs would reduce the search space enormously� but has to be bought by the price of a much

more complex search algorithm which is again time consuming �Perlman� ����
�

In this paper� we propose a fully Bayesian approach using the reversible jump MCMC �RJMCMC
 al�

gorithm which was introduced by Green �����
 and which is able to deal with the changing dimension

of the search space� In our opinion� this method o�ers several advantages� First� it traverses the search

space randomly by visiting the di�erent models according to their posterior probability� This probability

provides a measure of goodness of �t which can be easily interpreted and makes it therefore possible to
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compare di�erent models in a sensible way� Another bene�t of the MCMC approach is the possibility to

combine the structural or qualitative learning �model selection
 and the quantitative learning �estimation

of the parameters
 in a closed framework� Furthermore� it is very �exible and therefore easily extensible

to problems which occur from e�g� missing data or latent variables�

Model selection by RJMCMC has been developed by Giudici and Green �����
 for pure continuous vari�

ables and by Giudici� Green� and Tarantola �����
 for the pure discrete case� Both approaches focus

on undirected decomposable models which allow a factorisation by cliques and separators so that only

local computations have to be performed� In the context of dags a reversible jump algorithm for the

continuous case has been introduced by Fronk and Giudici �����
� Here� local computations are again

possible because of the factorisation property of dags� As a disadvantage of this approach it has to be

admitted that the equivalence classes are not taken into account� which has the consequence that the

Markov chain moves in the space of all dags and not in the smaller one of their essential graphs�

Relying on the already developed methodology for Gaussian dags� here we present an approach to handle

binary variables or even continuous and binary variables simultaneously� The paper is organized as

follows� After a brief introduction into the main assumptions and the algorithm for the continuous case�

the extension to binary variables is given in Section �� The main idea consists in sampling a latent variable

whose distribution has the same moments as the binary one� In order to estimate them� consequently

the problem can be traced back to the already solved continuous case� To account for higher order

interactions� which could not occur in the Gaussian case� in a second step the auxiliary construct of a

so
called interaction graph is introduced and explained� We check the performance of the RJ algorithm

by a simulation study in Section �� Under the assumption of a conditional Gaussian �CG
 distribution

the simultaneous modeling of continuous and discrete variables is investigated in Section 	� A real data

application is given in Section �� Finally� we summarize the results and give an outlook to further research�

� Algorithm for Binary Variables

For convenience� let us �rst recall the reversible jump algorithm for the Gaussian case by Fronk and

Giudici �����
 before introducing the new approach for binary variables without and with interactions�

��� Gaussian Case

In Fronk and Giudici �����
� a reversible jump algorithm for model selection in Gaussian dags is proposed

for which the p random variables x � �x�� x�� � � � � xp

� are assumed to follow a multivariate normal

distribution� Thus� for each univariate conditional distribution Xi j xpa�i���ijpa�i�� �
�
ijpa�i�� d it holds that

Xi j xpa�i���ijpa�i�� �
�
ijpa�i�� d � N��i� �

X
xl�pa�xi�

�ilxl� �
�
ijpa�i�
�

where xpa�i� denotes the known vector of the parent variables of Xi and �ijpa�i� the vector of the cor�

responding coe�cients� The conditioned variance is given by ��
ijpa�i� and d is the underlying dag� The
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analogy to a regression model is obvious� Further� the following assumptions are made

�ijpa�i� j �
�
ijpa�i�� d � Njpa�i�j��

�
bijpa�i��

�

�i
��ijpa�i�I

�
�

��ijpa�i� j d � IG
�
�ijpa�i�� �ijpa�i�

�
�

p�d
 � �	a�

that is the vector of coe�cients �ijpa�i� is also multivariate normally distributed� the variance ��
ijpa�i�

follows an inverse gamma distribution and for the dag d a discrete uniform distribution is assumed� The

parameter vector bijpa�i� and the parameters �i� �ijpa�i�� and �ijpa�i� have to be chosen sensibly� where a

denotes the number of possible dags and I the identity matrix� Making use of the likelihood modularity

and the global parameter independence �Geiger and Heckermann� ����
 the following factorisation of the

joint distribution can be obtained�

p�x������ d


� p�x j ����� d
 p�� j ��� d
 p��� j d
 p�d


�

pY
i��

p�xi j xpa�i���ijpa�i�� �
�
ijpa�i�


pY
i��

p��ijpa�i� j �
�
ijpa�i�


pY
i��

p���ijpa�i�
 p�d


with � � ����jpa� � � � ��
�
pjpa


� and �� � ����jpa� � � � � �
�
pjpa


��

To represent the dags and to check them for acyclicity we use the concept of adjacency matrices �Thulasir�

aman and Swamy� ����
� Moving through the search space by the sampled Markov chain three di�erent

changes of the current dag are allowed for� If two vertices are not connected a new edge can be inserted

between them �birth step
� whereas an already existing edge can be deleted �death step
 or turned in

its orientation �switch step
� Based on the above assumptions and restrictions� one loop of the proposed

RJMCMC algorithm consists of three di�erent steps�

Reversible Jump Algorithm for Gaussian Case�

�� Updating of d by a birth� death or switch step� the �rst and the last need a check for acyclicity�

�� Updating of �ijpa� i � �� � � � � p�

�� Updating of ��
ijpa� i � �� � � � � p�

Note� that the �rst step corresponds to qualitative learning� Here� the change in dimension occurs if a

death or birth step is carried out� Steps � and � just update the parameters of an already existing dag

d� and therefore stand for quantitative learning�
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��� Binary Variables

Now we consider the situation of p binary variables of which the joint distribution is assumed to be

multinomial� The in�uence on a variable Xi from its known parents xpa�i� shall be given by a probit

model� i�e�

pi � E�Xi j xpa�i�
 � ��x�pa�i��ijpa�i�� �
�
ijpa�i�
� ��


where i � �� � � � � p and ��
� ��
 denotes the cdf of the normal distribution� In a �rst step� we ignore any

interactions although they may be present as we have left the Gaussian case� Following an idea of Albert

and Chib �����
 we reduce the above situation to the one of continuous variables by introducing latent

variables Zi with

Zi
iid
� N�x�pa�i��ijpa�i�� �
 and P �Xi � � j zi
 �

�
�� zi � �

�� zi � ��

Therewith� we again obtain a Gaussian distribution for the full conditional of Zi� i�e� Zi j xpa�i�� xi��ijpa�i� �

N�x�pa�ki��ijpa�i�� �
� which is truncated at the left by � if xi � � and otherwise� i�e� if xi � �� at the right�

The joint distribution of z�x������ and d is given by

p�z�x������ d
 � p�z j x������ d
 p�x j ����� d
 p������ d


�

pY
i��

p�xi j zi� d
 p�zi j xpa�i�����
�� d
 p������ d
�

Thus� we can extend the above algorithm to the discrete case by adding one additional step where we

draw the latent variable Zi from its full conditional for all binary variables Xi� i � �� � � � � p� and follow

the remaining steps of the algorithm by using Zi instead of Xi� which leads to�

Reversible Jump Algorithm for Binary Variables �Ignoring Interactions��

�� For Xi� i � �� � � � � p� draw Zi from its full conditional N�x�
pa�i��ijpa�i�� �
� which is truncated at the

left by � if xi � � and at the right if xi � ��

�� Add� delete� or switch a directed edge like in the Gaussian case� but take the utility Zi instead of

Xi as response in ith regression model� the covariables xpa�i� of the ith model remain unchanged�

�� Update �ijpa�i�� i � �� � � � � p�

	� Update ��
ijpa�i�� i � �� � � � � p�

��� Accounting for Interactions

the problem of present interactions is coped with by introducing a particular type of graph� which we call

interaction graph� The general idea is that within this graph the interactions are treated as own variables�

so the interaction graph can be regarded as an auxiliary graph the algorithm is able to deal with� Due

to the enormous complexity we restrict the following considerations to two way interactions which seem

	



to be su�cient for most situations in practice� Further� we have to introduce the following notations

for the interaction graph� We distinguish between the real �or main
 parents pam�i
 of a variable i and

those parents paia�i
 that are caused by the interactions among the main parents� They are summarized

in pa�i
 � pam�i
 � paia� For the jth regression model� the interactions of the variable i with the other

parents of j� pa�j
 n i� are denoted by j�i
�

In contrast to Equation ��
� we now assume the following link between each variable Xi and its known

parents xpa m�i��

pi � ����ijpa m�i�xpa m�i� � ��ijpa ia�i�xpa ia�i�� �
�
ijpa�i�
� ��


where xpa ia�i� is the vector of the
�jxpa m�i�j

�

�
interactions among the parents of Xi and �ijpa ia�i� de�

notes the vector of the same dimension with the corresponding coe�cients� The interaction graph� which

represents xpa ia�i� as own variables� holds two restrictions�

Proposition� Assuming Equation ��
� directed acyclic graphs that include not only the regarded p

variables but also their
�
p
�

�
two way interactions as vertices have the following two properties�

�� A vertex that represents an interaction is a parent of another variable if and only if this is also true

for its parents�

�� A vertex that represents an interaction has exactly two parents� namely those forming the repre�

sented interaction�

As a result of these restrictions� the additional edges of an interaction graph are clearly determined� as

all possible interactions of the parents are always regarded� It follows that the importance of an inter�

action is not indicated by its presence in the model but by the strength of its corresponding coe�cient�

As another consequence� the death� the birth� and especially the switch step now become much more

complex since in the interaction graph more than one edge has typically to be changed at the same time�

Furthermore� in most situations the switch step turns out to be a dimension changing step� too� We

discuss the di�erent steps in detail�

Birth and death step� Figure � shows a very simple situation where it can be seen that adding one

edge in the real graph can result in adding several steps in the interaction graph� In general� it can

be stated that adding an edge from i to j in the real graph d implicates � � jpam�j
j new edges in the

interaction graph� where jpam�j
j denotes the number of parents of j in the real graph� Consequently� the

ith regression model is enlarged by �� jpam�j
j new covariables� We denote the vector of their coe�cients

by ��ji � ���ji��
�
j�i�

�

�� Using the terms of the reversible jump algorithm provided by Green �����
 the

mapping from the former state space to the new one is then given by

gB � ��jjpa�j��uB
 ��� gB��jjpa�j���
�
ji
 � �jjpa��j�� ��


The random variableUB has the dimension jpam�j
j��� We choose the normal distribution N��jpam�j�j��u�

��uI
 as its proposal distribution where �u denotes the least squares estimator under the restriction that
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Figure �� Example for a birth step in a graph with three vertices� The real graph with one resp� two

edges is given in a
 and c
� the corresponding interaction graphs the algorithm works with are shown in

b
 resp� d
�
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the regression coe�cients of the previous variables stay the same� Like in the Gaussian case� the proba�

bility of proposing the transition from d to d� by a birth step is equal to proposing the opposite� namely

moving from d� to d by a death step� Thus� the proposal ratio reduces to

PB �
rD�d

�


rB�d
q�uB

�

�

q���ji��
�
j�i�


� �	


As in addition the determinant of the Jacobi
matrix of ��
 is equal to � we derive the acceptance ratio

of a proposed dag d� as

AB�min

�
��

p�xj j xpa��j���jjpa��j�� �
�
jjpa��j�
 p��jjpa��j� j �

�
jjpa��j�


q���ji
 p�xj j xpa�j���jjpa�j�� �
�
jjpa�j�
 p��jjpa�j� j �

�
jjpa�j�


�
�

The acceptance ratio of the corresponding death step AD from d� to d� where the edge from i to j is

deleted in the dag d�� is given by the reciprocal value of AB�

Switch step� As already mentioned� working with the interaction graphs the switch step turns out to

be the most crucial one� As it is shown in Figure �� switching the edge �j� i
 into �i� j
 the number of

involved regression coe�cients in the two regression models of i and j does not have to remain unchanged�

As a consequence� working with the interaction graph the switch step can also change the dimension like

the birth or death step� This always occurs if jpam�i
j � � �� jpam�j
j� In the following� we assume that

the total number of parameters is increasing� which we call a switch� step� In analogy� speaking of a

switch� step re�ects a situation where the total number of parameters is decreasing� Our investigations

have shown that a good acceptance probability is only achieved when all parameters of the considered

models are resampled� That is the coe�cients of the actual variables� those of the interaction variables�

and the variances� Thus� the new random vector U ��� can be subdivided into the following components�

U ��� � ���ijpa��i���
�
jjpa�j�� �

�
ji��

�
j�i�� �

��
ijpa��i�� �

��
jjpa��j�


� ���ijpa��i���
�
jjpa��j�� �

��
ijpa��i�� �

��
jjpa��j�
�

where pa� indicates that the parent structure of the proposed dag d� and not of the current dag d is

referred to� The vector U ��� is of dimension

m� � jpa��i
j� jpa��j
j� 	�

Let ���� denote all parameters of the regression models that are due to the underlying graph d whereas

���� refers to those of the graph d�� A realisation of U ��� is then mapped to ������u���
 by

g� � IRn��m� �� IRn��m�

������u���
 ��� ������u���


with u��� containing all components of ���� 	 IRn� which change or vanish in the parameter vector

���� 	 IRn� � i�e�

u��� � ��ijpa�i���jjpa�j�� �
�
ijpa�i�� �

�
jjpa�j�
�

�



paia(j) paia(i) \ i(j)

pah(i) \ j
pah(j)

i(j)

j i

paia(j)

j(i)

paia(i) \ i(j)

pah(i) \ j

j

pah(j)

i

Figure �� Changes in the involved subgraph of the interaction graph that are caused by a switch step� In

both cases� the assignment of the parents refers to the upper graph� The parent sets of i and j do not

need to be disjunctive�

The dimension of u��� results in m� � jpa�i
j � jpa�j
j � 	� which implies that the matching of the

dimensions is given as n��m� � n��m�� The reversal step from d� to d is now denoted as switch� step

and is represented by

g� � IRn��m� �� IRn��m�

������u���
 ��� ������u���
�

The proposal is chosen in analogy to the Gaussian case without interactions� i�e� the variances are drawn

from their distributions given the parents and their interactions and the coe�cients are drawn from their

conditional distribution given the same plus the variances� Thus� we get again a normal distribution for

the proposal of the regression coe�cients and an inverse gamma distribution for the variances� For more

details see Fronk and Giudici �����
� The probability of proposing a move from d to d� in the switch�

step is equal to the one of the reversal move of the switch� step� namely �
p�p��� � and the determinant

of the Jacobi matrix� J � �gB�u����u����
��u����u����

� again results in �� Altogether� we in principle get the same

acceptance ratio like in the Gaussian case without interactions� The acceptance ratio of the reversal

switch� step is again obtained by the reciprocal value�

It should� however� be noticed that the acceptance ratio of the switch step is in general very low� In

�



many situations the Markov chain already stays in a graphical model which describes the data very well�

The new statistical model� which is proposed and represented by the dag d�� can now be an equivalent

or a di�erent model� If the latter is true there is few reason to change the model� because the association

structure of the data is already very well characterized and the probability that the new model is even

better is small� Consequently� the acceptance ratio will be low� If otherwise d� represents a model which

is equivalent to d the proposal has to be much better than the already �tted model of d to have a chance

to be accepted� Thus� the chance to switch is low again� As another drawback of this procedure it has to

be mentioned that drawing from the above proposal distributions is very time consuming as it is always

performed for all variables involved�

To tackle these problems� we suggest an alternative approach for the switch step� If the proposed model

d� is equivalent to d it should not be possible to distinguish between them statistically at least in theory�

The di�erences that occur in reality are due to insu�cient updates resp� proposals� It seems therefore

adequate to accept a switch step into an equivalent model with a �xed acceptance probability of ���� This

accelerates the process enormously because no proposals and no acceptance ratios have to be calculated�

There are two possible versions of this procedure� The �rst one consists in performing the switch step only

into equivalent models using the acceptance ratio of ���� This includes the fact that di�erent statistical

models have to be reached by a birth or death step� The second possibility is to work with the complex

switch step for movements out of an equivalent class and take the simpler alternative otherwise�

� Simulation Study

In the following� di�erent standard situations of marginal and conditional independence are simulated�

We sample data sets of di�erent sizes and also distinguish between the model selection with and without

accounting for interactions� For a given underlying graph and sample size each data set is sampled ��

times and the averaged results are presented� To average the posterior probabilities of the selected models

we only take the ten best models of each run into account� We choose a runtime of ����� iterations from

which the �rst ���� are not considered at all �burn
in
� We then take the values of every ��th iteration

for our estimation of the probability distribution p������ d jX
� The data are generated by the software

package BayesX �Lang and Brezger� ����
�

��� Marginal Independence

We �rst investigate the situation of marginal independence of three variables X�� X�� X� that become

dependent conditioning on a fourth one� namely X�� The corresponding equivalence class � is represented

by the dag in Figure �� We sample two kinds of data sets that have this structure as their underlying

graph� The �rst one� data type �a� shows no interaction in its sampling scheme�

Xl� � B��� ���
� Xl� � B��� ���
� Xl� � B��� ���
�

Xl� � B��� pl�
� pl� � ��xl� � xl� � xl�
�

�
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Figure �� Equivalence classes � �above
� � �middle
� and � �below
� equivalence classes � is represented

by one dag� the others are consisting of four equivalent dags�

where l � �� � � � � n and n � ���� ���� ���� ����� In the second type of data set� �b� the edges of the

underlying dag are only due to the interactions� as it has the sampling scheme

Xl� � B��� ���
� Xl� � B��� ���
� Xl� � B��� ���
�

Xl� � B��� pl�
� pl� � ��xl�xl� � xl�xl� � xl�xl�
�

The outcomes are summarized in Table �� It is not surprising that in all cases an increasing number

of observations increases the security of �nding the underlying model which is indicated by a higher

posterior probability as well as by a greater di�erence to the second best model� It can also be concluded

that in nearly all cases the true model is found� Except for the data set of type �a with ���� observations�

the model selection accounting for interactions is always better regardless of the fact whether the data

contain interactions or not�

To gain more information about the performance of the model selection we have a closer look at the

average of the �� averaged adjacency matrices of the selected models� As there exists no sensible averaging

of models 
 at least not by averaging the adjacency matrices of the sampled models 
 these matrices of

course cannot be interpreted as models� They just give the probability of each possible edge to appear

in a selected dag� but tell nothing about the combination of their appearance�

Considering these averaged adjacency matrices and comparing the two selection types� it turns out that

a higher probability of the correct edges� i�e� of edges that exist in the underlying model� does not have

to go along with a lower probability of the wrong ones� The adjacency matrices in Figure 	 may serve as

an example for a sample size of n � ���� observations�

��



search without ia search with ia

��p �r� ��pa ��p �r� ��pa

data type 
a �without ia�

n � 
�� ���
 �
� ���� ��
� �
� ����

n � ��� ��

 �
� ���� ���� �
� ��
�

n � ��� ���� �
� ��
� ���� �
� ��



n � 
��� ��

 �
� ���� ���� �
� ����

data type 
b �with ia�

n � 
�� � ���� ���� ��� ����

n � ��� ���� �
� ���� ���� �
� ��
�

n � ��� ���� �
� ���� ���� �
� ��
�

n � 
��� ���� �
� ���� ��
� �
� ��
�

Table �� Averaged results of the �� data sets of each combination� The averaged estimated posterior

probability of the underlying model is denoted by ��p and its rank under the ten best models by r� The

highest averaged estimated posterior probability of an alternative model is given by ��pa�

��� Conditional Independence

The algorithm should also be able to detect situations of conditional independence� Thus� we consider

two situations� The �rst one is given by equivalence class �� the second by equivalence class �� which

both come up with four di�erent but equivalent dags as it can be seen in Figure �� The data sets with

equivalence classes � and � are generated by the sampling schemes

Xl� � B��� ���
� Xl� � B��� pl�
� pl� � ��xl�
�

Xl� � B��� pl�
� pl� � ��xl�
� Xl� � B��� pl�
� pl� � ��xl�
�

and

Xl� � B��� ���
� Xl� � B��� pl�
� pl� � ��xl�
�

Xl� � B��� pl�
� pl� � ��xl�
� Xl� � B��� pl�
� pl� � ��xl�


with again l � �� � � � � n for varying sample sizes n of ���� ���� ���� and ���� observations� In contrast

to the marginal case� here it is not possible to sample data sets with interactions between the variables�

The averaged results of the �� runs for each combination are summarized in Table ��

For a small number of n � ��� observations the algorithm is not able to �nd the underlying model

irrespective from the kind of model selection �with or without interactions
� Anyhow� no other model

is clearly preferred� as the posterior probability of the best alternative model is not very high and does

not show a great di�erence to the next best models either� This misbehaviour vanishes� however� with

increasing sample size� This especially holds for the model selection that incorporates possible interac�

tions�

In Figure �� the adjacency and corresponding skeleton matrices of equivalence class � for ��� resp� ����

observations are shown� We call S the skeleton matrix that belongs to the adjacency matrix A if
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Figure 	� The average over the �� runs of the averaged adjacency matrix for the data type �a �above


and the data type �b �below
 with ���� observations� Model selection has been carried out accounting

for interactions and not� the results of the latter are in brackets�

search without ia search with ia

��p �r� ��pa ��p �r� ��pa

equivalence class �

n � 
�� ���� �
� ��

 ���� �
� ��
�

n � ��� ��
� �
� ��
� ��
� �
� ��
�

n � ��� ���� �
� ��
� ��
� �
� ��
�

n � 
��� ��
� �
� ��

 ���� �
� ����

equivalence class �

n � 
�� � ���� ���� ��� ����

n � ��� ��
� �
� ��
� ��
� �
� ��



n � ��� ���� �
� ��

 ��
� �
� ����

n � 
��� ��
� �
� ��
� ���� �
� ����

Table �� Simulation results for the equivalence classes � and �� same notation as in Figure ��

�S�i�j � �A�ij � �A�ji for i� j � �� � � � � p� Thus� the skeleton matrix gives information about the gen�

eral structure of the graph but disregards the orientation of the edges� It can be seen that also for the

small sample size of n � ��� the edges of the true model are more often represented in the selected models

than the others�

This is particularly observed for the selection strategy which allows for interactions� Otherwise� again

the occurrence of wrong edges is higher� This disadvantage disappears for a simple size of n � ����

observations� where the probability of wrong edges is obviously lower� The correct edges are always

found with a higher probability in all selected models for both selection strategies� Summarizing� it can

be stated that the selection strategy performs in a satisfying way� It cannot be concluded that regarding

or disregarding the interaction results in a better performance� though there seems to be a tendency to

favor the former� In addition to the posterior probabilities of the selected models� information can be

gained by the adjacency matrices which is of special importance if no model is clearly preferred�
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Figure �� Average of the averaged adjacency �A
 and skeleton �S
 matrices of the �� runs of equivalence

class � with ��� �above
 and ���� �below
 observations� The results outside �inside
 the brackets are

obtained from a model selection without �with
 interactions�

� Algorithm for the Mixed Case

We now brie�y address the mixed case� where we assume the considered continuous and binary variables

to follow a conditional Gaussian �CG
 distribution �cf� Tate� ���	� Dempster� ����� Lauritzen� �����

Lauritzen and Wermuth� ����
� For our purpose� we assume the mixed vector X � �X�� � � � � Xp

� to fol�

low a homogeneous CG distribution� which implies that we do not allow for squared interactions among

the continuous variables� Based on the factorisation property f�x
 �
Qp

l�i f�xi j xpa�i�
 the estimation

problem can again be reduced to the univariate distributions f�xi j xpa�i�
� which are now CG regressions

with either a continuous or binary response variable� These distributions can be represented by a normal

regression resp� a probit model with mixed covariables� In the case of a binary response variable we al�

low for pairwise discrete or mixed interactions� This leads to the following algorithm for the discrete case�

Reversible Jump Algorithm for the Mixed Case�

�� For all variables Xi� i � �� � � � � p�

If Xi is discrete�

For all observations Xki� k � �� � � � � n�
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Figure �� Equivalence class 	� The open circles denote continuous� the black ones binary variables�

draw utility Zki from full conditional Zki j xki�xkpa�i��ijpa�i�

�� Update d� i�e� cancel� add� or switch the directed edge Xj � Xi� distinguish


 Response Xi is continuous�

�a
 Take the algorithm for the Gaussian case� where now the covariables pa�Xi
 can be con�

tinuous or binary


 Response Xi is discrete

�a
 Replace binary response Xi by continuous utility Zi

�b
 Consider the new or vanishing interactions among the parents of Xi and possibly Xj � that

can be pairwise discrete or mixed

�c
 Carry out birth� death or switch step

�� Update �ijpa�i�� i � �� � � � � p

	� Update ��
ijpa�i�� i � �� � � � � p

The performance of the algorithm is again tested by a simulation study� Based on the dag of Figure

� as underlying graph� we sample twenty data sets with seven variables and n � ���� ���� ���� ����

observations� They are generated by the sampling scheme

Xi� � B��� ���
�

Xi� � B��� ���
�

Xi� � N��� �
�

Xi� � N�Xi� �Xi� �Xi�� �
�

Xl	 � B��� pl	
� pl	 � ��Xl�
�

Xl
 � B��� pl

� pl
 � ��Xl� �Xl	
�

Xl� � N�Xl	� �
�

We denote this data type which contains no interactions by 	a and the alternative by 	b which di�ers in

the generation of Xl
 by

Xl
 � B��� pl

� pl
 � ��Xl� �Xl	 �Xl�Xl	


�	



data typ �a �without ia� data typ �b �with ia�

�p �r� �pa �p �r� �pa

n � 
�� � ����
 � ����


n � ��� ����� �
� ����� � �����

n � ��� ����
 �
� ����� ��
�� �
� �����

n � 
��� ��
�
 �
� ����
 ��
�
 �
� �����

Table �� Simulation results for equivalence class 	� the results are averaged over the simulation runs of

the �� data sets of each type�

which thus implies an interaction� The model search is only performed by taking interactions into ac�

count� Otherwise� too many restrictions would be imposed on the CG distribution� The satisfying results

of the study are given in Table ��

With seven variables involved in a data set� a sample size of n � ��� or ��� observations is obviously too

small for the algorithm to prefer one particular dag� For n � ��� the underlying model is more or less

clearly detected with a posterior probability of ����� resp� ������ It is then de�nitely found for a sample

size of n � ����� Like in the pure discrete case� even for a small number of observations the general

structure of the graph is re�ected by the corresponding adjacency and skeleton matrices� We refrain from

showing these situations here�

� Example� Women and Mathematics

The data set of interest here� which became quite famous under the name �Women and Mathematics �

stems from a survey by Lacampagne �����
� The aim was to analyze the success of a special �women

and mathematics lecture� For this purpose� ���� students at eight high schools were asked some demo�

graphic variables� their attitude towards mathematics and if they had taken part in the program� Table

	 shows the six variables to be investigated� The data has already been analyzed by several authors as

for instance Upton �����
� Madigan and Raftery ����	
� and Giudici et al� �����
� We will compare our

results with those of Giudici et al� �����
 who used a reversible jump algorithm� too� but restricted their

model search to undirected decomposable graphs� This class of graphical models can be regarded as a

subset of the dags� namely those which do not contain immoralities�

var� question answer

X� WAM lecture attendance yes�no

X� sex male�female

X� school type urban�suburban

X� �I need mathematics for my future� agree�disagree

X� subject preference math and science�liberal arts

X� future plans college�job

Table 	� Variables of the women and mathematics data set�
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Figure �� The essential graphs with the highest posterior probabilities of ���� �a
 and ���� �b
 by the

reversible jump algorithm for dags and the undirected decomposable graph with the highest posterior

probability �����
 by the hierarchical reversible jump algorithm of Giudici et al� �c
�

Our results are based on a runtime of ������ iterations where the �rst ���� are treated as burn
in and

then every ��th is picked out to estimate the parameters� Furthermore� we use that type of switch step

which only allows the movement into an equivalent model and accepts this with a probability of ���� To

summarize the di�erent dags of one equivalence class we present them by their essential graph� Figure

� shows the two models which get the highest posterior probability with ���� and ����� The best model

of Giudici et al� �����
� which is searched for in the space of undirected decomposable graphs� looks

quite similar �see Figure �
 and is selected with a probability of ����� Both selection strategies detect

an independence of the lecture attendance and the remaining variables� The variables X�� X�� and X	

�alias sex� self
assessed importance� and preferences
 form a clique� The main di�erence between the

results of the two reversible jump approaches lies in the fact that our strategy supports an independence

of X� and X� �importance and school type
 given X	 �preferences
 which vanishes conditioning on X


�future plans
� This is indicated by the immorality X� � X
 � X�� which can also be seen in the

averaged adjacency matrix of Figure �� As a marginal independence between two variables that vanishes

by conditioning on a third cannot be represented by undirected graphs� the model selection of Giudici et

al� �����
 just detects a conditional independence�

The general association structure becomes quite clear by the skeleton matrix �see also Figure �
 where

those vertices that are connected in Figure �b
 and c
 are linked by an edge with a probability of �� In

our approach� an edge between X� �school type
 and X	 �preferences
 occurs in nearly half of the cases�

which is again in constrast to the results of Giudici et al� �����
� More information on the substantial

background is needed to decide on the model which describes reality better�

� Conclusion

We introduced a reversible jump algorithm for model selection in the space of all dags for binary vari�

ables extending an algorithm already known for the continuous case� The extension to the mixed case

as a combination of the continuous and the binary proceeding is then straightforward� For both cases�

simulation studies have been carried out to analyze the performance of the algorithm� The results turn

out to be satisfying� The example of the women and mathematics data set shows that also for real data

sensible results are obtained�
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Figure �� Averaged adjacency and skeleton matrix for the women and mathematics data set� In the latter

the edges of the essential graphs in Figure � are printed in bold�

We have not yet investigated the behaviour of the algorithm in terms of convergence and mixture� This is

a very crucial task where we refer for a discussion of the general problem and possible solution to Brooks

and Giudici �����
 and Brooks et al� �����
� As already mentioned� another drawback of our approach

lies in the fact that the search takes place in the space of all dags instead of restricting to the essential

graphs� Thus� long run times occur due to the huge search space� But the continuing developing of faster

machines will hopefully improve the performance� Nevertheless� for small data sets up to �� variables

helpful information about the association structure can currently be gained at the moment� Besides the

selected model� insights are also obtained from the averaged adjacency matrix�

The algorithm is implemented in the software package BayesX� which contains several methods for

Bayesian inference based on MCMC �see Lang and Brezger� ����
� It can be downloaded from

http���www�stat�uni�muenchen�de��lang�bayesx�bayesx�html�

There are many possible extensions of this algorithm� The �exible MCMC design o�ers the possibility

to also allow for latent or missing variables� The former has been considered by Giudici and Stanghellini

�����
 for undirected graphs� to get an idea of the latter see for example Schafer �����
� In many practical

cases� some of the possible in�uences and dependencies are already known� Therefore� it would be useful

to state edges as �xed during the model search which� of course� also implies a reduction in run time�

since it enormously decreases the search space�
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