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Abstract

After a short introduction of the model, the missing mechanism and
the method of inference some imputation procedures are introduced with
special focus on the simulation experiment. Within this experiment, the
simple additive model y = f(z) + € is assumed to have missing values
in the independent variable according to MCAR. Besides the well-known
complete case analysis, mean imputation plus random noise, a single im-
putation and two ways of nearest neighbor imputation are used. These
methods are compared within a simulation experiment based on the av-
erage mean square error, variances and biases of f(x) at the knots.

KEY woORrDs: missing values; complete case analysis; stochastic mean
imputation; nearest neighbors; GCV; iteratively reweighted least squares.

1 Introduction

Statistical analysis with incomplete data has been investigated extensively for
a variety of models, e.g., for linear regression (e.g. Little (1992)), for logistic
regression (e.g. Vach (1994)) or for generalized linear models (e.g. Ibrahim, Lip-
sitz and Chen (1999)). However, generalized additive models (GAM) affected
by missing values hardly are considered. One reason may lie in the short time of
twelve years ago where generalized additive models were introduced by Hastie
and Tibshirani (1990) in detail. So the paper of Chu and Cheng and their
conclusion that it is not surprising that little attention has been paid to pos-
sible nonparametric inference, Chu and Cheng (1995), p. 86, may be used as
motivation for some more research first considering the empirical behavior of
some procedures within this context. This paper first considers the necessary
theoretical background. Besides the model for the data and the missing mech-
anism also a short introduction to the inference is given in Section 1.1, 1.2, and
1.3. More of practical interest is the description of the imputation procedures
within Section 2. The main part is the simulation experiment with an extensive
discussion of the results in Section 3 and Section 4.



1.1 The Model

Given continuous data (z;,y;), ¢ = 1,...,n, the simplest additive model is given
by

y=f(z)+e. (1.1)

Conforming with the well-known assumption concerning e and X within the
linear model also here we have the independence of them denoted by E(e | X) =
E(e) with its special case of homoscedastic structure of covariance meaning
E(e) =0and V(e | X) = V(¢) = 021,. In order to prevent a free constant within
the function f(z) (1.1) implies E(f(z)) = 0. The small amount of assumptions
of course leads to a large amount of flexibility when fitting the model to the
data. This especially is the advantage of generalized additive models (GAM)
over other models and the main reason why Hastie and Tibshirani (1990), p. 1,
take the opinion that the data show [...] the appropriate functional form.

Here, the independent variable X is affected by missing values for ¢ = n —
m+1,...,n according to MCAR [(1.4)] whereas the response vector y is fully
observed. This allows to partition the data in ‘observed’ and ‘missing’ according

to
o0=((3m)-(32))- a2

where the indices ‘obs’ and ‘mis’ indicate the observed and missing cases based
on the observed and missing cases of the independent variable X, respectively.
One should note that y,;s does not mean that y is affected by missing values;
Ymis contains the response values belonging to the missing values in X ;s.

1.2 Missing Pattern and Missing Mechanism

Within this section two important features are introduced to characterize the
situation of an incomplete data set. The first is the missing data pattern con-
cerning the visualization of observed and missing data, the second is the miss-
ing data mechanism describing the dependencies between observed and missing
data. These two concepts characterize the situation of missing data in a way
that may also take into account possible reasons for the missingness. In the
context of incomplete data these reasons may affect some methods, their prop-
erties or their asymptotical behavior which gives enough reason to take a closer
look at these two concepts.

Missing Data Pattern The missing data pattern simply represents the data
set variable-by—variable. Each bar represents a variable whereas the length of
the bar indicates if there are missing cases for this variable or not. Visualizing
the situation where X is incomplete and y is completely observed as denoted in
(1.2) leads to Figure 1.1 (Little and Rubin (1987)). Univariate missing data are
a special case of the so called monotone pattern of Figure 1.2 where the variables
can be ordered in a way that a variable is observed for at least the cases of the
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Figure 1.1: Univariate miss- Figure 1.2: Monotone miss-
ing data pattern. ing data pattern.

previous one. If there is suspect for X missing for large values of y, values could
be ordered and a missing data pattern may describe this behavior, too. But
obviously, this technique may be swamped with a higher level of dependencies.
This defect is one reason why the missing data mechanisms represent a useful
tool.

Missing Data Mechanism The main question arising within the statistical
inference is whether the missing data mechanism can be ignored. One possi-
bility is to make an assumption that the mechanism is ignorable in the sense
described below; the other possibility consists of including the mechanism in the
statistical model by including the distribution of an indicator variable indicating
if a component is observed or missing. According to Little and Rubin (1987),
define the data matrix Z = (Zobs, Zmis) which represents the data that would
occur without missing values. Further define the random variable R indicating
the missingness within the data matrix Z according to

{1 if z; observed
Tij =

0 if =z, missing Vi=1,...,n,j=1,...,p+ L (1.3)

The question whether the missing mechanism can be ignored for the estimation
of 8 equals the question whether the statistical inference is based on f(Zobs, R |
0, ®)—with ® being an unknown parameter of the missing mechanism and 6
being the parameter of the density of Zgps, Zmis—or on the simpler density
f(Zops,0) ignoring the missing mechanism. Considering the density f(R |
Zobsy Zmis, ) allows classifying the missingness into

1. MCAR (missing completely at random) if

f(R|Z,®)=f(R|®) VZ, (1.4)

2. MAR (missing at random) if

F(R|Z,®) = f(R]| Zobs;®) VZmis, and (1.5)

3. MNAR (missing not at random)

f(R | Z:"P) = f(R | Zobss Lmiss (I’) . (16)



Following Little and Rubin (1987), the missing data mechanism can be ignored
in the context of likelihood inference when the distribution of the missing mech-
anism is independent of the missing values [(1.5)]: Compute the density of the
actual observed data obtained by integrating Zis out of the density

f(Z0b57 R | 07 <I)) = /f(Z0b57 Zmis | e)f(R | Z0b57 Zmis: q))dZmis (17)
which by the help of (1.5) leads to

FZovs R, 0,8) = F(R| Zops, ®) / FZobss Zonies 8)dZunis
= f(R | Zobs:q))f(zobs | 9) . (1.8)

If the parameters 6 and ® concerning the density of the data Z and the missing
mechanism, respectively, are distinct in the sense that each parameter con-
tains no information about the other (see for example Schafer (1997)) then the
likelihood—based inferences for § based on f(Zobs, R | 6, ®) and for 6 based on
f(Zops | ) are the same.

1.3 Inference

The well-known trade—off between wiggliness of the estimated curve and close-
ness to the data motivates the minimization of the target function
[y; — f(:)]? +/\/f”(t)2dt. (1.9)

=1

The value of X\ controls the trade—off, f' and f” have to be continuous, f” has
to be quadratically integrable. For the two extreme cases A — oo and A — 0 the
estimated curve equals a straight line and an interpolating spline, respectively.

Following Wood (2000) the problem of estimating the parameters 31 of
the nonlinear function f with E(f(Y;)) = f(8) by Fisher—Scoring is equivalent
to iteratively solving the weighted penalized least squares problem

min \ || W2 (") — XB) |2 + 36,88, (1.10)

with the iteratively least squares (IRLS) where the least squares problem at
each iterate is replaced by a penalized one. S; is a non—negative definite matrix
of coefficients defining the ith penalty which is associated with the smoothing
parameter 6;, W is a diagonal matrix of weights, and A is the overall smoothing
parameter. From a practical point of view in the case of an estimable parameter
0; it is more interesting to consider generalized cross validation (GCV). The
problem here is to minimize the GCV-Scores

s WE(y — AN 0)y) 12 /n
[1—tr(A(X, 6;))/n]?

(1.11)

with respect to 6;/A. Combining the two procedures solves problem (1.9) and
could be written in two steps.



1. estimate p and the variances V; for each y;
with the help of 8*); compute

(i)  the diagonal weight matrix W with
Wi = (g'(i)*Vi) ™"
(ii)  the vector
Z=X5+F(y—u) )
of pseudo—data with the diagonal matrix
Tii = (g (i)~

2. Compute 6; by minimizing
w3 - xp))1>
(tr(I—A4))2
where (3 is the solution of minimizing
1
| W2(z— XB) || +326;8'S;8
with respect to 8, A denoting the hat matrix
A=XX'WX+>.6;88;8) 'X'W

Table 1.1: Iteratively Reweighted Least Squares with GCV.

For a more detailed description of additive models and estimation concepts con-
sider Hastie and Tibshirani (1990), Fahrmeir and Tutz (2001) or Wood (2000).
The settings of the simulation experiment—also concerning parameters for es-
timating the model—in detail are described in Section 3.

2 Imputation Methods

Generally one has to distinguish between methods for analyzing the data set
as it is and procedures for the imputation of missing data. It should be noted
that usually the completed data set is analyzed as if there weren’t any missing
data however there exist also methods assigning weights to the imputed data
which are different from 0 (complete case analysis) and 1 (treat the data set
as completely observed), see for example Toutenburg, Fieger and Srivastava
(1999). In the following a short introduction to the complete case analysis is
given.

2.1 Complete Case Analysis

The complete case analysis (CCA) simply discards all cases containing at least
one missing value. Based on the partitioning according to (1.2) the analysis is
restricted to the estimation of

Yobs = f(Xobs) + €obs - (21)

An apparent problem is the large waste of information. Estimates may also be
biased if there are stratified data. According to Schafer (1997) the percentage



of missing values the CCA is thought to be suitable is about 5%.

The estimates of the CCA are unbiased if the missingness does not depend
ony, e, if f(R|y,X)= f(R|X) holds. Then

fly, BRI X) _ f(R]y, X)f(y| X)
f(R]X) f(R]X)

fly| RX) = =fly|X). (2.2)
Equation (2.2) means that the conditional density of y given R and X =
(Xobs; Xmis) is independent of the value of R, i.e., the conditional expecta-
tion of f(y | x) is the same for R = 0 and R = 1 yielding unbiased estimates
for an analysis based on the complete cases if the missingness does not depend

on y. Further, the estimates of the complete case analysis are consistent even
under MNAR.

2.2 Mean Imputation

The unconditional mean imputation, also known as zero order regression (ZOR)
has been first described in Wilks (1932). It is of nonnegligable interest for users
doing analysis with popular software where this method often is implemented.
A missing value z;; is imputed by

fil‘j = = Z Tij , (23)

n—mJ

where ®; = {i : z;; missing} denotes the indices of the missing values and m;
denotes the number of missing values for X;. If X; is non—continuous mode and
median are suited alternatives.

An important disadvantage of the ZOR is the underestimation of variance.
Therefore, small confidence intervals distort corresponding tests. Modifying
the imputed value in terms of an additive random error may be a way to im-
prove the ZOR; let us denote this procedure by ZOR+, the zero order regression
plus random noise, a kind of stochastic mean imputation.

2.3 Single Imputation

A further method is called single imputation and was is for example described in
Little and Rubin (1987). In comparison to the mean imputation the single im-
putation should provide substitutes representing more variation than the ZOR+
did because the variation of the distribution of the complete cases is somewhat
larger than the variance of the additive random error within the ZOR+. As al-
ready indicated the single imputation (sI) could be based on the distribution of
the complete cases, i.e., impute a random number out of the distribution char-
acterized by its estimated parameters. This distribution sometimes is known.
Otherwise one may consider conditional distributions based on the complete
cases and an auxiliary model used for predicting the missing values which how-
ever here is not of interest because of having just the simple model y = f(z) + ¢
with one covariate.



Example 1 Assume a linear model y = X3 + € where X =(1, X2, X3). X3 is
supposed to be binary and partially incomplete. Compute an auxiliary model, for
example a logistic regression for the complete cases with X3 being the response
vector, X1, Xs and may be y representing the independent variables. The result-
ing estimates are used to compute conditional probabilities m; via the logit link
using the values of the observed variables X1, Xo,y for the missing indices. The
m; could be considered as parameters of row—wise binomial distributions which
motivate the following imputation steps fori=1,...,m

1. Draw a random number z; from a continuous
uniform distribution over the interval [0;1]

2. Impute

o {1’ lf Zifﬂ'i
m,—{ O if > (2.4)

2.4 Nearest Neighbor Imputation

Within this section two kinds of nearest neighbor imputations are introduced.
The first one is the ‘classical’ nearest neighbor imputation (NN1) the second
one is a modified version (NN2).

2.4.1 Nearest Neighbor Imputation—Version I (NN1)

The nearest neighbor imputation has a long history but according to Chen and
Shao (2001) is still not fully investigated although it is used in many surveys.
Referring to the data structure (1.2) with m missing values for the row indices
i=n—m++1,...,n visualized by

L5 Tpmy, Tn—mt1,- -+ Ln and
obs;;ved mi;'sing
2.5)
Yis - Yn—my Yn—mi1s- -5 YUn 2.6)
obs;ved
a missing value z;,7 = n —m +1,...,n, is imputed by choosing that value

zi;, 1 < i < n —m, which is the nearest neighbor of j. In this context the
distance determining the nearest neighborhood is measured in y-values such
that i satisfies

lvi—y | = _min ly—uil- (2.7)

If the solution is not unique the mean of the corresponding x—values is imputed.

The nearest neighbor imputation is a hot deck imputation procedure which
yields values unlikely to be nonsensical. Population means and quantiles are
asymptotically unbiased and consistent (see Chen and Shao (2000)). Since it
is a nonparamteric method it is expected to be somewhat more robust against



model violations. Chen and Shao (2001) give a detailed overview over several
possibilities for adjusting the procedure in order to get asymptotically unbi-
ased and consistent variance estimates. Additive models, however, here and yet
haven’t been investigated prior to the current paper.

2.4.2 Nearest Neighbor Imputation—Version II (NN2)

y

-t

° ‘interval’

Yj

Tmin
B

<~—range—--
Figure 2.1: Fixed neighborhood based on k = 3.

Because of investigating a smooth function relating = and y, e.g., a cubic func-
tion, also the nearest neighbor could lead to substitutes being far away from the
‘true’ value. This is the reason why a modified version of the classical NNI has
been implemented based on some plausibility. Let x; again denote a missing
value and y; be the corresponding response value. Consider a neighborhood of
y; based on a fixed number of neighbors k. The main idea is to control the
range of this fixed neighborhood in comparison to a percentage of the length of
the data interval (‘interval’). Figure 2.1 illustrates a data situation with three
nearest neighbors, an artificial range between the three nearest neighbors and
the reference value ‘interval’ with a 5%-data rate.

The neighborhood is defined according to (2.7) whose solution for £ = 3 is
a (3 x 1)—vector containing the ordered values [, for s = 1,2, 3 satisfying (2.7).
The range for k¥ = 3 defined by x[3) — z[1) is the first relevant value for the
procedure of the NN2; ‘interval’ is defined as a fixed percentage—here 5%—of
ZTmax — Tmin and should be a reference value for the range of the neighborhood.
A short introduction to the NN2 is given in Table 2.1.

It must be said that this procedure is characterized by decisions based on a
kind of plausibility. Following Table 2.1 step—by—step clarifies this. If condi-
tion (1) is true one would give the probability that the missing value is within
[7[1];2[3)] a large value and therefore may impute as described. If not, as it is
the case in the following steps, one would try to quantify the difference between
the range and ‘interval’ as in (2). Further, one may be induced to compare this
value with a random number based on the same range of values. The smaller
z, the more likely it is to be expected that the range is nearer to the value of
‘interval” which justifies to impute a value representing the center of a quantum



(1) IF ‘range’ < ‘interval’

impute a random number out of a continuous uniform distribution
over [z[1]; Z[3]]

(2) ELSE
compute z = ‘range’ — ‘interval’ (note: zmax = 0.95 - (Zmax — Tmin))

draw a random number u out of a continuous uniform distribution
over (0; Zmax]

3) IFu>z
impute 1/3 (.Z‘[l] + xp2) + .Z‘[g])
(4) ELSE

compute the empirical distribution N(X; 52) and the probabilities
P(X < x17), P(X > x(37) and P(x[1) < X < x(37) and order them

impute a value satisfying the condition of the maximum probability
and satisfying min < X < Zmax

Table 2.1: NN2—a modified version of the nearest neighbor imputation, k& = 3.

according to (3). “The smaller’ is tried to be evaluated by the random number
u. If (4) becomes true, the empirical distribution—which type is supposed to
be known—is estimated based on its empirical parameters. The probabilities
dividing it with respect to (1], ¥[2) and z[3 have to be computed and ordered.
Impute a value according to the property belonging to the largest probability.
Within the simulation experiments about 2-3% of the data satisfied condition
(1) for 0 = 1.0 and about 20-22% for 0 = 0.1. The mean according to (3)
was imputed in 58-76% and data fulfilling (4) in about 11-37%. We see that a
larger deviation of the errors, i.e., the variance of the data in y—direction leads
to a little amount of cases satisfying (1).

3 A Simulation Experiment

This section gives a short introduction to the simulation experiment including
the data, the model, its different settings and some technical details. R pro-
gramming language (see Venables and Smith (2001)) was used to implement the
imputation methods within an additive model estimated by mgcv, a statistical
feature of R for GCV.

3.1 Model and Data

As within Section 1 we assume a model y = f(z) + € with pairs (z;,y;) being
continuous whereas X is assumed to be affected by missing values according to
MCAR and the response y assumed to be completely observed. X follows a
normal distribution with mean v and varying variance 6. With the help of

f(z) = a+bx + cax? + dr® and € ~ N(p, 0?) (3.1



the corresponding response vector could be generated. Depending on o? the
true function f(z) is overlaid with some noise illustrated in Figure 3.1. The

Figure 3.1: f(x), o0 = 0.1 (left hand side), o0 = 1.0 (right hand side).

missing values—here according to MCAR—are simply created by drawing a
random number out of the row indices ¢ = 1,...,n with the restriction not to
draw the upper or lower bound of the data interval [inta, intb]. Using partition
(1.2) enables us to create complete case vectors which are simply filled up with
substitutes subject to the implemented imputation procedures.

Because of considering four imputation methods (ZOR+, sI, NN1, NN2) overall
six estimators have to be compared. Inference follows Section 1.3. Ten knots
were chosen for fitting the smooth term whose regression spline basis is based
on cubic Hermite polynomials. The knots are evenly placed throughout the
(ordered) covariate values, i.e., for 10 knots and n = 500 the knots may be
weighted averages of observations because of no whole-numbered ranks which
would for example have been the case for n = 505. So the different procedures
lead to models estimated from possibly different knot location but are compared
based on the fixed location of the ‘true’ model. Apart from the estimation of the
smoothing parameter A it should be noted that the selection of the estimated
degrees of freedom is an integral part of model fitting.

3.2 Settings and Criteria

name meaning value

n sample size 500
knots number of knots for the cubic spline 10
replications | number of replications 1000
k number of the ‘nearest neighbors’ 3

my missing percentage 0.1 (0.3)
interval length of the interval 2.0

Table 3.1: Program variables.
For illustrating the settings of the experiment a few tables are given. Table 3.1

contains program variables, their meaning and values. Values in paranthesis
indicate alternative settings. Further parameter values concerning the data and

10



the nearest neighbor imputation are shown in Table 3.2 and Table 3.3.

parameters of f(z) x; € [inta; intb] | z; ~ N(v;6%) | e ~ N(0;07)
a b c d | inta intb v é o
‘ 0.0 1.0 -40 20 ‘ 0.0 2.0 ‘ 1.0 0.3 (0.7) ‘ 0.1 (1.0) ‘

Table 3.2: Parameter for generating the data.

‘ Number of ‘nearest neighbors’
k

interval criterion
interval

‘ 3 ‘ 0.05 * (intb - inta) ‘

Table 3.3: Parameter for the ‘nearest neighbor imputation’.

An important note concerns the generation of the data. Because of having
an interval for X its empirical distribution cannot exactly follow the postulated
normal distribution. This is the reason why the empirical distribution of X is
a truncated normal distribution depending on the variance §%. Integrating a
truncated normal distribution with g = 0 from —1 to 1 shows that the maximal
standard deviation is about 0.5. That is the reason why here and in the fol-
lowing ¢ is assumed to be 0.5 instead of 0.7. Apart from some empirical values
controlling for the quality of the experiment the different models were compared
based on the sample mean squared error (see (4.1)), the variance and the bias
of the estimates g. The values g for each imputation method were computed by
predicting f(ijj) with Z; being the fixed knots of the ‘true’ model and f being
the estimated function based on the corresponding imputation procedure. The
variances at the knots are the variances between the replications, the biases are
the differences between f(#;) and f(x;). The number of knots has to satisfy

#(knots) <n —m

with m denoting the number of missing values. This condition is necessary else
the complete case analysis can’t be compared with the imputation procedures.
Following Wood (2001) in an R newsletter, the choice of the number of knots
is not very critical, but should be somewhat larger than the estimated degrees of
freedom plus 1; this condition was taken into account by controlling it during the
experiment. Altogether we ran eight simulation experiments which are shown
in Table 3.4. Models 5-8 for example correspond to 1-4 with 6 = 0.7(0.5).

11



model | mp | o 1)
1 0.1 {01 0.3
2 03 ]011(03
3 03|10 |03
4 0.1 {101 0.3
5 0.1 {01 0.5
6 03 ]011|05
7 03] 10|05
8 0.1 10105

Table 3.4: Different models for n=500, 10 knots, 1000 replications.

4 Results

Before considering statistical results a few remarks. The time which took an
experiment to run was between 3 and 13 hours, especially depending on the
missing percentage and J. Comparing theoretical and estimated values of €, 0
and 6 showed precision from 1072 up to 10~ 5—satisfactory results. Consider-
ing the empirical distributions of € and X showed worse results with increasing
variances. Classifying ‘worse’ is based on the attempt to rate the concern-
ing distribution plots with respect to unimodality, smoothness and symmetry.
Concerning the smoothing parameters it can be stated that its values tend to
increase with increasing variances of X and e and with an increasing missing
percentage.

4.1 The sample mean squared error (SMSE)

The sample mean square error follows

ots
SMSE y y Z \7 y] yjay])] ’ (41)

the well-known formula here based on the values at the knots. Variance and
bias at the knots are computed as described on page 11.

The single imputation always had the largest SMSE. Ordering the SMSEs for
each of the eight experiments and summing up the ranks lead to the ranking of
Table 4.1.

TRUE | CC || NN2 | ZOR+ | NN1 | sl
10 ] | 28 | 325 | 335 |48

Table 4.1: Sum of ranks for all procedures summed up over all experiments.

This first impression has to be analyzed further, especially by considering the
two components of the SMSE. But first let’s take a look at further properties
regarding the SMSE.

12



Analyzing the maximum of the SMSE for the experiments showed that it in-
creases with

e an increasing percentage of missing values,
e an increasing variance of €, and
e a decreasing variance of X.

Except for m, the minimum also tended to increase according to these condi-
tions. The exact values of the SMSE for the models 1-8 are listed in Table 4.2.

TRUE | 0.096 | 0.094 | 1.519 | 1.495 | 0.017 | 0.015 | 0.304 | 0.326
CC 0.089 | 0.078 | 1.691 | 1.537 | 0.018 | 0.017 | 0.401 | 0.355
ZOR+ | 0.123 | 0.153 | 1.671 | 1.548 | 0.077 | 0.251 | 0.555 | 0.369
sI 0.247 | 0.776 | 2.685 | 1.826 | 0.131 | 0.567 | 0.889 | 0.466
NN1 0.128 | 0.203 | 1.854 | 1.591 | 0.041 | 0.074 | 0.443 | 0.369
NN2 0.102 | 0.122 | 1.743 | 1.537 | 0.035 | 0.082 | 0.542 | 0.377

Table 4.2: SMSE for Models 1-8.

Figure 4.1 shows the SMSE for ¢ = 0.1, Figure 4.2 for ¢ = 1.0 both with
0 = 0.3 on the left hand side and § = 0.5 on the right hand side—with 10%
(grey bars) and 30% (white bars) missing percentage. The properties concern-
ing maximum and minimum also can be seen here. Comparing left— and right
hand side we can see with one exception (ZOR+ for ¢ = 0.1 and 30% missing
percentage) that the SMSE increases with a decreasing variance of X. One
could justify this fact with the larger amount of values at the margins of the
interval which may lead to more precise estimates. Concerning o which means
comparing upper and lower graphics tells us that the SMSEs increase with an
increasing variance of the errors. This increase is weaker for 6 = 0.5. Last
but not least we can state that for the larger percentage of missing values all
imputation procedures show larger sample mean square errors which could be
seen by comparing grey and white bars.

2 2
2,4 2,4
2 2
1 1
=] =]
u u
= = 1,
mp mp
R i
0.1 0.1
4 - 4 -
N e e el 0 e = B [ 0, .—ﬂr—l == 0.3
TRUE CC ZOR+ sI NN1 NN2 TRUE CC ZOR+ sI NN1 NN2
procedure procedure

Figure 4.1: SMSE of all procedures, o = 0.1, § = 0.3 (left) and § = 0.5 (right).
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2 — 2
2,4 2,4
2 2
1 1
=] =]
u u
= = g,
mp mp
I i
0.1 0.1
4 - 4 -
0, [Jo.3 0, [Jo.3
TRUE CC ZOR+ sI NN1 NN2 TRUE CC ZOR+ sI NN1 NN2
procedure procedure

Figure 4.2: SMSE of all procedures, o = 1.0, § = 0.3 (left) and § = 0.5 (right).

Altogether it can be said that it tends to exist obvious cohesion between the
SMSE and the interesting parameters. However, these are just trends especially
because of having only two levels for ¢, and m,.

At last we want to consider the SMSE for each procedure. The complete
case analysis shows the smallest SMSE in comparison to the imputation pro-
cedures (except for o = 1.0,0 = 0.3 compared to the ZOR+) and differs just
slightly from the ‘true’ model. Most obvious are the largest values of the single
imputation. Both nearest neighbor imputations seem to be more adequate
than the alternative imputation procedures because of their minor SMSE. The
‘classical’ version tends to have a smaller SMSE for data being more homoge-
neous which can deduced from the results for § = 0.5 and an experiment with X
being uniformly distributed. The zero order regression obviously tends to be
less appropriate for a larger variance of X where its SMSE is not smaller than
these of the nearest neighbor imputations (except for Model 8). This could be
justified as well—the smaller the variance of a distribution the more represen-
tative the mean of the distribution. In order to be able to differ the methods at
all, variance and bias are considered in the next section. Within these sections
there’s special focus on the changes depending on o,d and m,,. The procedures
are compared within the Conclusion.

4.2 The variance
Analyzing the sum over the knots showed exactly the same trend as was observed
for the SMSE; i.e., the sum of the variance with one exception increases with
e an increasing percentage of missing values,
e an increasing variance of €, and
e a decreasing variance of X.

This increase was most obvious for a change of the error variance o2, it increased
least depending on the missing percentage. An exact analysis of the behavior
of the variance depending on procedure, knots, missing percentage, o® and 2
is extensive and forces us to just show a couple of graphics.
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Figure 4.3: V(j) (logarithmic scale) at all knots, o = 1.0,m, = 0.3, = 0.3
(dashed line) and § = 0.5 (continuous line); sI (left) and NN1 (right).

The influence of an increasing standard deviation of X is somewhat differen-
tiated. As already mentioned the sum of the variance over all knots decreased
with enlarging d. A more exact inspection yielded an increasing variance at
the inner knots and a decreasing variance at the outer ones as can be seen in
Figure 4.3 for the single imputation and the NN1 for example. For a better
illustration the ordinate was changed to logarithmic scale. The decrease of the
variance at the outer knots could be explained by the larger amount of values
within this area which may give more stable estimates.

Figure 4.4 shows the variances of the zero order regression and the single im-
putation depending on the error variance o2, for example, at the knots for &
and m,, fixed. The dashed line pictures the values for & = 0.1, the continuous
one for ¢ = 1.0. We see that at each knot the variance of the two imputation
procedures is larger for ¢ = 1.0 than for 0.1. This is the case for the ‘true’
model and the other imputation procedures, too. The larger the variance, the
larger the ‘distance’ of the scatterplot from the ‘true’ curve which is expected
to result in an increase of the variance.

(logarithmic)
(logarithmic)

variance
variance

Figure 4.4: V(j) (logarithmic scale) at all knots, § = 0.3,m, = 0.3,0 = 0.1
(dashed line) and o = 1.0 (continuous line); ZOR+ (left) and sI (right).
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A less precise situation can be observed analyzing the dependence on the miss-
ing percentage m;. But as one might see from Figure 4.5 there is a trend
to an increase of the variances with raising m,, from 10 to 30% which can here
be seen for the complete case analysis. The zero order regression for example
doesn’t show a unique trend yet.

(logarithmic)
(logarithmic)

variance
variance

0.1 00001 0.1

knots knots

Figure 4.5: V(j) (logarithmic scale) at all knots, o = 1.0,6 = 0.3,m,, = 0.1
(dashed line) and m, = 0.3 (continuous line); CCA (left) and ZOR+ (right).

However, we are especially interested in analyzing differences among the proce-
dures themselves coming up in the next paragraph.

Whereas the zero order regression had minimum variance at the outer knots
for 0 = 0.1 an increase lead to larger variances of the ZOR+. The variance of
the ZOR+ therefore is suspected to raise more relative to the alternatives in this
context. The single imputation seemed to have largest variances for all knots
but the increase of o improved its situation to the alternatives and even tended
to the smallest variances independent of the knots. Within the imputation
methods the nearest neighbor imputation NN1 tended to have minimum
variances for a smaller ¢. The increase of ¢ totally changed the situation be-
tween the two nearest neighbor imputation procedures, the nearest neighbor
imputation NN2 increased its variance less than the NN1 and nearly has
smaller values at all knots. The complete case analysis tended to show the
same behavior like the imputation methods, especially like the NN1. For the
smaller o the CCA had small variances and for ¢ = 1.0 the variance increased
but still has good values. Essentially there weren’t large differences between
the methods for a change in § or m,. The procedures and some differences are
analyzed within the Conclusion.

Based on this short summary the imputation procedures behave somewhat dif-

ferent in comparison to the analysis of the SMSE which yet motivates some
guesswork about the biases.
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4.3 The bias

The analysis of the bias may after all show where differences between the meth-
ods concerning their SMSE come from, especially when the SMSE can’t be
followed straight from the variance. Like SMSE and variance also the sum of
the squared biases increased with an increasing percentage of missing values, an
increasing error variance, and a decreasing variance of X.

(logarithmic)
(logarithmic)

bias_sq
bias_sqg

Figure 4.6: B(J,y) (logarithmic scale) at all knots, m, = 0.1,6 = 0.3,0 = 0.1
(dashed line) and o = 1.0 (continuous line); NN2 (left) and sI (right).

Less obvious as within the analysis of the variance was the change of the bias
depending on the error variance o2. An increase could be noticed with some
exceptions for the inner knots mainly for the imputation methods. Figure 4.6
especially shows a similar behavior of the bias depending on the knots when the
variance changes from 0.1 to 1.0.

A clear decrease of the bias can be observed with an increasing variance V(X)
at the outer knots, an increase at the inner knots as is shown by Figure 4.7
where the bias is plotted for the nearest neighbor imputation NN2 and the zero
order regression. The complete case analysis and the nearest neighbor imputa-
tion NN1 totally tended to decrease their bias.

With some exception at outer knots the biases increase with the missing per-
centage raising from 10 up to 30%. Differences between the procedures are
hard to identify because of a diffuse behavior at the knots as one might see in
Figure 4.8—again a logarithmic scale was chosen—where the single imputation
shows an explicit trend the nearest neighbor imputation NN2 however differs
between inner and outer knots. The complete case analysis has the smallest dif-
ferences when raising the missing percentage and even tends to smaller biases
with m, = 0.3.

Before analyzing the components together the behavior of the methods is shortly
summarized. The zero order regression tends to have a smaller bias than the
single imputation for the outer knots but for the inner ones there’s reason to
state that the single imputation shows less deviation—independent of the set-
tings. Version 2 of the nearest neighbor imputation has smaller biases than
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Figure 4.7: B(§,y) (logarithmic scale) at all knots, mp =0.1,06 =0.1,§ = 0.3,
(dashed line) and § = 0.5 (continuous line); NN2 (left) and ZOR+ (right).

(logarithmic)
(logarithmic)
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bias_sqg

Figure 4.8: B(ﬂ,y) (logarithmic scale) at all knots, § = 0.3,0 = 0.1,m, = 0.1,
(dashed line) and m, = 0.3 (continuous line); sI (left) and NN2 (right).

version 1 at the outer knots especially for a smaller o, NN1 has less biased esti-
mates for the inner knots. Altogether it seems that at the inner knots the zero
order regression has maximal biases, both nearest neighbor imputations
and the complete case analysis have minimal biases.

4.4 Variance and bias and their effect on the SMSE

The share of variance and bias in the SMSE Because of having the same
weights in specifying the SMSE, an increase of the proportion of the bias corre-
sponds to a decrease of the proportion of the variance. To condense this item
it is just mentioned that the bias proportion tends to decrease with increas-
ing 0 and o and a decreasing missing percentage (especially for the imputation
procedures).

The share of the outer knots on ) B2 and 2\7 The zero order regres-
sion clearly has the smallest proportions of the outer knots concerning > B2.
One may follow that both procedures tend to have larger bias for the inner knots.
For o = 0.1 especially the ZOR+ and the NN2 have minimal proportions for
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> V which may denote more stable estimates at the outer knots.

The ranks of ) B2 and > V  For an increasing percentage of missing values
the ranks of the procedures show little change for > B2, analogously for the sum
of the variances. For an increasing variance of X the two nearest neighbor
imputations keep their rank relative to each other whereas the zero order
regression increases its rank of bias and decreases its rank of variance. An
increase of the error variance o2 leads to a lower rank of the single imputation
and the NIN2 for the sum of variances and higher ranks of the NIN1 concerning
S B? and Y. V. The zero order regression again shows a kind of trade—
off, here improving the rank situation for the bias and downgrading it for the
variance.

Uniformly distributed X The main result for an additional experiment
with X being uniformly distributed was a reduced influence of the outer knots
on variance and bias for the zero order regression. Solely 3% of the bias and
15% of the variance of the ZOR+ are explained through the outer knots.

5 Conclusion

Some of the following results, especially those comparing the methods could be
seen in Figure 5.1 and Figure 5.2. Both compare two groups of methods—one
containing the single imputation with the ZOR+, the other comparing the com-
plete case analysis with the nearest neighbor imputations—with respect to bias
(Figure 5.1) and variances (Figure 5.2) at all knots for varying missing percent-
ages; here 0 was chosen to 0.5 and o to 1.0.
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Figure 5.1: Estimated bias for all knots, 0 = 1.0, = 0.5; ZOR+ and sI (dashed
line) left hand side, NN1, NN2 (semi-dashed line) and CCA (dashed line) right
hand side; 30% missing percentage marked by squares.

The complete case analysis tends to minimum variance and bias very of-
ten, resulting in a least SMSE and to the ranking in Table 4.1. Large variances
and small biases often occur in statistical analysis, then called ‘trade—off’. This
trade—off clearly has been observed for the zero order regression. It tends to
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Figure 5.2: Estimated variance for all knots (logarithmic scale), o = 1.0, = 0.5;
ZOR+ and sI (dashed line) left hand side, NN1, NN2 (semi-dashed line) and
CCA (dashed line) right hand side; 30% missing percentage marked by squares.

have a large bias and little variance for inner knots. Except for some knots (first,
fourth, ninth) the single imputation has strong biased estimates. Comparing
these two methods gives some advantage for the single imputation in the middle
where bias and variances are smaller and a slight superiority for the ZOR+ at
the outer knots which may however result from an underestimated variance es-
pecially for a smaller error variance. This contradicts the analysis of the SMSE
but we saw that the large SMSE of the single imputation might be based on
strong biased estimates at the outer knots where additionally the ZOR+ shows
small variances and biases. The two nearest neighbor imputations show
values near to the complete case analysis. Whereas the NN1 has a smaller bias
in the center of the interval the NN2 shows less bias at the outer knots. The
NN2 also shows less deviation nearly at all knots.

Altogether one might prefer the classical method of a complete case analysis—
which is however not an alternative for all practical problems—and the nearest
neighbor imputation. Firstly, the NNI is a nonparametric method and is sup-
posed to lead to more or less sensible substitutes and secondly, it provides good
results near to the properties of the complete case analysis. Additionally, the
second version of the nearest neighbor imputation is a flexible procedure be-
cause of the possible variability in its parameters.

In order to stick to a scientific character it should be a goal to study miss-
ing data within additive and generalized models on a more theoretical basis.
These results may have given a first impression of some behavior.
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