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SUMMARY

Model selection in graphical models is still not fully investigated. The main difficulty lies
in the search space of all possible models which grows more than exponentially with the
number of variables involved. Here, genetic algorithms seem to be a reasonable strategy to
find good fitting models for a given data set. In this paper, we adapt them to the problem
of model search in graphical models and discuss their performance by conducting simulation
studies.
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1 Introduction

Modern technologies make it nowadays quite easy to collect huge amounts of data in course
of empirical studies which results in the challenging demand to extract the substantial infor-
mation and find certain patterns inside the data. Such multivariate data sets usually imply a
complex association structure which cannot be analyzed in a straightforward manner based
on standard statistical software without running the risk of loosing important information.
Graphical models are a sensible approach to cope with these problems.

The basic idea is to represent a multivariate model in a graph where each element is
to be interpreted in a purely statistical sense. The vertices represent the variables and
the (non-)existence of edges between them can be interpreted as marginal or conditional
(in)dependence statements based on certain rules and under specific assumptions.
Although the theory of graphical models seems to be examined thoroughly, there still is the
problem to find a well fitting model for a given data set. The main difficulty lies in the
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search space of all possible models which grows more than exponentially with the number
of variables involved. Model selection itself can be seen as an optimization problem where
the global optimum corresponds to the best fitting model. It is then the task of a selection
strategy to find this model and not to get stuck in other sub-optimal models. Currently,
there exists a variety of strategies, based on both a frequentist and a Bayesian point of view.
Some of them are restricted to certain types of graphical models whereas others are more
generally applicable. All of these methods have their advantages and disadvantages but all
have in common that they may not find the global optimum. Since genetic algorithms have
been successfully applied to various optimization tasks over the years it is here to examine
whether this approach can better cope with the above mentioned problem than more con-
ventional selection techniques.

This paper is organized as follows. First, we briefly introduce graphical models and some
well-known selection strategies in Section 2. We then sketch genetic algorithms in general in
Section 3, whereas we present the adaptation of these algorithms to model search in graphical
models in some more detail in Section 4. The behavior of the derived genetic algorithms is
investigated by means of a simulation study. The obtained results are discussed in depth in
Section 5. We conclude with a short discussion.

2 Graphical Models and Model Selection

The basic idea of graphical models is to represent a multivariate data set by a graph
G = (V, E) where each element is to be interpreted in a purely statistical sense. The vertices
of such a graph reflect the random variables of the model and the edges the association struc-
ture, where F is a subset of V' xV of ordered pairs of distinct vertices. Depending on the scale
or on the underlying association structure of the involved variables we can distinguish several
types of graphical models. In this paper, we will restrict ourselves to undirected graphical
models. Here, a missing edge between two vertices is interpreted as conditional independence
between the corresponding variables given all remaining one if certain distributional assump-
tions are fulfilled. For instance, a model may contain simultaneously discrete and continuous
variables. In this case, a Conditional Gaussian (CG) distribution (Lauritzen and Wermuth,
1989) turns out as appropriate. In case of only discrete or continuous variables a multinomial
distribution or a multivariate normal distribution may be adequate, respectively. Two types
of models are of particular interest: In the saturated model the underlying graph is complete
and in the main effects model no edge is present in the underlying graph. If not otherwise
stated we describe an undirected graphical model by denoting the different cliques of the
underlying graph, separated by a comma. For example if V' = {a, b, ¢}, the saturated model
is written as abc and the main effects model as a,b,c. For a deeper insight into graphical



models we refer to the books of Edwards (2000), Lauritzen (1996), or Whittaker (1990).

A key task when applying graphical models to a data set is to select the appropriate model.
Different strategies have been proposed for this purpose. Some of them can be used for
certain types of graphical models only, whereas others are more generally applicable. The
short overview, given here, will focus on the more general selection techniques stepwise se-
lection and the Edwards—Havrdnek (EH) procedure which will be compared with the genetic
algorithms based on simulated data sets in Section 5.

Selecting a graphical model the stepwise procedures proceed as follows, where mainly the
number of associations is of interest. Backward selection starts with the saturated model and
thus there are no (conditional) independence restrictions present. Step by step, individual
edges are then removed until the remaining ones are all significant with regard to a certain
criterion. At each step the edge that has the worst (non-significant) value according to the
significance criterion is removed. In case of forward selection, the process starts with the
main effects model. Analogously to backward selection, individual edges are now added to
the model according to their importance until the stopping criterion is again fulfilled.

The EH procedure (Edwards and Havranek 1985, 1987) is based on search algorithms which
seek the most parsimonous models, i.e. those with the lowest number of parameters, con-
sistent with the data based on an overall fitting strategy. The procedure is appropriate for
all model families that form a lattice (Edwards and Havranek 1987). For graphical models
the simplest models are those that have as many conditional independencies as possible and
thus the lowest number of edges. The EH procedure is based on two rules: The first states
that if a model is accepted, i.e. judged to be consistent with the data, then all supermod-
els that include the former one are also accepted. The second rule states that if a model
is rejected, i.e. judged to be inconsistent with the data, then all of its submodels are also
rejected. Two terms are introduced to reflect these concepts: A model is called w—accepted
(weakly accepted) if it includes an accepted model, and it is called w—rejected (weakly re-
jected) if it is included by a rejected model. At any stage of the selection process the whole
range of possible graphical models is divided into three disjoint sets. One set consists of all
w—accepted models. Another set contains all w—rejected models and between these two sets
those models can be found of which the consistency with the data has still to be verified.
At each step either the minimal or the maximal models in the undetermined set are tested
and the sets of w—accepted and w-rejected models are updated according to the results of
the corresponding test. The procedure stops when all possible models are classified as w—
accepted or w-rejected. Note that this procedure may result in more than one model because
different models may be judged as being consistent with the data which are equally sparse.



For examplary applications of this strategy see e.g. Edwards (2000, p. 146ff) or Edwards and
Havranek (1985).

3 Genetic Algorithms

Genetic algorithms (GA) are used to solve search and optimization problems. Their name
is due to a close similarity to evolutionary processes. In evolution theory, a population of
individuals evolves by natural selection and survival of the fittest. This was first investigated
by Charles Darwin in 1859 (The Origin of Species, Darwin 1958). Genetic algorithms mimic
the evolution of creatures in that they try to find more and more better solutions for the
given problem by producing more and more better descendants.

Genetic algorithms mainly consist of five different parts. The application of a GA to a
given problem requires to define a possible solution such that a GA can handle it. Such a
process has to be performed for each parameter of the problem and the result of this process
is called gene. The genes are then joined forming a string called chromosome. All possible
chromosomes together build the search space. In a pure genetic algorithm, a binary alphabet
(that means an alphabet only consisting of 0 and 1) is used for coding the chromosomes.
Thus, each gene (and with that the whole chromosome) consists of several bits. Then, an
wnitial population has to be generated, and a fitness function has to be assigned, which
measures the fit of a given solution. For running the algorithm it is important to select
the parents and to recombine them to generate offspring in a certain way. This part of
the algorithm is called reproduction. Here, it has to be ensured that the space in which
the solution can be found, called problem space, is searched in an efficient manner. The
two mostly used operators in the reproduction step are crossover, which generates a new
chromosome by combining two chromosomes, and mutation, which changes one or more bits
of a chromosome. Both operators are applied with a different probability. The search is
finished when prespecified termination criteria are satisfied. However, these criteria do not
always imply convergence to the global optimum. It might occur that the algorithm gets
stuck in a local optimum instead. It is, therefore, advisable to run the algorithm, regardless
of the termination criteria, a situation dependent minimal number of iterations.

4 Genetic Algorithms Applied to Model Selection in
Graphical Models

Let us now deal with the necessary steps to adapt genetic algorithms to model search in
graphical models. Such an adaption implies fixing the various parameters involved in genetic



algorithms. Whereas general hints can be given for some of these parameters, others have
to be learned by simulation studies.

Since a conditional independence graph corresponds to a particular graphical model with
a given independence structure, both the graph and the model formula are an appropriate
choice for the chromosomes of a genetic algorithm. In this paper, we utilize the graph because
the reproduction operators can be easily adapted to its internal representation as an upper
triangular matrix. To introduce this structure we first have to define an adjacency matrix.

Definition 4.1 (Adjacency matrix) An adjacency matriz A(G) is a representation of an
undirected graph G = (V. E), |V| =k, i.e. a k X k matriz with entries e;j,i,j = 1,...,k,
such that e;; = 1 if and only if an edge exists between i and j, © # j, e;; = 0 if and only if
there is no edge between the two vertices, and e;; = 1 for i = j.

Note that an adjacency matrix of an undirected graph is symmetric. Thus, it is sufficient to
work only with the upper triangular matrix. Following Laplante (2000), we represent such
a matrix as follows.

Definition 4.2 (Upper triangular matrix) Let A(G) be a k X k adjacency matriz of an

undirected graph G = (V, E), |V| = k, with entries e;j,1,j = 1,..., k. An upper triangular

(H;)k, which stores an entry
i(i—1)

eij,1 < J, of the corresponding adjacency matriz A in location | = k(i — 1) 4+ j — =5=.

matric A’(g) 15 a vector consisting of elements e;,l = 1,...,

When applying GAs, the next step is to fix the size N of an initial population and to initialize
its elements. In our case the population is randomly initialized such that each possible edge
has a probability of 0.5 to be in the model. Choosing the initial population purely at random
follows the general guidelines for running a GA, whereas the size N mainly depends on the
structure of the function to be optimized. If it is well-behaved a small size is sufficient to
work with. If the function is somehow difficult, e.g. if it is multimodal or if it is very flat
in the surroundings of the minimum or maximum, a larger size is needed. Simulations are
therefore helpful to decide on the appropriate /N, reported in Section 5.

To calculate the fitness of the models at each step of the algorithm we need proper criteria
which are able to rate given models. Usual goodness—of-fit criteria will typically rate more
complicated models, i.e. those with more parameters, to be better than sparser ones. A se-
lected model, however, should have only as many parameters as necessary to give an adequate
representation of the association structure underlying the data. One criterion accounting for
this trade—off between model complexity and goodness—of-fit is the BIC (Bayesian infor-
mation criterion, Schwarz 1978). It penalizes the complexity of an estimated model by an
additional term, depending on the number of parameters of the model and the sample size.



Definition 4.3 (Bayesian Information Criterium) Let 0 be the unique mazimum of the
likelihood function L(6) corresponding to a certain graphical model. Let m be the number of
parameters of a given model and n be the sample size. Then, the BIC (Bayesian information
criterion) is defined as

BIC = —21n(0) + mlog(n).

The BIC corrects for the dependence of the fit on the sample size: the larger a sample, the
more “significant” an effect has to be in absolute terms. As a result, the BIC does not tend
to overfit the data, especially if we have a larger number of observations. Since the model
with the smallest BIC is regarded as the best model the task is to minimize f. The ML—
estimator itself is calculated via the iterative proportional scaling (IPS) algorithm (Demming
and Stephan 1940) when considering pure models and via the modified iterative proportional
scaling (MIPS) algorithm (Frydenberg and Edwards 1989) in case of mixed models.

In the selection step, we weight the chromosomes of a generation with their BIC—value, so
that chromosomes with a lower BIC are more likely to reproduce than chromosomes with
a higher one. In our optimization problem we apply tournament selection which is based
on the ranks of the chromosomes. It randomly draws a small number j of chromosomes in
one iteration and selects the best one from this set of j elements to be a parent of the next
generation. With N being the size of the population this process is repeated N times. A
typical value adapted in many applications is j = 2 (Michalewicz 1996, p. 61). Besides this
aspect we apply an elitist genetic algorithm, which means that the best model is maintained.
This ensures, in theory, that the global optimum will be found (Rudolph 1994).

Next, we perform crossover on the selected chromosomes with a certain probability p. for each
chromosome. We have two different types of crossover operators, the one—point crossover
for graphs and the union—intersection crossover which are introduced in Definition 4.4 and
4.6.

Definition 4.4 (One—point crossover for graphs) Let A,(G,) and A5(Gy) be upper tri-
angular matrices for the graphs G = (V, Ey) and Go = (V, Ey), |V| = k, respectively, with

elements e; and fi,l=1,..., @ Further, let r be a random value drawn from the discrete
uniform distribution U1, @] Combining the elements of Ay and Ay to get two children
Cy1 and Cy by:

C1 = €1,...6€p, fr+1, cey f(k+21)k,

CQ = fl, c. fr, Crily---, €(k+21)k

1s called a one—point crossover for graphs.

Before defining the union—intersection crossover it is necessary to introduce the union and
intersection operators for upper triangular matrices.



Definition 4.5 (Union and intersection for upper triangular matrices) Let /T, B be
upper triangular matrices with |f_1'| = |]§| = u and elements e}, f;, | =1,...,u. The intersec-

tion operator e; A\ f; and the union operator e,V f; are defined by listing all possible outcomes
wn Table 1.

e | filaNfileaV ]
010 0 0
01 0 1
110 0 1
111 1 1

Table 1: The union and intersection operators for upper triangular matrices

The intersection operator ANB and the union operator AvB of two upper triangular matrices
are defined by elementwise union and intersection eg]Nfy, L =1,...,u, andeNVfi, | =1,..., u,
respectively.

We are now ready to define the second type of crossover.

Definition 4.6 (Union—intersection crossover) Let A,(G,) and A5(Gs) be upper trian-
gular matrices for the graphs G, = (V, Ey) and Gy = (V, E»), |V| =k, respectively. Combin-
ing the elements of Ay and A, to get two children Ci and C, by:

G = A AA (intersection),
Co = A VA (union)

15 called a union—intersection crossover for graphs.

Since the l-entries of an upper triangular matrix are edges of an undirected graph the
operations defined in Definition 4.6 correspond to the usual intersection and union of graphs.
The crossover operator to be applied is chosen randomly for each pair of parents so that a
wide range of new graphs can be generated.

In the last step of the reproduction phase each chromosome of the new generation undergoes
mutation with a certain low probability p,,. The mutation operator is defined as follows.

Definition 4.7 (Mutation on graphs) Let ft’(g) be an upper triangular matriz for the

graph G = (V, E),|V| = k, with elements e¢;, | = 1,..., t+VE  gnd v be a random value

2
@] Building a new upper triangular

drawn from the discrete uniform distribution U|[1,
matriz B out of A such that

—

B = [61,...,_|6T,...,6(kJ;1)k]

with —e, =1 if e, =0 and —e, =0 if e, = 1 s called mutation on graphs.

7



Definition 4.7 corresponds to inverting the status of one edge in the graph, i.e. removing the
edge if it is present and adding it if it is not present.

Considering termination, we perform simulation studies to find appropriate numbers of iter-
ations for the algorithm (cf. Section 5).

5 Simulation

Although there exist some theoretical results explaining the circumstances under which GAs
find the global optimum of a problem, applications do not always follow this theory. This
is mainly due to the asymptotic nature of these results on the one hand and to the limited
population size on the other hand. Nevertheless, based on static or dynamic criteria it is
possible to check whether the chosen coding and genetic operators are appropriate at all to
find the global maximum for a given problem. For the problem of model search in graphical
models we performed a detailed analysis in Blauth (2002). As conclusion it seems as if the
problem of model search is easy for a genetic algorithm to solve and that the selected coding
and genetic operators are suitable.

Further, the application of a genetic algorithm implies the adjustment of several parameters
like the probabilities for crossover and mutation, the size of the population, and the number
of iterations. Different parameter constellations may be successful depending on the kind of
application.

Therefore, in Section 5.1 we investigate which parameter constellations are promising for
our problem. In addition, we compare the genetic algorithm with more standard selection
procedures as forward and backward selection and the Edwards—Havranek procedure in
Section 5.2.

5.1 Parameter Constellations

In the following simulation studies we consider two different data sets: one consisting of six
discrete variables and the other of five variables where two are discrete and three continuous.
Although it may be desirable to investigate more than these two data sets by means of
simulation results they are sufficient to get a first impression of the behavior of the genetic
algorithm in this context. In addition, we restrict ourselves to rather small models since then
an exhaustive search is possible to identify the “best” model with which the one resulting
from the genetic algorithm and from other strategies will be compared.

The chosen values for the probability of mutation p,,, the probability of crossover p., the
size of population N, and the number of iterations 71" are summarized in Table 2.

The rationale behind these values is as follows. We investigate the behavior of the algorithm



parameter value
Number of iterations 7' [50,. .., 200]
Size of population N 15, 30, 50
Probability of mutation p,, | 0.01, 0.1, 0.5
Probability of crossover p. | 0.7, 0.8, 0.9

Table 2: Parameter values of the different simulations

depending on the number of iterations 7" in a range of 50 to 200. It is expected that a
smaller number of iterations leads to rather unstable results and a higher number does not
lead to any further improvement The values for the size of the population N as 15, 30, and
50 reflect a small, medium, and large number of different models in one population. The role
of mutation is discussed in the literature on GAs: While some references state that a very
small mutation rate p,, is sufficient to ensure that an algorithm does not get stuck in parts
of the search space, others are convinced that a quite high mutation rate may be important
for the success of a GA. We therefore vary the parameter from 0.01 over 0.1 to 0.5. Since a
high probability of crossover p. is required for an efficient search through the problem space,
this parameter ranges from 0.7 to 0.9.

In data set (a) we simulate the distribution of six discrete variables V' = {a,b,¢,d,e, f},
each having two levels and 10000 observations. On six vertices we have a total of 32768
different graphical models. We generated the data by drawing samples from a multinomial
distribution with the underlying association structure cf, be, bd, ac, ab. An exhaustive search
resulted in cf, be, bd, ac being the best model with respect to the BIC which has a value of
73785.4344. Tt differs from the original imputed one in that edge ab misses. This difference
may occur due to sampling errors and it can be seen as a confirmation of the well-known
statement that a chosen measure of fit may emphasizes a different model than the original
one. Table 3 shows summary statistics for the BICs of the models. It consists of the best
model according to the BIC, the minimum, lower quartile, medium, upper quartile, and
maximum values of the BIC.

Data set (b) consists of 1000 observations on five variables, V' = {a, b, z,y, z}, where two of
them, a, b, are discrete and three of them, x, y, z, are continuous. The discrete variables have
three and two levels, and each of the continuous ones follows a normal distribution. Overall,
we have a search space of 1024 different graphical models. Using exhaustive search we find
the main effects model a, b, x, y, 2z as the one with the lowest BIC of 21341.96. It corresponds
exactly to the model that was used to generate the data. Summary statistics for the BIC
calculated for the different models are given in Table 4.

To investigate the influence of the different parameter values we proceed as follows. In a first



best model: cf,be,bd, ac
BIC:
minimum 73785.434
lower quartile 73906.856
median 74398.099
upper quartile 74703.379
maximum 74899.737

Table 3: Summary statistics for the BIC of data set (a)

best model: a,b,x,y, 2
BIC:
minimum 21341.959
lower quartile | 21393.390
median 21416.635
upper quartile | 21447.030
maximum 21627.247

Table 4: Summary statistics for the BIC of data set (b)

step we look at the search dynamics of single runs: Here, we present the results of the simu-
lations by tables, where important information about the best model found and the median
BIC of the final population are listed. Besides, the trend of the average BIC curve for each
iteration is analyzed. In a second step we perform 1000 runs on the parameter constellations
which seem to be successful due to the result of the first step. Each run is based on a different
seed for the random number generator to reflect the randomness of the algorithm. This step
should give further knowledge about the reliability of the algorithm. We restrict ourselves to
discussing the most important and interesting results without dwelling into details obtained
from all variations of combining the involved parameters which is not expected to yield a
deeper understanding of the GA.

Let us first consider data set (a): To get an idea of the performance of the algorithm, results
for different parameter constellations are shown in Table 5 for 7" = 200 iterations.

As it can be seen, the algorithm finds the best model according to the BIC in all but one case,
requiring only a small number of iterations. Only constellation iii) yields misleading results.
This model differs from the best one in one extra edge only. Further, the median BIC of the
final population is in any case smaller than the lower quartile when calculating the median
BIC over all the possible models (cf. Table 3). This suggests that the final population may
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no. | parameters best model it. | med. BIC
N | pc | Pm
i) | 15108 | 0.1 || be,bd,ac,cf (1) | 23 73785.43
ii) [30]0.7]0.01 || be,bd,ac,cf (1) | 71 73785.43
iii) | 30 | 0.8 | 0.01 || bed,ac,cf (43) | 62 73803.50
iv) | 30 | 0.8 | 0.1 || be,bd,ac,cf (1) | 8 73794.28
v) [30]08]| 0.5 || be,bd,ac,cf (1) | 7 73801.06
vi) | 30 | 0.9 | 0.01 || be,bd,ac,cf (1) | 50 73785.43
vii) | 50 | 0.8 | 0.1 || be,bd,ac,cf (1) | 14 73792.73

Table 5: Results for data set (a) with 7" = 200 iterations. Best model lists the best model
found by the algorithm together with its rank. The number of the iteration at which the
algorithm first reached the best model is given by it. and the median BIC of the final

population is given by med. BIC.

consist of rather well fitting models.

The impact of the mutation probability p,, can be clearly seen comparing the different curves
of Figure 1. For each curve we use another mutation rate, namely p,, = 0.01,p,, = 0.1,
and p,, = 0.5, whereas the other parameters remain unchanged. The lower the mutation
probability the smoother the curve of the median, where p,,, = 0.5 and p,,, = 0.1 yield similar
results. Since an unstable curve indicates that the mutation probability is too high we can

preliminarily conclude that p,, = 0.5 and p,, = 0.1 may be too large.
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Figure 1: Median BIC of data set (a) for varying probability of mutation

Let us now investigate the effect of the crossover probability p.. Contrasting the curves of
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Figure 2, where we vary the parameter p. from 0.7, 0.8, up to 0.9, we notice that these three
plots hardly differ from each other, which means that varying the crossover probability in
this range has no substantial impact on the performance of the algorithm.

Median BIC: T =200, N =30, p, =0.01

74100

74000

% pc=0.7

S 73900 ----pc=08

E pc=0.9
73800 - O N A VW Y, W —

73700 T T T T T T T T T
1 21 41 61 81 101 121 141 161 181
Number of Iteration

Figure 2: Median BIC of data set (a) for varying probability of crossover

The effect of different population sizes can be clearly seen from the curves of Figure 3. With
a size of only N = 15 the curves are unstable and we have several very high peaks. In
contrast, the curves for N = 30 and N = 50 are both rather flat and look quite similar. Due
to these results and since a higher population size leads to a longer runtime of the algorithm
it seems justified to consider a population size of 30 as sufficient to get stable results.

Median BIC: T =200, p=0.8,pm =0.1

74100

74000
]
@ ——N=15
& 73900 N=30
3 ——N=50
=

73800 | MoRARlS ' o

73700

1 21 41 61 81 101 121 141 161 181
Number of Iterations

Figure 3: Median BIC of data set (a) for varying population sizes
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We can easily analyze the behavior of the algorithm for different iteration numbers by looking
at the curves of the different plots. Each figure shows that there is no essential progress in
the average BICs from about 80 iterations on. Since the best model is always found after
less than 100 iterations, an iteration size of 100 seems to be sufficient. No visible positive
effect is obtained from increased iteration runs, and it should be emphasized that even with
a very large number of iterations there is still some instability of the algorithm. The main
reason for this is that mutation can result in poorly fitting models.

Summarizing the results from above we can state that in the given situation of six discrete
variables, the constellations N = 30 or N = 50, p,, = 0.01 or p,, = 0.1, and p. = 0.8 are
most promising, where the choice of p. as 0.8 is not mandatory. Besides, an iteration num-
ber 7" = 100 should be sufficient. Before analyzing the suggested parameter constellations
further, we have to check whether the proper constellation may change if we have a different
number of variables in our data set and another best fitting model. Therefore, we analyze
now data set (b) consisting of five variables, where the main effects model is the best one.

As before, the results for different parameter constellations are shown in Table 6 for 1" = 200
iterations.

no. | parameters best model | it. | med. BIC
N | pc | Pm
i) | 15108 0.1 a,b,y,zz (2) | 10 21348.34
i) [ 30]0.70.01( a,b,z,y,2 (1) | 3 21341.96
iii) | 30 [ 0.8 | 0.01 || a,b,z,y,z (1) | 3 21341.96
iv) 130 08| 0.1 || a,b,z,y,2 (1) | 3 21363.40
v) [30]08 | 05 || a,bz,y,2(1)| 5 21375.95
vi) |30 109 |0.01 | a,bx,y,z(1)| 3 21341.96
vii) | 50 | 0.8 | 0.1 || a,b,z,y,2 (1) | 2 21365.56

Table 6: Results for data set (b) with 7" = 200 iterations. Best model lists the best model
found by the algorithm together with its rank. The number of the iteration at which the
algorithm first reached the best model is given by it. and the median BIC of the final
population is given by med. BIC. The last entry av. no. describes the average number of
different models within the several populations during the run of the algorithm.

As in the previous case, the correct model is found most of the times, only in one case the
second best model is found. Again, this model differs from the correct one in only one ad-
ditional edge. If we look at the number of iterations needed to reach the best model we see
that the best model is always found very quickly, even faster than in the case before where
we had six variables, which may be due to the smaller search space. As in data set (a), the
median BIC of the final population is smaller than the one of the whole population, which

13



is again a hint that the models in the final population are quite well fitting.

Comparing the curves for the several parameter constellations yields rather analogous con-
clusions as in the discrete example, as for instance much smoother curves for p,, = 0.01 (cf.
Figure 4). In addition, the Median BIC is also smaller for this particular mutation proba-
bility than for the other choices. The effect of different crossover probabilities (Figure 5) is
the same as in data set (a), whereas a slight difference can be observed from the curves for
different population sizes (Figure 6). Here, the curve for N = 15 is not such unstable as it
was in case (a). Note that again a higher number of iterations does not lead to substantial
improvements in the average BICs, where now even 20 iterations are sufficient.

Median BIC: T =200, N =30, p.=0.8

21450

21425
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o 21400 ——pm =0.01
8 pm=0.1
8 21375 - ——pm=05
=

21350

VAR m_T_H\_ AR | W

21325

T T T
1 21 41 61 81 101 121 141 161 181
Number of Iteration

Figure 4: Median BIC of data set (b) for varying probability of mutation

Summarizing the results, we can conclude that the genetic algorithm applied here to five
variables comes up with a similar behavior as in example (a) consisting of six variables.
Again, combinations of N = 30 or N = 50, p,, = 0.01 or p,, = 0.1, and p. = 0.8 seem to be
successful.

Now we run 1000 simulations for some constellations on both data sets to gain further in-
sights. The results are summarized in Table 7. The first number of each entry gives the
percentage of times the best model according to the BIC is found out of 1000 simulations,
and the value in brackets describes the percentage of times the next most frequent model
results. It should be emphasized that the percentage of the latter is always much lower than
that of the best model. Hence, we may say that the preference for the best model is rather
high compared to other models in each of the parameter constellations. Comparing i) and
ii) we see that in both data situations choosing p,, = 0.01 is much more promising than
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Figure 5: Median BIC of data set (b) for varying probability of crossover
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Figure 6: Median BIC of data set (b) for varying population sizes

pm = 0.1: With p,, = 0.1 we obtain the best model in less than half of the simulation runs
only for each data set, whereas with p,, = 0.01 we reach this model in 72.3% of the runs
on data set (a) and even in 88.9% of the runs on data set (b). Based on these results we
investigate whether using a greater population size leads to even more successful runs. The
results for NV = 50 are listed in entry iii). Here, the best model is found slightly more often
in case (a) (74.8% instead of 72.3%) but in case (b) we obtain this model only in 80% of
the runs instead of 88.9%. Since there are more variables in example (a) we may conclude
that a larger population size for data sets consisting of a larger number of variables is indeed
sensible. In contrast, choosing too large a population size for a problem may worsen the
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performance of the algorithm.

no. | parameters || discrete data set | mixed data set
N | pc | Pm in % in %

i) [30]0.8]0.01 72.3 (5.3) 88.9 (1.9)

i) |30]08] 0.1 35.9 (5.1) 49.7 (9.2)

iii) | 50 | 0.8 [ 0.01 74.8 (3.3) 80.0 (4.9)

Table 7: Results for 1000 runs on each data set

The following conclusions can be drawn from the simulations in this section: The parameter
constellation turns out to be a crucial point. Our results suggest that the mutation rate
should be p,, = 0.01, whereas the crossover rate and the iteration number of the algorithm
seem to have only minor influence if chosen in a proper range (see above). To define a
suitable population size N is difficult. It seems to depend on the number of variables in
the data set. It would be necessary to perform more runs on simulated data sets, especially
on ones with a larger number of variables to further study the behavior of the algorithm.
In the next section, the performance of the genetic algorithm is compared to other search
techniques.

5.2 Comparison with Other Strategies

Let us first report the comparison of the genetic algorithm with backward and forward
selection. We perform the backward selection starting with the saturated model and the
forward selection beginning with the main effects model. The criterion for deleting and
adding edges, respectively, is the BIC instead of the commonly used deviance, so that we
can easily compare the results with those of the genetic algorithm. The strategies lead to
the models given in Table 8. The forward selection performed on data set (b) yields a wrong
model including one extra edge az and being the sixth best model in terms of the BIC.

data set (a) | data set (b)
backward sel. | be,bd,ac,cf (1) | a,b,x,y,z (1)
forward sel. | be,bd,ac,cf (1) | az,b,z,y (6)

Table 8: Results for the backward and forward selection

Though these results look rather promising, stepwise selection procedures have the draw-
back that a deletion or addition of an edge at some stage of the procedure implies that the
corresponding variable will not be considered again at any step of the whole process. This
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may reduce the search space such that the part containing the true model will not be visited
during the selection process. Thus, both the genetic algorithm and the stepwise procedures
are quite convincing with respect to finding the true model in the simulation studies, but
both can give wrong models depending on the choice of the available options of the algo-
rithm. Regarding runtime, however, it is obvious that stepwise selection outperforms genetic
algorithms, since in each iteration only one model has to be calculated as opposed to a whole
set of models.

Let us now turn to the EH procedure, which leads to the minimal accepted models listed in
Table 9.

data set (a) | data set (b)
abce f, abedf a,b,x,y,z
cf,bf,bde,ac
acdef, abede
acdef,abce f

Table 9: Minimal models accepted by the EH procedure

As it can be seen, four different models are obtained for data set (a), but none of them
coincides with the model ¢f, be, bd, ac which is the best one when performing the genetic
algorithm on the data set. This may be due to the fact that the EH procedure uses the
likelihood ratio criterion instead of the BIC as a goodness of fit criterion. Another reason
may be that the results of the EH procedure — like those of the stepwise selection — depend
on the sequence of steps the algorithm has to perform (cf. Edwards and Havranek 1985).
As a first conclusion we may say that the data itself do not emphasize a particular model
and that the data set should be further analyzed in this respect. Case (b) is different: The
only minimal accepted model found is the main effects model, which is also detected by the
genetic algorithm. Thus, it seems as if here the data clearly favor this model.

Regarding runtime, the EH procedure has to be preferred to the genetic algorithm. In the
two simulations, for example, the EH procedure needs 17 steps in the discrete case and
only one step in the mixed case to terminate. In general, this model selection algorithm
reduces the search space considerably to only a few models to be estimated (cf. Edwards
and Havranek 1985, 1987) which saves a lot of time, although in the worst case all possible
models may have to be analyzed.

The simulations show as a preliminary result that the genetic algorithm provides a reasonable

alternative for model selection, but it suffers from its runtime which is much longer than that
for the traditional algorithms: At each step of the algorithm a whole population of models
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has to be estimated. For a detailed analysis of the time complexity of the algorithm we refer
to Blauth (2002), where also some enhancements to speed up the algorithm can be found.

6 Discussion

Besides the presented simulations it would be also interesting to investigate situations with
more than six variables in the data set to get a deeper knowledge about the performance of
the genetic algorithm. But in such situations, the best model cannot be found anymore by
searching all models. Since the BIC does not always reflect the imputed model (cf. data set
(a) of the simulation study) we cannot specify which model has to be found by the algorithm
and thus we desisted from investigating such large models. To cope with this situation an
overall measure for graphical models would be helpful.

One disadvantage of the GA seems to be that the best model according to a performance
criterion is not always found. But there are some facts which defuse this problem: First,
the final population consists at least of rather well fitting models, which is especially helpful
when investigating larger data sets, because here it is not sensible anymore to speak of “the
best” model. Second, the best model found by the GA mostly differs from the “real” best
model in just a few edges. This may then be used as starting model of a backward or a
forward selection to reach the best model. This would most of the time prevent the stepwise
selection algorithm from running into local extrema.

Potential enhancements for the genetic algorithm can go in at least two directions. First,
the algorithm should be also adapted to model search for DAGs and chain graphs. In both
situations, the structure of the underlying graph has to be accounted for when choosing the
proper operators like crossover or mutation and when thinking about keeping the runtime
of the algorithm as low as possible. The second extension should aim at further accelerating
the model search. First ideas to cope with this task are described in Blauth (2002), but
more advanced strategies may be possible.

As conclusion, though genetic algorithms are not the panacea, they offer a promising alter-
native to other selection strategies when performing model search in graphical models.
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