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Abstract

The structural variant of a regression model with measurement error is char-
acterized by the assumption of an underlying known distribution of the latent
covariate. Several estimation methods, like regression calibration or structural
quasi score estimation, take this distribution into account. In the case of a poly-
nomial regression, which is studied here, structural quasi score takes the form
of structural least squares (SLS). Usually the underlying latent distribution is
assumed to be the normal distribution because then the estimation methods
take a particularly simple form. SLS is consistent as long as this assumption
is true. The purpose of the paper is to investigate the amount of bias that re-
sults from violations of the normality assumption for the covariate distribution.
Deviations from normality are introduced by switching to a mixture of normal
distributions. It turns out that the bias reacts only mildly to slight deviations
from normality.

Keywords: Structural Quasi Score Estimation, Polynomial Regression, Mis-
specification, Bias, Mixture of Normal Distributions, Measurement Errors.



1 Introduction

It is well-known that errors in the measurement of the exogenous variables
of a regression produce inconsistent estimates of the regression parame-
ters when one of the conventional estimation methods, like least squares
or maximum likelihood, is applied to the model without taking the mea-
surement, errors into account. On the other hand, measurement errors
prevail in most empirical data, even if in many cases they may be small
enough to be safely ignored.

A classical example in economics where such errors cannot be ignored is
Friedman’s permanent income hypothesis in consumption theory. Another
more recent example is the notoriously ill-measured schooling variable in
a wage determination equation in labor economics, Card (1999). Many
more examples can be found in economics as well as in other fields, notably
in epidemiology.

To deal with such error-ridden regression models, one typically needs
to know the error process. Here it is assumed that the error § is additive
and is normally distributed with mean zero (i.e., with no systematic error)
and with a known variance 7. Knowledge of the error variance can come
from replicated measurements or from validation data.

While there is an extensive body of literature for the linear regression
model with measurement error, where standard methods have been devel-
oped - see Schneeweiss and Mittag (1986), Fuller(1987), Cheng and Van
Ness (1999), Wansbeek and Meijer (2000) - the situation is not so clear
for nonlinear models. One finds a number of competing methods for non-
linear models, the properties of which are not completely understood and
may depend on the kind of nonlinearity, see Carroll et al (1995). Here we
focus on a polynomial regression in one variable, although our results may
apply to a wider class of nonlinear models. A recent example for the use
of a quadratic model to study a nonlinear phenomenon in economics can
be found in Kuha and Temple (1999). A survey of methods for the poly-
nomial model is given in Cheng and Schneeweiss (2002), see also Cheng
and Van Ness (1999).

Among the various estimation methods we want to study a structural
method which has been termed Structural Least Squares (SLS) in the con-
text of a polynomial regression, Kukush et al (2001), and also Structural
Quasi Score (SQS) in a wider context of nonlinear models, Kukush et al
(2002). Tt is a structural method in so far as it is based on the knowledge



of the distribution of the error free (latent) regressor variable &, which here
is assumed to follow a normal distribution, see also Armstrong (1985) and
Carroll et al. (1995).

There are other methods, like Adjusted Least Squares (ALS) in Cheng
and Schneeweiss (1998), which do not depend on such knowledge and are
called functional methods.

Structural methods may be more efficient than functional ones, as they
utilize more information given in the model. On the other hand, structural
methods become inconsistent when the distributional assumptions for the
latent variable ¢ are not met. The question is, how sensitive is the SLS
estimator with respect to deviations from the presumed normality of &.

Note that in a polynomial model without measurement errors the es-
timation method (which is OLS) as well as its consistency property do
not depend on the regressor distribution. One can therefore surmise that
in an error-ridden model the (asymptotic) bias of SLS induced by de-
viations from normality is almost negligible if the deviation is slight in
a sense. Simulation studies by Schneeweiss and Nittner (2001) seem to
corroborate this conjecture.

Here we want to study the effect of deviations from the normality of £
on the bias of the SLS estimator in a more systematic way. We replace the
normal distribution of ¢ with a mixture of two normals of equal variance
but differing means. Denote the difference of the means by i}, then the
bias of SLS is a function of 1. It is zero for ¥ = 0 and increases in absolute
value with growing ¥, at least for small . If the bias function b(J) were
to increase linearly for small ¢, we would consider SLS to be sensitive with
regard to deviations from normality, if it increases in a quadratic way for
small 9, it may be considered insensitive. The question of which of the
two is true can be settled by computing the derivative of b() at ¥ = 0.

In a similar way we can also study the dependence of the bias on the
error variance og. It is zero for ag = 0. We compute the derivative of the
bias function with respect to os at o5 = 0.

It turns out that the SLS method is insensitive in the sense above
under both variations.

A Monte Carlo simulation study corroborates these results.

In the next section we introduce the model and the SLS method with
the same notation as in Cheng and Schneeweiss (1998). In the third
section the bias of SLS under the distributional misspecification described
above is evaluated and is further studied for small deviations in Section 4,



where our main result is presented and proved. Section 5 contains some
simulation results, and Section 6 has some concluding remarks.

The appendix provides some additional proofs, a formula for the second
derivative with respect to o5, and a study of the linear case.

2 The model and its estimate

We study the polynomial regression model:
k .
yi=Y Bitl +e (1)
j=1

with additive measurement errors ¢; in the observed regressors x;:
z; =& + 0, (2)

where (&;,€;,0;) «~ 1id. N((ue,0,0),%) with ¥ = diag(a?,a?,a?),ag >
0,02 > 0,i =1,...,n. The variables &, ¢;,d; are unobservable, the vari-
ables y;, x; are observable. The measurement error variance og is assumed
to be known. R

The SLS estimator 8 of 8 := (Bo,01,.-.,08k) is defined by way of
the following reasoning: We have to reduce model (1) to a corresponding
model in the observable variable z instead of the latent variable £&. We
cannot do so by simply replacing £ with z in equation (1). This would
lead to the so-called naive estimator B N, which is (asymptotically) biased.
Instead we construct the conditional mean and variance of y given z, see
Kukush et al (2001), see also 7.1:

E(ylz) = p(x)'B (3)
V(yle) = of + B{M(z) — p(z)p(2)'}B =: v(z, B, 07), (4)

where p(z) = (1, u* (), ..., pu*(z)) with

p"(x) = E(¢"|2), (5)
and M (z) is a matrix with (M (z)), s = " *%(z),r,s =0,..., k.



u"(z) is easily computed using the fact that due to (2) and by the
normality assumption

€|z ~ N(u(z), %)

with
and

It then follows that

. 0 if j is odd
— { (9)

1-3:5---(j— 1)1 if jiseven, uj = 1.

These expressions depend on p, and o2. For simplicity let us assume
that these (nuisance) parameters are known. In practice, of course, they
have to estimated, which is easily done by computing sample mean and
variance of the z;,t =1,...,n.

Equations (3) and (4) can now be rewritten as a linear regression of y
on the u"(z),r =0,...,k:

y=mn(@)B+e

with E(p|z) = 0 and V (p|z) = v(z, B, 02). Thus the equation error ¢ is
heteroscedastic. Note also that v(z, 3, E) > 02, as M — pp' is positive
semi-definite. The model can be estimated by an iteratively reweighted
least squares algorithm. The resulting SLS (or SQS) estimator 3 is the
solution to the equations

Z yi — = B( &Q)ﬂ pu(zi) = 0 (10)



o7 = LS - o B — B (M) - e}l (1)

The SLS estimator B is consistent as long as the normality assumption
for ¢ is satisfied, Kukush and Schneeweiss (2000). This is essentially due
to the fact that the expected value of (10), with the estimates replaced
by their true values, is zero. Of course, 62 is also a consistent estimate.

3 Bias under nonnormality

Suppose that £ is not normally distributed. Indeed, let the distribution of
¢ be a mixture of two normals with equal variance o2 but unequal means:

& ~ piN(p1,0%) + p2N(pa, 0%). (12)

If we still estimate 8 by solving (10) and (11), then the resulting SLS
estimator 3 will be (asymptotically) biased except for the linear case
(k = 1); for the latter see 7.3.

The bias is given by

b=plim 3 -3 =:8" -8,
and B* is found as the solution to the equations
y — p(z)'B* _
m#(w) =0 (13)

ol = Ely-p@) Y - B (M) - pa)u(z)}8]
= o2(8"). (14)

If we substitute o2 from (14) in the expression for v, the latter becomes
a function of z and 8", which we denote by

vi(2, B7) = v(z, B", 02 (B")).
Substituting v.(x,8") in (13) we get the equation

y — p(x) B"

" B

p(z)| =0, (15)



which is to be solved for 8%, assuming the solution exists and is unique.

The term in square brackets in (15) is called quasi score function or
estimating function, see Carroll et al (1995), because it is the basis for
estimating 3, see (10). Let us denote it by

Y(y,z,B") = v, ' u(z)(y — plx)'B*), (16)

where we abbreviated v (x, 3") by v..

In order to evaluate E¢(y,z,3") we need to compute E(y|z). We
cannot use (3) anymore because z now follows a mixture law like (12),
but with 02 4+ ¢} in place of 0. If we denote the difference p» — p1 by ¥
and if we set = 3 (1 + p2), then

= p— 59, iz = p + 39, (17)
frz = P + popis = i+ 5(p2 — p1)? (18)
o2 =0 +0F + pip2t”. (19)

Let us introduce the indicator variable I such that I = j if £ comes from
N(uj,0?),j =1,2. We have P(I = j) = p; and by Bayes’ Theorem

)2
pj exp(— 5t

2 z—pi)2 \
Zi:l piexp(— 2((02ic2§) )

(@) == P(I = jla) = (20)

Furthermore, the conditional distribution of £, given z and I = j, is

where in analogy to (6) and (7)

2
05
i) =+ (1= 27 ) @ - ) (21)
and
2
2 _ 2 05



We can now compute E(y|z):

2

E(ylz) = ZP(Izjlx)E(y|x,I=j)
= ij(m)uj(w)'ﬁ. (23)

Here p;(x) is defined in the same way as p(x), but with pu;(z) and 77 in
place of u(z) and 72, respectively, see (6) to (9). Finally, by (16) and (23),

E¢(y,z,8") = E{E[¢(y, z,8")|z]}
= B mi (@) (@) {p;(x)' 8 — p(z) B} (24)

j=1

Now, p(z) being dependent on p(z) and 72, see (5) to (9), and the latter
two being functions of o2 and ¥ by (6), (7), (18), (19), p(x) is also a
function of 0§ and ¥. The same is true for p;(x). Finally o7 is a function
of B*,0%,9 by (14), and hence v, is a function of 8,032, and ¥, too. Thus
we can write

BE(y,z,B7) = f(B".035.0), (25)

where f is a differentiable vector-valued function in k+3 arguments. If we
solve the equation f(8%,03,9) = 0, the solution 3* will be a differentiable
function of 02 and ¥:

B =B (a3, 9).

4 Bias for small error variances and small
deviations

We want to study the dependence of 3" and of the bias b = 8* — 3 on 03
and ¢. In particular we investigate this dependence for fixed ¢ and small

o2 and for fixed ¢} and small ¥; i.e., we consider the derivatives % at

os = 0 and % at ¥ = 0. These derivatives are also the derivatives of the
bias b with respect to o5 and ¢, respectively.



First note that 8%(0,9) = B because SLS becomes OLS for ¢ = 0
and OLS is consistent for 02 = 0. Similarly, 8*(0%,0) = 8 because SLS
is consistent when the normality assumption for £ is satisfied, i.e., when
9 =0.

Therefore by the differentiation rule for implicit functions

-1
g_b :_<3]:> g_f B (26)
75 | g5=0 B 75| 720
and
| [ af\ !
MWlyeg <8ﬂ*'> 99| 9o 0

Our main result can now be expressed in the following theorem.

Theorem 4.1 The derivatives of the bias with respect to o5 and ¥ are
zero at o5 = 0 and at 9 = 0, respectively.

Proof: First note that if o = 0, then by (6), (7), (21), (22) 77 = 72 =
0, pj(z) = p(z) = z, and consequently ;LJ( z) = w(x)=(1,z,...,2%)".
Similarly by (17) to (19) if ¥ =0, then 77 = 72, pj(x) = p(x), nd again
j(2) = uz).

In both cases 0% = o2 if in addition B* = B. Indeed, for o} =
0, M(z) = p(z )u( ) and then, by (14) with 8* = 3, 0% = E{y —
(l,f,...,fk)’,@} =02 by (1). For ¥ = 0 and B* = 3, according to (14),
0% = E[u(z, B,0%) - B'{M(2) - p(@)ps(x)' 18] = 0 by (4). Thus in both
cases v, = v(z,[3,02).

Note also that, according to the remark just after (23), we can write

p(z) = mip(z), 7%} (28)

p;(@) = mip;(z), 77} (29)
with the same function m of two arguments. Now we are ready to evaluate

BZ{, according to (25) and (24):

- Z Bl 'mj(z)p(z)p(z)']

+ > Bl (@) (@) {p;(@)' 8 — p(w)

81}{1]
)



For 8* = B and either o5 = 0 or ¥ = 0, the last term vanishes because,
as noted before, p;(z) = p(r) in these cases. Thus we have, because
m + T = ].,

of
o8

where all terms are taken at 8 = B and either o5 = 0 or ¥ = 0. As

ve = v(z,8,0%) > 02 > 0 and Ep(z)u(r)’ > 0, the matrix a%f*’ is

= Bl p(z)p(z)], (30)

nonsingular, and so (26) and (27) are well-defined.
Consider (26). As f is a differentiable function of o3, for o > 0,

9o} .
we have % = (%)(%) = (%)205, which tends to zero for o5 — 0,

because |%| < oo for o5 — 0, see 7.2. This proves the first part of the
)

theorem.
Now consider (27). With (28), (29) we get from (25), (24)

o9 - ; B o men) { o a8~ gy 5 )]

2
0 . _ *
3 | (o (o Ha (008 — e 8°)]
j=1
For B* = B and ¥ = 0, the last sum vanishes and in addition 32;-—% =
om’_ and, by (20), 7j(x) = p;. Thus

ou(z)
I  Op(x)  Op(x)
9=0 _E[”* {Z Pi~"a9 W}ﬁ]’ (81)

of
5" =B

oY

where the derivatives on the right hand side are also taken at 9 = 0 and
B* = 3. From (21) and (17)

9 o402 9V §a2+a§'
From (6) and (18), (19)
Op(r) _ 0F Opa  03(x — i) B0 _
oY 02 oY ol 09
2 1 2 _
= U—gi(m —p1) + Mpwﬂﬁ

10



For 9 = 0,

Ou(x) 1 o3
oY —2(p2 p1)02+0§.

(33)
o5=0

Substituting 8"5—151) and 8’5—5;”) from (32) and (33) in (31), we see that (31)

vanishes, which proves the second part of the theorem.

5 Simulations

To study the effect of small and also of large deviations from normality on
the bias of B we carried out a few simulations with a quadratic regression
model (k = 2) with 8 = (0,1,—0.5)" and 02 = 1 and a two-components
mixture distribution for ¢ with u = —g, o = +g, 02 =1, and p; = p»,
where 9 ranged from 0 to 5. The error standard deviation o4 ranged from
0 to 1. The sample size was taken to be n = 500. The bias was computed
from N = 1000 replicated estimates of 3.

In addition to the bias we also computed the standard deviations of
the estimators, even though they were not discussed in the present pa-
per. Each figure with the exception of Figure 5 is accompanied by a
corresponding table. For Figure 5 Table 1 has the underlying quantities.

Figures 1 and 2 show the bias of 3y, 31, and (5 as depending on o5 when
¥ = 4.5 is kept fixed, or as depending on ¢ when o2 = 0.5 is kept fixed,
respectively. It is clearly seen that the curves approach the origin (0,0)
completely flat, and so the simulation results corroborate the theoretical
findings of our theorem in Section 4.

Figure 3 presents the bias of Bl as depending on ¥ for fixed o, where
02 was fixed at the values 0.5,0.75,1, and 1.5. As expected, the bias
becomes larger with increasing error variance.

In Figure 4 we also present the bias for a few more estimators: the
naive, the Regression Calibration (RC), and the MALS estimator. The
RC estimator is computed by replacing the variable £ in the regression
model (1) with u(z) an then applying OLS, Carroll et al (1995). MALS is a
modified ALS method that reduces the small sample bias of ALS, Cheng
et al (2000). The naive estimator has the largest bias, but it becomes
smaller with increasing ¢ because the variance of ¢ increases together
with ©. The bias of SLS becomes larger due to misspecification, whereas

11



MALS and also RC hardly have any bias. Their standard deviations,
shown in Table 4, are however larger than for SLS.

In Figure 5 one can see how the bias varies in dependence on the er-
ror variance instead of the error standard deviation, see also Appendix 7.2.

Figure 1: Bias of SLS-Estimators as a function of the standard deviation
of the measurement error o5 with ¥ = 4.5
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Table 1: Bias (Standard deviation) of SLS-Estimators as a function of
the standard deviation of the measurement error os with 9 = 4.5

as
0.1 0.2 0.4 0.6 0.8 1.0
Bo: Bias | 0.020 -0.080 -0.244 -0.432 -0.610 -0.784
(STD) | (0.075) (0.078) (0.095) (0.113) (0.141) (0.185)
B: Bias | 0.000  0.000 0.008 0.025 0.039  0.047
(STD) | (0.019) (0.022) (0.028) (0.036) (0.043) (0.051)
Bt Bias | 0.004 0013 0041 0071 0100  0.130
(STD) | (0.010) (0.011) (0.015) (0.019) (0.026) (0.032)
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Figure 2: Bias of SLS-Estimators as a function of 9 with o3 = 0.5
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Table 2: Bias (Standard deviation) of SLS-Estimators as a function of O
with o3 = 0.5.

9
0.0 0.5 1.0 2.0 3.0 4.0 45 5.0
Bo: Bias | -0.00L  0.000 -0.010 -0.064 -0.203 -0.395 -0.533 -0.674
(STD) | (0.084) (0.084) (0.084) (0.086) (0.095) (0.116) (0.133) (0.152)
Bi: Bias | 0.004  0.006  0.004  0.007  0.023 0030 0034  0.033
(STD) | (0.085) (0.085) (0.077) (0.059) (0.049) (0.044) (0.040) (0.039)
Bt Bias | -0.002  -0.003  0.005  0.034 0062 0079  0.088  0.092
(STD) | (0.075) (0.071) (0.063) (0.042) (0.029) (0.024) (0.023) (0.022)
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Figure 3: Bias of SLS-Estimator of B1 as a function of 9 for various
values of o3
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Table 3: Bias (Standard deviation) of SLS-Estimators 1 as a function of
Y for various values of o}.

9
0 0.5 1.0 2.0 3.0 4.0 45 5.0

o7 =05: Bias | 0.004 0006  0.004 0007 0023 0030 0034 0033

(STD) | (0.085) (0.085) (0.077) (0.059) (0.049) (0.044) (0.040) (0.039)

o7 =0.75: Bias | 0.007  0.007  0.003 0019 0031 0043 0042 0.045
(STD) | (0.107) (0.102) (0.094) (0.076) (0.060) (0.051) (0.048)  (0.045)

o7 =1.0: Bias | 0015 0009  0.009 0014 0036 0047  0.052  0.055

(STD) | (0.124) (0.123) (0.109) (0.082) (0.067) (0.056) (0.053) (0.051)

ol =15: Bias | 0022 0019  0.008 0023 0043 0053  0.056  0.063

(STD) | (0.166) (0.155) (0.136) (0.103) (0.083) (0.067) (0.064) (0.060)
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Figure 4: Bias of different estimators of B1 as a function of ¥ with o} =
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Table 4: Bias (Standard deviation) of different estimators of 81 as a func-

tion of ¥ with o3 = 0.5.

9
0 0.5 1.0 2.0 3.0 4.0 45 5.0
naive: Bias | -0.331  -0.318  -0.285  -0.202  -0.132  -0.090  -0.073  -0.063
(STD) | (0.053) (0.053)  (0.051) (0.046) (0.043) (0.040) (0.037) (0.037)
MALS: Bias | 0.004  -0.000  -0.003  -0.005  0.002  -0.001  0.002  0.002
(STD) | (0.110) (0.108)  (0.095)  (0.075) (0.061) (0.054) (0.049) (0.048)
RC: Bias | 0.006  0.006  0.003  -0.002  0.003  0.00I  0.003  0.002
(STD) | (0.087) (0.087) (0.0880) (0.061) (0.051) (0.045) (0.040) (0.040)
SLS: Bias | 0.004  0.006  0.004 0007 0023 0030 0034  0.033
(STD) | (0.085) (0.085) (0.077)  (0.059) (0.049) (0.044) (0.040) (0.039)
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Figure 5: Bias of SLS-Estimators as a function of the Variance of the
measurement error o3 with 9 = 4.5
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6 Conclusion

We investigated the bias of the structural least squares estimation method
for a polynomial regression with measurement errors under misspecifica-
tion of the distribution of the latent covariate £&. We studied only a very
specific kind of misspecification, but it seems plausible that the results
found should also apply to other kinds of misspecification.

Whenever the true distribution of ¢ differs from the assumed normal
distribution by a small amount 1}, measured in some appropriate way, the
bias will be of order 2. Here 9 was taken to be the distance between the
two means of a two-normal-components mixture distribution with equal
variances. In a simulation study we also experimented with a mixture
distribution where the two variances depended on ¥ in such a way that

16



the overall variance of ¢ was kept constant. The same result was found:

g—g = 0 or, equivalently, b = O(¢9?), and this is true for any value of ¢3.

A similar result exists with respect to the dependence of the bias on
the measurement error variance: b = O(o?), whatever the amount of
deviation .

Two caveats should be mentioned. First, there are other consistent
estimation methods, notably Adjusted Least Squares (ALS), which do
not depend on a specific distribution of £ and are therefore robust against
a distributional misspecification. This robustness however has to be payed
for: ALS is usually less efficient than SLS when ¢ is in fact normal, even
though the small sample variance of ALS can be greatly reduced by a
modified ALS method, Cheng et al (2000).

Second, one can modify SLS if a mixture of normals is the underlying
latent distribution by taking this mixture into account. The ingredients
for this modification have been given in this paper, see (20) to (23), see also
Thamerus (1998, 2003), Augustin (2002). This modification should render
SLS much more flexible, but this also has its price. It is often difficult
to estimate the components of the mixture especially if the number of
components is unknown. This difficulty will add to the variance of the
SLS estimator of 8 making it less efficient.

A general recommendation therefore might be to use the simple SLS
method whenever one has good reason to suppose that the true latent
distribution comes close to a normal one and to use a modified SLS or
ALS (or better still MALS) when the latent distribution differs severely
from the normal one.

17



7 Appendix

7.1 Proof of (3) and (4)

We introduce the vector & = (1,&,---, &%) so that (1) becomes y = ¢'B+¢
with the index i being suppressed. Then

E(ylz) = E[E(yl¢, z)lz] = E[E(y|¢)|z] = E(¢]z)'B
= p(z)'B.
V(ylz) = E[y — u(2)'8)*|z] = E[{(§ — p(2))'B + £}*|x]

= 02 + B'E[(§ — p(2))(€ — p(=))' 218
= o?B'{E[¢ |z] — p(z)pu(z)'}B
= 02B'{M(z) — p(x)u(x)'}B.

7.2 The second derivative of b with respect to o5

Let us denote the partial function of the bias b, for fixed ¥ and 8~ =8,
as a function of o5 by b(0s) and as a function of o2 by b(c2). Then

db - _ d_BQU
dos dag 0
ey db, &b,
(dog)2 ~ doZ” " (do2)?
For ¢} = 0, therefore
d*b db

(dos)? ~ “do?
The Taylor series of b up to the second order term in o3 is therefore

db 1 &b, ,
E(O)Ué + Qw(o)% + O(o5)
db

=7 2( )os + O(o3)

b =b(0) +

In analogy to (26), we can compute db/da(j at 0 = 0 and B* =03 as
db . (0f \7' of
do? oB* do3’
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where all derivatives here and in the sequel are taken at 02 = 0 and 8* =8
and where the first factor is given by (30) and the second by

of ZE{U*_I% ao) { om' Opy(x)  Om’ au(a:)} B]

do} = duj(x) 0o  du(x) do?
_ m' (x— Y pipu; T — Im(a)p,
= E {v* w(z ((72 T pipd® = B
because by (28), (29) as well as (21), (22) and (6), (7)
() _ om(zx) Opj(z) N om(z) 3_7}2
do} Ouj(xz) 0o or; 0o}
_ _Om(x)z—p;  Om(z)
 Opi(x) o2 or?
ou(z)  Om(z) Ou(x) N om(z) 8_7'2
do2  Ou(z) 002 or? do}
__Om(@)z—p,  Om(z)
B ou(r)  of or?

2

with 07 = 0 + pipa?, see (19), and because p;(x) = p(z), 77 = 72 for

2 More 1mportant1y, ﬂ
stays finite when o5 tends to 0. See also Figure 3.
7.3 The linear regression (k =1)
In the linear case we have
w() = (1, @), pile) = (Lp@), j=12
where according to (6) and (21), respectively,
w@) = po+(1—e)(z—p)=(1-ez+eu (34)
wi@) = (- d+ dy (35)
with e = o3/o2 and d=o03/(0° +0}). (36)
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It follows that

M(z) — p()p'(z) = ( (lx) ,72((92) >_ < u(lw) :((;))2>

because, by (8) and (9), u?(z) = u(x)? + 2. Hence
v(z,B,02) = o2 + Bir?

is a constant.
We can therefore solve the estimating equation (10) without regard to
(11) by simply deleting v(z, 3,6.). Equation (10) then reduces to

(37)

where the bar denotes averaging over i = 1,...,n. After replacing the
parameters y, and o2 in (34) by their estimates # and s2, respectively,
we get the identities

pa) =7, p@)? =7+ 1-e)s;, yu(z) =77+ (1 - e)say.

The estimating equations (37) then become
Bo + Thi=7
ho + (22 +(1-e)?s2)B1 = gz + (1 — €)suy,
from which we derive the following equation for Bl:
(1- 6)8231 = Suy

with the familiar solution

By = Py

1 .
2 2
53 — 05

This estimator has been derived without any distributional assumption
for £ or z. It is a simple method of moments estimator and is consistent
whatever the distribution of £. This can be shown by simply computing
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plim ;. (The same is true for Bo=1— a‘:Bl)

The consistency of b in the case k = 1, irrespective of how ¢ is distributed,
should imply that E¢(y,z,8%) = 0 for 8* = 8. It is illuminating to show
this directly from (24). This will provide a check for (24). As v, is a

constant, we only need to show that

E[Zwm(m{uj(x)—u(w)}'] = 0

Blu(e) Ym0 ()] = Elu@()]
1 I7ji(x)py(x) _ 1 u(x)
E(u(m) zm(m)m(wm) = E(u(m) u(m>2>

Now, from (34),
Elu(@)] = e Elu@)?] = 1 + (1 - )02,
So we have to show that
(a) B|Soimi @) (@)] =
(b) E[S3im (@) (@)n(@)] = p2 + (1 - )02,
As to (a): We have with (35) and (17)

EXrmi(z)pj(z) = (1—d)Ezx +dEXTj(x)u;
= (1= d)py +dp+ 3dIE[m2(z) — m1 ()]

But

E[m(z) —m(z)] = piE[m(z)|I = 1] + p2E[m(2)| = 2]
— piE[m(z)|I = 1] = p2E[mi ()| = 2],
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and, by (20),

piElmj(2)|I = i] = pip; / pigpf(iaf)wiip;ifo)z(w)

where ¢;(z) is the density of a N(u;,0? + 02) distribution. Thus
J Hj s

E[m(z) — m(z)] = /p2902($)

pip1(x) + pag2(x)

2

—pioi(z)? .

[ 202(0) = prs ()i = p2 = .
Substituting this result in (38) we finally get the desired result:
E[Smj(2)u;(2)] = pa + d(p — pz) + 5d9(p2 — p1) = ia
because by (18)
W=z = %19(101 —P2)-
As to (b): Using (35), we first have

E[Sr; () (2)(a)] = (1 — d)Efe(a)] + dE[S; (@) p(c)

(40)

j ]
= (1—d){us + (1 —e)o2} + duEp(z) + dIE[{ms(z) — 71 (z)} ()]
[

by (34) and (17)]
(1= d)y2 + (1= d)(1 = e)o? + dup,
+1dd{(1 — e)E[ams(z) — am (z)] + epeE[ma(z) — mi (2)]}

by (34). Now a derivation analogous to the one that led to (39) gives the

result

E[zmy () — 2 ()] = p2piz — priu-
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Hence E[Xm;(z)p;(x)u(z)] can be further simplified to

e+ (1= d)(1 = e)ay +d(p — prz) e
+3d9{(1 — e)(papsz — pru) + e (p2 — p1)}

= 2+ (1-e?02—-(1—-e)(d—e)o>+ %dﬁ(pl — D2) bz
_%deﬁ(pl —P2)ia + %d(l —e)d(papi2 —p1pa) [ by (40)]

= L+ (1-0)’02 — (1—e)d(o% — 0> —03)

+3d(1 — e)9{(p1 — p2) (P + Papiz) + Papiz — prpin }
[ by (36) and (18)]
= pp+(1—e)o; — (1 —e)dpips + 3d(1 — €)P*2pip> [ by (19)]
= pi+(1-ef0y,
which is the desired result.
A much simpler way to verify E¢(y,z,8) = 0 is to go back to (13).
One can show that (13) is satisfied for 8* = 3, in the linear case, with-
out the need to assume any particular distribution of £&. We note that

Ey = Bo + Bt and E(yz) = Bops + Broe + Bip?. The rest then follows
with some algebra when we remember that v, is a constant.

Acknowledgements: We thank T. Augustin for some valuable com-
ments on an earlier version of the paper. Support by the Deutsche
Forschungsgemeinschaft, the Deutsche Akademische Austauschdienst, and
the National Science Council of the Republic of China, Taiwan is grate-
fully acknowledged.

8 References

Armstrong, B. (1985), Measurement error in the generalized linear model, Comm. in
Stat. - Simul. and Comp. 14, 529-544.

Augustin, T. (2002), Some basic results on the extension of quasi-likelihood based
measurement error correction to multivariate and flexzible structural models. In
W. Gaul and G. Ritter (eds.): Classification, Automation, and New Media.
Springer, Heidelberg, 29-36.

Card, D. (1999), The causal effect of education on earnings. In O. Ashenfelter and D.
Card (Eds.): Handbook of Labor Economics, Elsevier, Amsterdam, 1801-1863.

Carroll, R.J., Ruppert, D. and Stefanski, L.A. (1995),Measurement Error in Nonlin-
ear Models, Chapman and Hall, London.

23



Cheng, C.-L. and Schneeweiss, H. (1998), Polynomial regression with errors in the
variables, J.R. Statist. Soc. B60, 189-199.

Cheng, C.-L. and Schneeweiss, H. (2002), On the Polynomial Measurement Error
Model. In S. van Huffel and P. Lemmerling (Eds.): Total Least Squares and
Errors-in-Variables Modeling. Kluwer, Dordrecht, 131-143.

Cheng, C.-L. and Van Ness, J.W. (1999), Statistical Regression with Measurement
Error, London: Arnold.

Cheng, C.-L., Schneeweiss, H. and Thamerus, M. (2000), A small sample estimator
for a polynomial regression with errors in the variables, J.R. Statist. Soc. B
62, 699-709.

Fuller, W.A. (1987), Measurment Error Models, New York: Wiley.

Kuha, J.T. and Temple, J. (1999), Covariate measurement error in quadratic regres-
sion Discussion Paper 1999-W2, Nuffield College Oxford.

Kukush, A. und Schneeweiss, H. (2000), A Comparison of Asymptotic Covariance
Matrices of Adjusted Least Squares and Structural Least Squares in Error Rid-
den Polynomial Regression, Discussion Paper 218, Sonderforschungsbereich 386,
University of Munich.

Kukush, A., Schneeweiss, H. and Wolf, R. (2001), Comparison of Three Estimators
in a Polynomial Regression with Measurement Errors, Discussion Paper 233,
Sonderforschungsbereich 386, University of Munich.

Kukush, A., Schneeweiss, H. and Wolf, R. (2002), Comparing Different Estima-
tors in a Nonlinear Measurement Error Model, Discussion Paper 244, Sonder-
forschungsbereich 386, University of Munich.

Schneeweiss, H. and Mittag, H.J. (1986), Lineare Modelle mit fehlerbehafteten Daten,
Physica-Verlag, Heidelberg.

Schneeweiss, H. and Nittner, T. (2001), Estimating a polynomial regression with
measurement errors in the structural and in the functional case - a comparison.
In M. Sadeh (Ed.): Data Analysis from Statistical Foundations, A Festschrift in
Honour of the 75th Birthday of D.A.S. Fraser, Nova Science, New York, 195-205.

Thamerus, M. (1998), Nichtlineare Regressionsmodelle mit heteroskedastischen Mess-
fehlern, Logos Verlag, Berlin.

Thamerus, M. (2003), Fitting a mizture distribution to a variable subject to hetero-
scedastic measurement errors, to be published in Computational Statistics.

Wansbeek, T., Meijer, E. (2000): Measurement Error and Latent Variables in Econo-
metrics, Elsevier, Amsterdam.

24



