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Abstract

Proportional hazard models for survival data, even though popular and
numerically handy, suffer from the restrictive assumption that covariate effects
are constant over survival time. A number of tests have been proposed to
check this assumption. This paper contributes to this area by employing
local estimates allowing to fit hazard models with covariate effects smoothly
varying with time. A formal test is derived to test the model with proportional
hazards against the smooth general model as alternative. The test proves to
possess omnibus power. Comparative simulations and two data examples
accompany the presentation. Extensions are provided to multiple covariate
settings, where the focus of interest is to decide which of the covariate effects

vary with time.
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1 Introduction

In the last decade a remarkable large number of publications considered model val-
idation of parametric regression models using smoothing techniques. The methods
are applicable for models where the influence of a continuous covariate, e.g. time,
is modelled in a parametric fashion. The basic idea behind smooth tests is to go
beyond the parametric framework by including non-parametric but smooth compo-
nents in the model. Inference is then drawn by comparing the fit of both models
by appropriate means. The classical and most simple example is the linear normal
response regression model where the parametric mean structure can be checked and
tested against a general but smooth model. References for smooth tests in regres-
sion models include among others e.g. le Cessie & van Houwelingen (1991), Miiller
(1992), Hardle & Mammen (1993), Aerts, Claeskens & Hart (1999) and Hérdle &
Kneip (1999) and citations given in those papers. A general overview of existing
methods is found in Hart (1997). Recently, Bowman & Young (1996) and Kauer-
mann & Tutz (2001) extended the testing problem to investigate whether the effect
of a factorial covariate is modified smoothly by a continuous covariate, e.g. time.
This is a typical problem occurring in survival analysis where factorial covariate

effects may vary over survival time.

A popular model for survival data is the proportional hazard (PH) model due to
Cox (1972). The PH model is powerful and numerically handy, but in it’s standard
form it assumes the proportionality of the hazard functions, i.e. covariate effects are
supposed to be constant over survival time. In order to investigate and test this as-
sumption several routines have been suggested. Parametric extensions by including

dynamic time-covariate effects with corresponding tests based on the estimated co-



efficients have been suggested e.g. in Cox (1972) and Grambsch & Therneau (1994).
Such tests require the pre-specification of a suspected departure from proportionality
in a functional form. The demand for pre-specification of time-covariate interactions
makes tests of this kind less flexible for detecting complex departures from propor-
tionality. Smooth estimation of covariate effects in the PH model using smoothing
splines has been suggested e.g. by O’Sullivan (1988) or Hastie & Tibshirani (1990a)
in an exploratory fashion. Hastie & Tibshirani thereby propose to make use of the
deviance to compare or ‘screen’ models with time-varying covariate effects, even
though they already mention that asymptotic theory which justifies this approach
does not exist. Gray (1994) further develops penalised B-spline fitting towards test-
ing. He makes use of low dimensional smoothers which allows to apply asymptotic
results for quadratic forms to calculate the p-value. A similar idea is pursued in Hess
(1994) or Abrahamowicz, MacKenzie & Esdaile (1996) who use regression splines
respectively polynomial estimation. Inference is based on the estimated coefficients
and the resulting variance matrix. Verweij & van Houwelingen (1995) use penalised
regression by letting each event time-point have its own parameter. A first local ap-
proach for testing the PH assumption is suggested in Moreau, O’Quigley & Mesbah
(1985) and O’Quigley & Pessione (1989) who fit local piecewise constant parame-
ters capturing possible time-covariate interaction. Widely speaking, this idea can
be seen as an ancestor of the local smoothing approach pursued in this paper. Local
estimation of smooth effect functions in PH models is discussed in Fan, Gijbels &
King (1997) and Cai & Sun (2002). The focus there is mainly on estimation while
we here concentrate on testing. For a general overview for estimation and tests in

proportional hazard models we also refer to Lin & Wei (1991) or Sasieni (1999).



In this paper we present a smooth test for the proportional hazard assumption
based on local partial likelihood estimates. It can be seen as an extension of (Kauer-
mann & Tutz, 2001) applied to survival data. As test statistic we consider the log
partial likelihood ratio comparing a smooth fit and a parametric fit. The approach
is flexible and allows to uncover even complex departures from the proportionality
of the hazards. Smooth test statistics based on local estimates generally do not lead
to simple reference distributions (see also Hastie & Tibshirani, 1990b, page 156).
This is in particular since smoothers respectively smoothing matrices are not idem-
potent operators like projection matrices. We therefore propose to bootstrap the
test statistic to obtain the reference distribution under the hypothetical model. In
order to limit the computational burden this in turn demands to develop a numer-
ically simple and fast smooth estimate. For this reason we suggest to make use of
local one step estimates which prove to be numerically handy and sufficiently exact
for testing purposes at the same time. The bootstrap itself is pursued following the

procedure suggested in Davison & Hinkley (1997).

The paper is organised as follows. In Section 2 we introduce local partial likeli-
hood estimation and derive a smooth test based on the local partial likelihood ratio
statistic. Simulations and a small example demonstrate the applicability and perfor-
mance of the routine. Section 3 extends the test to multi-variable situations where
covariate effects are tested separately on time interaction. Again, a simulation study
and a data example support our developments. A discussion concludes the paper

and technical details are provided in the Appendix.



2 Smooth Tests in Survival Models

2.1 Dynamic Cox Models

The Cox model defines the proportional hazard for the j-th unit as

AX;) = Ao(t) exp{X;f}, (1)

where X is a set of covariates or risk factors and Ag(¢) is an unspecified baseline
hazard. Model (1) implies proportionality of the hazards, i.e. the ratio of two hazards
from units j and & is constant over time with value exp{(X; — Xj)3}. It is obvious
that this restriction is often too stringent and should be relaxed by allowing the

covariate effects to vary with time. This leads to the dynamic Cox model

AX;) = Ao(t) exp{X;5(t)} (2)

where ((t) is a vector of smooth but unknown functions in ¢t. Models of the kind (2)
are generally introduced as varying coefficient models by Hastie & Tibshirani (1993).
The shape of () thereby mirrors the interaction between time and the covariates.
If 5(t) is constant, i.e. 5(t) = [, model (2) simplifies to (1). The objective in the
following is now on testing the proportional hazard model (1) against its smooth

extension (2).

2.2 Local Partial Likelihood Estimation

Parameter vector § in (1) can be estimated by partial likelihood. This in particular
circumvents the estimation of the baseline hazard. Let T} denote the survival time
of the j individual or observational units and let C; be the corresponding right

censored time, j =1,..., N. We observe Y; = min(7},C;) and define the censoring
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indicator ¢; = 1 if T; < Cj and d; = 0 otherwise. Let ¢y,...,t, denote the observed
time-points of failure. With D; we define the index set of units failing at time-point
ti,i.e. D; ={j:Y; =t; and 0; = 1} and R; denotes the index set of units at risk at
time-point ¢;, i.e. R; = {j : Y; > t;}. The partial log likelihood is thereby defined
as 1(8) = > I;(B|R;) with

L(BIR:) = (Z Xjﬁ) — | D log{ > eXP(Xjﬁ)} (3)

JED; JER;

with |D;| as cardinality of the set D;. The form (3) is by itself an approximation
which is due to Breslow (1974). In case of many ties, i.e. if |D;]| is large, (3) is known
to produce biased estimates and should be replaced by more accurate approximations
(see e.g. Hertz-Picciotto & Rockhill, 1997). For notational and computational

simplicity we here stick to (3) however.

Let s;(/5|R;) denote the score contribution

iRy = PR X1y - xTaGIR 9 (@)
JER;
where X; = Yjep; Xj and 7(j|Ri, B) = exp(X;B)/ YXper, exp(Xpf). The partial

likelihood estimate for [ is now obtained by solving the estimating equation

= > si(Bo|R) (5)
1=1

where subscript 0 here and sequel is used to refer to estimates for constant effects
of the proportional hazard model (1). In order to smoothly fit dynamic effects
in model (2) we solve (5) in a locally weighted manner. Consider therefore some
kernel weights w;; = K{(t, — t;)/h} with K(-) as unimodal kernel function and h

as bandwidth or smoothing parameter. Incorporating these weights in (5) provides



the local partial score equation

0 = iwusi(@mi) (6)
=1

which yields with j, an estimate for the dynamic effect 3(t). Solving (6) for all
failure time-points provides the smooth estimate /3 (t). Alternatively one may solve
(6) for a grid of time points accompanied by subsequent interpolation. Asymptotic
properties of estimate /3 are derived in Cai & Sun (2002) (see also Fan, Gijbels &
King, 1997). Some further details are provided in Appendix B. Similar to standard
smoothing, the variance of the estimate can be approximated, under appropriate

assumptions, by the weighted Fisher type matrix, i.e.

@) = of- 2RI )

with ¢ = [ K?(t)dt. Since constant ¢ depends on the kernel only, it’s calculation is

straight forward, e.g. for a normal kernel it is ¢ = 1/v/2.

The bandwidth A in weight w;; in (6) steers the amount of smoothing. It is
noteworthy that smooth and parametric estimation are nested in that for h —
oo one gets Bl — Bo- In principle, bandwidth h can be selected data driven by
cross validation or minimisation of the Akaike criterion or other tools. For testing
purposes, however, the choice of an optimal bandwidth is of secondary focus and,
as will be seen in simulations, the performance of the proposed test is only weakly

sensible to the specific choice of h.

2.3 Smooth Testing on Dynamic Effects

The objective is now to compare the parametric fit By with the smooth fit B(t) in

order to test the validity of the proportional hazard model (1). This means we
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investigates whether the dynamic model (2) improves the fit significantly compared

to (1). To do so we employ the partial log likelihood ratio statistic
AR) = 23 {L(BiIR:) — li(BolRs)} (8)
i=1

where h denotes the dependence on the bandwidth. It is shown in Appendix B that

A(h) has positive expectation which decomposes essentially to
E{A(h)} = Eu{AR)}+ 0,

with Fp,(-) denoting the expectation under the Hy model (1) and &7 as shift or
non-centrality parameter. If model Hy holds non-centrality vanishes, i.e. ;7 = 0.
Hence, in order to test model Hy one has to assess the size of A(h) with respect
to it’s reference distribution under Hy. As mentioned beforehand such a reference
distribution is not directly available in an analytic form since asymptotic X? or
other normal approximations do not hold (see also Hastie & Tibshirani, 1990b,
page 156). This is in particular in contrast to low dimensional and parametric
smoothers where asymptotic distributions can be obtained via standard asymptotics
and quadratic forms (see e.g. Gray, 1994). To circumvent the problem we make use
of Bootstrapping to obtain the distribution of A(h) under Hy. Bootstrapping right
censored survival data is described in detail in Davison & Hinkley (1997) chapters

3.5 and 7.3. Some details are provided in Appendix A.

The use of bootstrapping demands to reduce the computational effort of estima-
tion, since in each bootstrap iteration a smooth alternative model has to be fitted.
We therefore replace the local estimates in the local score function (6) by a numer-

ically handy one-step estimate. This means, instead of solving (6) exactly, we use



the local one-step Fisher scoring estimate

R R e I SE L ©)
i=1 i=1

for the alternative model with [y as parametric estimate in the Hy model (1). If H,
holds, it is easy to see that Bl(l) is consistent, since Bo is consistent. If on the other
hand H; holds, Bl(l) uncovers the dynamic structure which is not coped for in H,.
We refer to Appendix B for more details. Apparently, Bl(l) is numerically simple and
fast so that using it in the bootstrapping step reduces the computational burden
noticeably. Additionally, estimates (9) do not necessarily have to be calculated at
all observed failure time-points, but instead they can be calculated on a grid of
time-points with subsequent interpolation. This again reduces the computational

effort and makes the procedure easy and numerically feasible.

2.4 Simulation and Example

Simulation

We run a simulation study to assess the performance of our proposed test. We take
X as single binary covariate with orthogonal design, i.e. we simulate 100 survival
times with X = 1 and X = 0, respectively. The survival time is generated from a

logistic setting with time ¢ taking discrete values 1,2,... and
logit P(T =t|T > t,z) = Xo(t) + XB(t)

with constant baseline hazard Ao(t) = logit '(—4) (for asymptotic equivalence of
the Logit model and the Cox model see Thompson 1977). Censoring is simulated
to be independent of X and ¢ with probability 0.005 at each time point, yielding a

censoring rate of about 25% (for the baseline group X = 0). Exemplary we show in
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Figure 1 (right two plots) the estimated survivor and censoring function (based on

a fitted Cox model) resulting from one simulation.

In the first simulation the effect 3(t) is kept time constant (model Hy) for as-
sessing the consistency of the test. To study the power of the test, seven different
dynamic settings are considered, where [(t) is taken as linear, quadratic, cosinus
or discontinuous step function, as listed in Table 1 and visualised in Figure 1 (left

plot).

For each of these setting we generate 250 replicates. The smooth tests is de-
termined based on 100 bootstraps with bandwidth h = 40. Figure 2 shows the
distribution functions of the p-values for the different settings where the identity-
line is given as reference. Clearly, the test appears to be consistent and provides an
omnibus type power against the different alternatives. In Table 1 we also list the

simulated rejection probabilities based on the significance levels 0.05 % and 0.1 %.

For comparison, we apply a number of other PH-tests in four of the above simu-
lation settings (constant, flat linear, flat quadratic, weak cosinus). This includes the
approach suggested in (Cox, 1972) where the effect of a pre-specified time-covariate
interaction, here a linear one, is tested. Related to this is the score based test
proposed by Grambsch & Therneau (1994) (GT) which is also based on testing
a pre-specified dynamic structure. Not surprisingly due to the similarity of their
construction both provide nearly the same results as seen from the simulated dis-
tribution function of the p-value shown in Figure 3. Secondly we use the piecewise
approach suggested in Moreau, O’Quigley & Mesbah (1985) or O’Quigley & Pes-

sione (1989). This is based on fitting constant effects over pre-specified segments of
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time, where we here partition time at four equidistant knots. The piecewise test is
rather conservative and despite a rather high partitioning clearly not flexible enough
to capture complex departures of the PH-assumption. Finally the spline based test
suggested in Hess (1994) is applied. This test makes use of cubic regression splines
and can be seen as a smooth and flexible extension of the piecewise approach. How-
ever, the test requires to choose the number and location of knots, where we here
take 3 and 5 knots (spline(3) and spline (5)). The distribution of the p-values for this
test reveals some dependency on the number of knots. Moreover, the test becomes

too liberal if more knots are included.

Generally, it appears that the local approach suggested in this paper performs
promising and in fact outperforms some of the considered competitors in the different
simulation settings. In the quadratic situation it is beaten by the spline approaches,
which however show a too liberal performance in the Hy scenario. A general supe-
riority of our test can of course not be drawn from this limited simulation study,
we think however there is enough evidence that the test shows a rather satisfactory

behavior.

Finally, we investigate the robustness of our test with respect to the chosen
bandwidth h. We therefore repeat the test for the constant, the linear and the
quadratic setting using the different bandwidths h = 30, 60 and 120. The trajectories
of the p-values for some simulations from the linear setting are shown in Figure 4.
Apparently the variation of the p-value for different bandwidths is small. Table
2 lists the matching of conclusions drawn from the test for different bandwidths.
The different 2x2 tables read as follows. For instance in 93% of the simulations

from model Hy both tests based on h = 30 and h = 60 accept the hypotheses
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while it is rejected by both tests in 5% of the case. Clearly there is evidence for
matching results, even though for the quadratic setting the power is clearly reduced
for smaller bandwidths. Generally, the simulations show that the test procedure
is rather insensible to different values of the bandwidth. The same pattern is also

observed in the following example.

Example

To exemplify the routine we apply the method to the gastric cancer data used and
listed in Hess (1994). The data consist of 90 patients with non-resectable gastric
cancer who either receive chemotherapy (control group, n=45) or a combination of
chemotherapy and radiation (n=45). Hess reports a violation of the PH-assumption
for the therapy effect with a p-value of 0.015 for his test when using his spline based
test. Our test based on local partial likelihood estimation confirms this finding. The
p-values resulting from 500 bootstraps for different bandwidths are 0.002 (h = 250),
0.004 (h = 500) and 0.010 (A = 1500) and they clearly indicate time-treatment
interaction. Similar to the simulation study above we observe that the p-values
are roughly the same for different bandwidths. Figure 5 shows the resulting lo-
cal partial likelihood estimates B(t) for the treatment effect for the three different
bandwidths. The parametric fit based on the PH-assumption is given as reference
line. Even though the fit for bandwidth A = 1500 is hardly distinguishable from the
parametric fit, the difference proves to be significant. This again demonstrates the
robustness of the testing approach against the bandwidth used. The example also
demonstrates that while estimation depends on the chosen bandwidth (and hence
requires a data driven choice of the bandwidths) the results of the test based on

local partial likelihood is only weakly dependent on the selection of the bandwidth.
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3 Componentwise Smooth Tests

3.1 Semiparametric Models

In a multivariable situation the focus of interest is not only to investigate whether the
proportional hazard model (1) is appropriate or not, but also which of the covariate
effects, if any, varies with time. This problem extends the previous setting in that
we now allow some of the covariates to have dynamic effects while others have time

constant effects. The alternative model then becomes

Aj([X5) = Ao(t) exp{Xy;81(t) + Xoj 2} (10)

where matrix X;; includes those covariates which effects are allowed to vary over

time and Xy; comprises those covariates which have time constant effects.

Fitting the semiparametric model (10) can be done by backfitting, i.e. fitting
successively the fixed effect Sy by partial likelihood and the varying effect f;(t) by
local likelihood, treating the other parameters respectively as given. Backfitting
however is time consuming since iteratively a fixed effect model and a varying co-
efficient model has to be fitted, each containing a given offset resulting from the
estimate of the previous backfitting loop. This basically excludes the procedure to
be applied in our testing context since the computational burden would not be ac-
ceptable. For testing purposes however a highly accurate fit is not necessary since
the focus is on model validation and not on efficient point estimation. Therefore, as
above, we suggest to make use of a one step backfitting estimate which reduces the
computational effort significantly by still maintaining a satisfactory performance of

the smooth test.
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Let By = (B%, BX)" be the parametric fit resulting from estimating the propor-
tional hazard model (1) with X = {X7, XT}T. We fix (5 and consider the one step

estimate of the solution to the local backfitting estimating equation for 8y, = 51 ()
0 = Zwusu(gu; B R:) (11)
i=1

with s15(B1; Bao|Ri) = Ljep, XT — |Dil Sjer, XTm{i|Ri, (57, 5%)7} and 7() as de-
fined subsequent to (4). Similar to the previous section this leads to the one step

estimate

~ o~ —1

3 3 =~ 051i(P10; Pao| R $ 5 %

58) = S — {Z W4 . (ﬁ505520| )} Zwlisli (510; 520|Rz')-
i=1 1 i=1

The estimate is numerically simple and easy applicable to be used in bootstrapping.

Inserting the resulting one step estimates in the likelihood ratio yields
M) =2 [ LB B — LRI 12)
i=1

as test statistic for assessing the PH-assumption for X;. For calculation of the p-
value we simulate A;(h) under Hy by bootstrapping as suggested in the previous

section.

3.2 Example and Simulation

Simulation
We simulate survival data as in the previous section using a logistic setting but now

with hazard function
logit P(T =t|T > t,x) = Xo(t) + z161(t) + x205.

The baseline is again constant as in the simulation in the previous section and we set

B2 = 0. The covariates x; and x5 are independent with balanced design for x; and
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x9 randomly drawn with P(zy = 1) = 0.4. We simulate 250 datasets each with 200
individuals with (a): £;1(¢) = 0 to investigate consistency and (b): [3(t) as (weak)
quadratic function (see Table 1) to explore the power. Figure 6 gives the lower part
of the distribution function of the p-values for the global PH-test A(h). Moreover
we show the distribution functions of the p-values when testing the PH- assumption
for single components using A;(h) as given in (12), and of Ay(h) defined as in (12)
but with indices 1 and 2 exchanged. Clearly the test is consistent in (a) and shows
power in (b) by rejecting the PH model. Moreover, the component-wise tests allow

to explore which of the covariates shows significant interaction with time.

Example

In a final example we illustrate the use of the proposed test procedure to find
those covariates which show distinct interaction with time. The data come from
a breast cancer study on the clinical relevance of two tumour-biological factors, the
urokonase-type Plasminogen Activator uPA and its type-one inhibitor PAI-1, both
coded as binary indicators taking value 1 if the level of measurement exceeds a given
cut-point (for details see Harbeck et al., 1999, 2001). The two factors uPA and PAI-1
were determined in primary tumour tissue extracts from 316 breast cancer patients
who showed no evidence of distant metastases. The effect of uPA and PAI-1 on
disease free survival after surgery is investigated in a multi-variable analysis where
in addition a number of classical prognostic factors are taken into account. These
include the nodal state at surgery (LYPO) as binary indicator taking value 1 if
the axillary lymph nodes showed tumour cell involvement, the positive or negative
hormone receptor state (HORMO) incorporating estrogen and progesteron recep-

tor expression, and high or low rating of tumour grading (GRADI) reflecting the
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proliferation of the tumour.

Figure 7 shows the local-likelihood estimates of the time-varying effects (using
a bandwidths of h = 40) together with the 95% confidence intervals based on (7).
In addition, the estimated effects in the PH model are given (horizontal lines).
The graphical presentation of the effects reveals some time-variation in the effects
of PAI-1 and hormo and possibly uPA. A formal analysis to test on the dynamic
structure of these effects is carried out using the proposed test. The p-values for the
global test are listed in Table 3 for different bandwidths. They are all < 0.01 and
unanimously point out the inadmissibility of the PH- assumption. For a detailed
analysis exploring which of the factors interact with time, component-wise p-values
are determined . This is done for each of the five factors again using different
bandwidths. The resulting p-values are apparently homogeneous over the different
bandwidths and the test rejects constant effects for the hormone receptor state and

PAI-1 while other factors do not show any significant interaction with time.

4 Discussion

In this paper we proposed a test on proportional hazards based on local partial like-
lihood fitting. The p-value is calculated by bootstrapping where the computational
burden is limited by one step estimation. The promising feature of the proposed

test lies in its omnibus character yielding power against a wide range of alternatives.

The testing principle can be extended to more general goodness of fit tests to
also investigate parametric time-covariate interaction. For example, if the linear

interaction model A(t|x) = Ao(t) exp(xfy + x t ;) is considered to be tested it can
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be estimated locally by local linear partial likelihood estimation. The difference in

the fit can again be assessed by bootstrapping.

A Bootstrapping Survival Data

The following bootstrap procedure is essentially as suggested in Davison & Hinkley
(1997). It is numerically implemented in the Splus procedure censboot () available
from the server http://statwww.epfl.ch/davison/BMA/. The basic idea is to
pursue a conditional bootstrap, conditional on the pattern of censorship. Let 1 —
Fy(t|z; By) = P(T > t|x, By) be the survivor function of survival time 7" based on
the parametric hypothetical model (1). With 1 — Fy(t|z) = {1 — F (t)}eXp(“’EU) we
denote a corresponding estimate, where Bo is the partial likelihood estimate and
Fy(t) is an estimate for the baseline distribution function obtained e.g. using the
Breslow estimate (see e.g. Breslow, 1972 and Breslow, 1974). Moreover, let G(t) be
an estimate for the distribution function of the censoring time obtained by
~ N 1-4;
U Wit

In principle, G(-) can also be estimated model based (see Davison & Hinkley, 1997,
page 351). Assuming random censoring, the distribution function of the observed
survival time results by H(t) = F,(t)G(t) which is estimated by Fy(-) and G(-).

Bootstrap replicates are then generated as follows.

1. Generate T7, ..., Ty i.i.d. from the parametric model, i.e. from the distribution

function Fy(-).

2. For o; = 0 set C7 = Y} and for §; = 1 generate the censoring variable C7}
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by drawing from the conditional distribution function G(cle > Y;) = {G(c) —

G(Y)}/{1- Gy}
3. Define the observed bootstrapped survival time by Y;* = min(77, C}).

4. Use the resulting bootstrap sample Y*, X;, j = 1,..., N to calculate the boot-

strap likelihood ratio statistic A*(h).

Repeating the above steps B times provides the bootstrap likelihood ratios A**(h),
b=1,..., B. The bootstrap p-value is then obtained by 2 | 1{A*®)(h) > A(h)}/B

with 1{} as indicator function.

B Technical Details

Local Partial Likelihood Estimates

We give a short sketch of properties of the local partial likelihood estimate. A formal
theoretical derivation including necessary assumptions can be found in Cai & Sun
(2002) (see also Fan, Gijbels & King, 1997). Assume that \;(t) = Ao(t) exp{X,;5(¢)}.

We decompose the varying coefficient to 5(t) = 8 + £(¢) with S fulfilling

0= éE{sxmm)}. (13)

This means essentially that § is the best constant approximation of $(¢) in terms
of the partial likelihood. Clearly, if model (1) holds £(¢) = 0. Hence, when testing
(1) against (2) the component () is playing an important role for the power of the
test. We abbreviate 3; = f+&; with & = £(¢;) and write s; for s;(5;|R;), i.e. we drop

parameter arguments if the likelihood terms are calculated at the true parameter
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values. The second order derivative is denoted by Vs;(5;|R;), respectively Vs;,

where

Vsi = — Y XjX;m(j|Ri, ) + { > XJ‘TW(ﬂRi,ﬁi)} { > Xj”(jmi’ﬁi)} '
JER; JER; JERi

Note that Vs; does not depend on D;. Under appropriate smoothness assumptions,

expansion of the local partial score function(6) provides

0 = Y wisi (Bl R:)
=1

= Zn:wn' [Si + VSi(Bl - 52) + O{(Bl - 51)2}} . (14)

i=1
Replacing (Bl — f3;) in (14) by {(Bl — B) + (B — B;)} allows to solve (14) for Bl -5

which yields
bi—B = {- En: wiVsi} ! Enj wii [si + b + O{(Bi = 5)*}] (15)
i=1 i=1

with bias component b; = Vs;(§ — &). Under Hy the bias component vanishes, i.e.
b; = 0. Assuming 3, to be consistent it is easily seen from (15) that the asymptotic

variance of [; equals

~

var(B) = {d_wiVsi} {D_wiE(sis] )HD_wiVsi} ™ + ...
=1 i=1 i=1
~ o) wi Vst
i=1
with ¢ & YLy wiy/ iy wi = [ K2(2)dz.

Using the same notation, we can also expand (5) in a similar fashion as above
yielding

n n

Bo— B = {=2 Vsi} 'Y [si+ b+ O{(B—5)Y] . (16)

i=1 i=1
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In (16), the bias component thereby decomposes asymptotically to
{_szi}_lzbli == fl — {—ZVsi}_IZVsZ@- ~ fl- (17)
i=1 i=1 i=1 i=1

The latter simplification results from the definition of £ given through (13) by simple

first order expansion of (13) about the true parameters leads to (17).

Partial Likelihood Ratio
Formulae (15) and (16) are now used to expand the likelihood ratio. Let p be the
dimension of 5. We define the (np) x (np) dimensional smoothing type matrix W (h)

which is build from p dimensional block matrices

W(li) = Wy {— Z wzjvsj} (18)
j=1
with [ = 1,...,n and weights w; = K{(t, — t;)/h} depending on the bandwidth

h. Making use of this notation estimate (15) can in first order approximation be

written in matrix form as

n

Bl_ﬁl - ZW(li)(h){5i+V8i(fl—fi)}"‘---

i=1
— W)+ b (19)
where Wy = (W, ..., W) and s = (s7,...,s2)T. Similarly, the bias compo-

’°n

nent in (19) is available in matrix form by

where € = (&5,...,€0)T and diag,(Vs;) denotes the block diagonal matrix having
Vs;, i = 1,...,n on its diagonal. In the same fashion we can obtain a first order
expansion for the parametric estimate in model H, simply by setting h — oo. This

means we obtain from (16)

Bo— B = Wiy(o0)s; + by(c0)
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with W;(00) = limy oo Wis(h) = {= X7, Vs;}~' and b(o0) = limp_o by(h).
Note that W (h)Tdiag, (Vs;)W (h) = —W (h) which follows by simple calculation
and is needed subsequently. The likelihood ratio can now be expanded by standard

Taylor series, which yields by simple matrix algebra
A(h) ~ s'M(h)s+ 6}
+2sT[{T — W (h)diag(Vs;)}b(h) — {I — W (c0)diag(Vs;)}b(c0)]  (20)

where

M(h) = 2W(h) + W (h) diag(Vs;) W (h) — W (c0) (21)
and

0 = b(h)" diag, (Vs;)b(h) — b(c0)" diag,, (V's;)b(c0).
Since E(s) = 0, components in (20) has zero expectation so that

E{A(h)} =~ tr{M(h)diag,(—Vs;)} + ¢°.

Since under Hy 62 = 0, the bias component steers the power of the test. Moreover
tr{ M (h)diag,,(—Vs;)} gives the difference in the degree of model (2) fitted with

bandwidth h compared to model (1). Clearly, setting h — oo this collapses to zero.

One Step Estimate (9)
Finally, we sketch some properties of the one-step estimate. By simple Taylor ex-

pansion and assuming bounded components in the model we get

R R R (]
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where O(-) refers to vector valued orders. Again by Taylor expansion of (9) we get

from (15)

n “lrn
BY = B, - {Z wliVsi} [Z wy; {Si +Vsi(Bo — B+ B — Bi) + O{(B — ﬁi)Z}}] T
im1

=1

n -1 n
= {Z wlivsi} {Z wy;S; + bli} + [ (22)
i=1

=1

~ Bi+O0{(B—B)}. -

Approximation (23) follows from (22) by assuming ((t) to be sufficiently smooth
and applying standard smoothness arguments in the spirit of Cai & Sun (2002).
From (23) it is seen that the one step estimate in first order approximation equals
the fully iterated local partial likelihood estimate which motivates to use the one

step estimate in the testing procedure.

References

Abrahamowicz, M., MacKenzie, T., and Esdaile, J. M. (1996). Time-dependent
hazard ratio: Modeling and hypothesis testing with application in lupus
nephritis. Journal of the American Statistical Association 91, 1432—-1439.

Aerts, M., Claeskens, G., and Hart, J. D. (1999). Testing the fit of a parametric
function. Journal of the American Statistical Association. 94, 869-879.

Bowman, A. W. and Young, S. (1996). Graphical comparison of nonparametric
curves. Appl. Statist. 45, 83-98.

Breslow, N. (1974). Covariance analysis of censored survival data. Biometrics 30,
89-99.

Breslow, N. E. (1972). Comment on ”"regression and life tables” by D. R. Cox.
Journal of the Royal Statistical Society, Series B 34, 216-217.

Cai, Z. and Sun, Y. (2002). Local linear estimation for time-dependent coefficients
in cox’s regression models. Scandinavian Journal of Statistics, (to appear).

le Cessie, S. and van Houwelingen, J. (1991). A goodness-of-fit test for binary
regression models, based on smoothing methods. Biometrics 47, 1267-1282.

22



Cox, D. R. (1972). Regression models and life tables (with discussion). Journal
of the Royal Statistical Society, Series B B 34, 187-220.

Davison, A. and Hinkley, A. (1997). Bootstrap Methods and their Application.
Cambridge, UK: Cambridge University Press.

Fan, J., Gijbels, 1., and King, M. (1997). Local likelihood and local partial likeli-
hood in hazard regression. Annals of Statist. 25, 1661-1690.

Grambsch, P. M. and Therneau, T. M. (1994). Proportional hazards tests and
diagnostics based on weighted residuals (corr: 95v82 p668). Biometrika 81,
515-526.

Gray, R. J. (1994). Spline-based tests in survival analysis. Biometrics 50, 640-652.

Harbeck, N., Alt, U., Berger, U., Kriiger, A., Thomssen, C., Janicke, F., Hofler,
H., Kates, R., and Schmitt, M. (2001). Prognostic impact of proteolytic factors
(urokinase-type plasminogen activator, plasminogen activator inhibitor 1, and
cathepsins b, d, and 1) in primary breast cancer reflects effects of adjuvant
systemic therapy. Clinical Cancer Research 7, 2757-2764.

Harbeck, N., Thomssen, C., Berger, U., Ulm, K., K., R., Hofler, H., Janicke, F.,
Graeff, H., and Schmitt, M. (1999). Invasion marker pai-1 remains strong prog-
nostic factor after long-term follow-up both for primary cancer and following
first relapse. Breast Cancer Research and Treatment 54, 147-157.

Hérdle, W. and Kneip, A. (1999). Testing a regression model when we have smooth
alternatives in mind. Scand. J. of Stat. 26, 221-238.

Hérdle, W. and Mammen, E. (1993). Comparing nonparametric versus parametric
regression fits. Ann. Stat. 21, 1926-1947.

Hart, J. (1997). Nonparametric Smoothing and Lack-of-F'it Tests. Springer Verlag.

Hastie, T. and Tibshirani, R. (1990a). Exploring the nature of covariate effects in
the proportional hazard model. Biometrics 46, 1005-1016.

Hastie, T. and Tibshirani, R. (1990b). Generalized Additive Models. London:
Chapman and Hall.

Hastie, T. and Tibshirani, R. (1993). Varying—coefficient models. Journal of the
Royal Statistical Society, Series B 55, 757-796.

Hertz-Picciotto, I. and Rockhill, B. (1997). Validity and efficiency of approx-
imation methods for tied survival times in Cox regression. Biometrics 53,
1151-1156.

23



Hess, K. R. (1994). Assessing time-by-covariate interactions in proportional haz-
ards regression models using cubic spline functions. Statistics in Medicine 13,
1045-1062.

Kauermann, G. and Tutz, G. (2001). Testing generalized linear and semipara-
metric models against smooth alternatives. Journal of the Royal Statistical
Society, Series B 63, 147 — 166.

Lin, D. Y. and Wei, L. J. (1991). Goodness-of-fit tests for the general Cox regres-
sion model. Statistica Sinica 1, 1-17.

Moreau, T., O’Quigley, J., and Mesbah, M. (1985). A global goodness-of-fit statis-
tic for the proportional hazards model. Applied Statistics 34, 212-218.

Miiller, H.-G. (1992). Goodness-of-fit diagnostics for regression models. Scand. J.
Statist. 19, 157-172.

O’Quigley, J. and Pessione, F. (1989). Score tests for homogeneity of regression
effect in the proportional hazards model. Biometrics 45, 135—144.

O’Sullivan, F. (1988). Nonparametric estimation of relative risk using splines and
cross-validation. SIAM J. Sci. Statist. Comput. 9, 531-542.

Sasieni, P. (1999). Cox regression model. In P. Armitage & T. Colton (Eds.),
Encyclopedia of Biostatistics, Volume 1, pp. 1006-1020. New York: Wiley.

Verweij, P. and van Houwelingen, H. (1995). Time-dependent effects of fixed co-
variates in Cox regression. Biometrics 51, 1550-1556.

24



Survivor Function Censoring Function

o o

N s -

— [o0) 0]

o o

=2 20 2o

& 2o 5

5 £« £s

o v 82 &>

h o~ o~

® S S

< < <

' o o
0 20 40 60 80 100 120 0 20 40 60 80 100120 0 20 40 60 80 100120

time time time

Figure 1: Different dynamic effect structures for () (left plot) and typical survival
data resulting from the H, simulation setting represented by the estimated survivor
function (middle plot) and the estimated censoring survivor function (right plot).
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t

a=005 a=01

Hy model:

linear (flat):
quadratic (flat)
cosinus (weak)
step function
linear (steep):
quadratic (steep)
cosinus (strong)

(t)

(t)

(t) 5 —¢/100

(t) = —0.5+ 4¢/100 — 4t2/10000
(t) = 0.75 % cos(3t/40)
(t) =
(t) =
(t)
B(t) =

t) = 1.5I(t < 24)

t)=1-1/50

£) = —0.5 + 8¢/100 — 8¢2/10000
B(t) = 1.5 % cos(3t/40)

p
B
B
B
B
B
B
B

5.2 8.5
52.0 60.8
46.4 27.2
24.6 39.8
90.8 94.4
89.2 94.8
78.4 87.6
46.0 66.4

Table 1: Simulated rejection probability for testing the Hy model (1) for different

alternatives
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Figure 2: Distribution function of the p — value for A(h) for different simulation

settings
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Figure 3: Empirical distribution of p-values for different tests in four simulations
settings (thick solid line shows the local partial likelihood test).
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Figure 4: Trace of p-values for different bandwidths.

row bandwidth, column bandwidth

simulation h =30,h =60 h =30,h =120 h =60,h =120
setting decision accept reject accept  reject accept  reject
H, accept 93 2 93 2 92 1
reject 0 5) 1 4 2 5)
correlation 0.95 0.72 0.84
linear accept 42 3 39 6 39 6
reject 3 52 1 o4 1 o4
correlation 0.98 0.87 0.92
quadratic  accept 67 15 46 36 45 23
reject 0 18 0 18 1 31
correlation 0.88 0.72 0.92

Table 2: Matching of same inferential conclusions (in percent based on 100 simu-
lations) for tests based on 5 % significance level and correlation of corresponding
p-values for different bandwidths.
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Figure 5: Local partial likelihood estimates and 95 % confidence intervals of the
therapy effect on gastric cancer for three different bandwidths. (The parametric fit
based on the PH-assumption is given as a reference line)

p-value for Hy : 5(t) =

Bandwidth
Covariate 3 sd(B) h=25 h=40 h=60 h=100
upa 035 019 012 031 052 0.69
pai 0.74 021 002 001  0.01 0.02
lypo 112 021  0.36 0.8 0.86 0.83
hormo 0.16 022 <001 <001 <001 <0.01
gradi 025 020 019 017  0.13 0.09
global <001 <0.01 <0.01 <0.01

Table 3: Parameter estimates and component-wise ( partial) and global p-values for
the breast cancer data.
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Figure 6: Probability function of p-value for A(h), A;(h) and Ay(h) for setting (a),
upper row, and setting (b), bottom row.
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Figure 7: Varying coefficients for breast cancer data




Harbeck, Thomssen, Berger, Ulm, R., Jinicke, Graeff & Schmitt, 1999 or Har-
beck, Alt, Berger, Kriiger, Thomssen, Jénicke, Hofler, Kates & Schmitt, 2001)

32



