

C. Küchle S.M. Lang H. Schiffl

Medizinische Klinik, Klinikum Innenstadt, Universität München, Deutschland

Nephron 1998;79:99-100

Effect of Dialysate Buffer on Serum Beta-2-Microglobulin Levels in Chronic Hemodialysis

Dear Sir,

In patients with end-stage renal disease dialysis-related amyloidosis (DRA), also termed AB-amyloidosis referring to its precursor protein β_2 -microglobulin (β_2 m), has been identified as an important cause of morbidity. The pathogenesis of DRA remains largely obscure. Uremia is undoubtedly a major precondition for this disorder, but non-transplant renal replacement therapy also affects precipitation of the disease. The pathophysiological process underlying amyloidogenesis cannot be explained solely on the basis of simple retention and deposition of amyloid, but may also involve cell activation and generation of inflammatory mediators which consequently alter processing of β2m and favor its osteoarticular deposition [1].

There is growing evidence that the bioincompatibility of maintenance hemodialysis procedures is important in the pathogenesis of DRA. Cuprophane dialysis membranes are known to activate complement and cells, to cause increased production of $\beta 2m$ and to augment uremic $\beta 2m$ body burden [2]. On the other hand highly permeable and biocompatible membranes eliminate ß2m, reduce circulating $\beta 2m$ concentrations [3] and postpone the development of the major clinical manifestations of DRA [4]. In addition, use of ultrapure dialysate has been shown to lower the incidence of the ensuing carpal tunnel syndrome [5]. The question, whether or not the chemical composition of the dialysate affects the pathogenesis of DRA, has not

been investigated in clinical studies. The present prospective, randomized comparison was aimed to elucidate the effect of different dialysate buffers on circulating β2m concentrations in patients undergoing maintenance hemodialysis. Forty-one stable chronic hemodialysis patients with end-stage renal disease of different etiologies, maintained on acetate hemodialysis utilizing the low-flux cellulose acetate membrane for at least 2 years, were randomly assigned to 4 study groups: group A continued hemodialysis on acetate dialysate and cellulose acetate membranes (FB130, surface area 1.3 m², Baxter, Ill., USA); group B remained on acetate dialysate but changed to a high flux polysulfone membrane (F60, surface area 1.25 m², Fresenius, Oberursel, Germany); group C changed to bicarbonate dialysate but remained on a low-flux cellulose acetate membrane, and group D was treated with bicarbonate dialysate and a high-flux polysulfone membrane. Hemodialysis was performed three times a week for 4-5 h (MTS A 2008 C delivery system, Fresenius); nominal dialysate flow rate was 500 ml/min, blood flow rates ranged from 200 to 250 ml/min, fluid removal rate was adjusted to clinical needs. The chemical composition of the dialysates used were identical in terms of calcium, magnesium, and glucose concentration, but contained either acetate (35 mmol/l) or bicarbonate (32 mmol/l). The sodium and potassium concentrations were adjusted to the patient's values. Throughout the study the individual hemodialysis regime remained unchanged. Serum levels of β 2m were determined using routine laboratory methods.

There were no statistically significant differences in the demographic characteristics of the 4 groups of anuric patients at recruitment (table 1). Circulating $\beta 2m$ levels were markedly elevated in all patients at baseline, but they took different courses during the study period of 1 year follow-up. Continuation of the previous regimen of acetate dialysate and cellulose acetate membrane resulted in constant $\beta 2m$ levels. The introduction of high-flux polysulfone membranes to patients receiving acetate dialysis caused a significant reduction in serum ß2m. A more pronounced fall in serum ß2m was noted in patients treated with polysulfone membranes. However, by comparison with patients receiving bicarbonate dialysis, patients treated with acetate dialysates had significantly higher serum $\beta 2m$ levels (table 2).

Our investigation demonstrates that the choice of dialysate buffer affects circulating $\beta 2m$ levels independent of the biocompatibility and permeability of the dialyzer membrane used. The previously published notion that exposure of patient's blood to acetate dialysate for 1 or 6 weeks resulted in elevated serum $\beta 2m$ concentrations [6] is confirmed and extended by our data. Higher circulating $\beta 2m$ levels in response to acetate dialysate may be explained at least by two different causes. Under the condition of hemodialysis these mechanisms may not operate separate-

KARGER

Fax + 41 61 306 12 34 E-Mail karger@karger.ch www.karger.com © 1998 S. Karger AG, Basel 0028–2766/98/0791–0099\$15.00/0

This article is also accessible online at: http://BioMedNet.com/karger Claudius Küchle, MD Medizinische Klinik Klinikum Innenstadt, Universität München Ziemssenstrasse 1 D-80336 Munich (Germany)

Table 1. Characteristics of patients at recruitment

Group	Membrane	Dialysate buffer	Number (f/m)	Age, years (range)	Time on HD ¹ months (range)	Urine volume ¹ ml/day (range)
A	CA	acetate	9 (6/3)	50.3 (29–72)	$43.7 \pm 13.8 (26-62)$	$52.2 \pm 35.2 (0-100)$
B	CA	bicarbonate	10 (6/4)	51.8 (35–66)	$43.3 \pm 15.4 (26-72)$	$23.6 \pm 33.3 (0-100)$
C	PS	acetate	11 (6/5)	52.4 (28–71)	40.5±19.8 (19–81)	$36.4 \pm 37.5 (0-100)$
D	PS	bicarbonate	11 (7/4)	52.8 (36–66)	39.7±11.8 (19–56)	27.3 ± 40.0 (0-100)

CA = Cellulose acetate; PS = polysulfone; HD = hemodialysis.

¹ Mean \pm SD.

Table 2. Serum $\beta 2m$ levels (mean b SD) in the 4 treatment groups: effects of porosity of dialysis membrane and of dialysate buffer

Group	Membrane	Dialysate buffer	Serum β2m levels, mg/l			
			0 months	6 months	12 months	
A B C D	CA CA PS PS	acetate bicarbonate acetate bicarbonate	50.2 ± 7.5 49.8 ± 8.7 50.1 ± 8.5 48.8 ± 7.9	51.6 ± 5.8 46.5 ± 7.3 39.2 ± 6.5 33.5 ± 6.9	51.7 ± 5.8 $46.2 \pm 9.9*$ 41.6 ± 8.5 $31.7 \pm 7.2*$	

CA = Cellulose acetate; PS = polysulfone.

* p < 0.05 vs. corresponding values of patients on acetate dialysate.

ly but synergistically. First, Sonikian et al. [6] performed in vitro and in vivo studies indicating that metabolic acidosis enhances β 2m generation and release. Secondly, acetate may exert a direct effect on monocytes or lymphocytes or may induce the liberation of inflammatory mediators such as cytokines or growth factors, which stimulate β 2m synthesis by these cells [7–10].

Our observations have clinical implications, because at present there is no causal therapy for established DRA. It would be prudent to recommend the use of highly permeable, biocompatible dialyzer membranes in combination with sterile bicarbonate dialysate to postpone DRA in those patients at increased risk of this disorder: namely all patients who have no chance of receiving a kidney transplant and patients over 55 years.

References

- Floege J, Ehlerding G: Beta-2-microglobulinassociated amyloidosis. Nephron 1996;72:9– 26.
- 2 Hakim RM, Wingard RL, Husni L, Parker RA, Parker TF III: The effect of membrane biocompatibility on plasma B2-microglobulin levels in chronic hemodialysis patients. J Am Soc Nephrol 1996;7:472–478.
- 3 Schiffl H, Küchle C, Held E: Beta-2-microglobulin removal by different hemodialysis membranes; in Maeda K, Shinzato T (eds): Dialysis-Related Amyloidosis. International Symposium, Nagoya, May 1994. Contrib Nephrol. Basel, Karger, 1995; vol 112, pp 156–163.
- 4 Küchle C, Fricke H, Held E, Schiffl H: High flux hemodialysis postpones clinical manifestation of dialysis related amyloidosis. Am J Nephrol 1996;16:484–488.
- 5 Baz M, Durand C, Ragon A, Jaber K, Andrieu D, Merzouk T, Purgus R, Olmer M, Reynier JP, Berland Y: Using ultrapure water in hemodialysis delays carpal tunnel syndrome. Int J Artif Organs 1991;14:681–685.

6 Sonikian M, Gogusev J, Zingraff J, Loric S, Quednau B, Bessou G, Siffert W, Drueke TB, Reusch HP, Luft FC: Potential effect of metabolic acidosis on beta-2-microglobulin generation: In vivo and in vitro studies. J Am Soc Nephrol 1996;7:350–356.

- 7 Carozzi S, Nasini MG, Caviglia PM, Schelotto C, Santoni O, Atti M: Acetate free biofiltration. Effects on peripheral blood monocyte activation and cytokine release. ASAIO Trans 1992; 38:52–54.
- 8 Port FK, Van De Kerkove KM, Kunkel SL: Release of IL1 during hemodialysis: Effect of dialysate (abstract). Kidney Int 1986;29:221.
- 9 Bingel M, Lonnemann G, Koch KM, Dinarello CA, Shaldon S: Human interleukin-1 production is enhanced by sodium acetate. Lancet 1987;i:14–16.
- 10 Nachbaur K, Toppmeyer J, Bieling P, Kotlan B, König P, Huber CH: Cytokines in the control of beta-2-microglobulin release. I. In vitro studies on various hematopoietic cells. Immunobiology 1988;177:55–65.