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Abstract

Nonignorable nonresponse is a common problem in bivariate or mul-
tivariate data. Here a selection model for bivariate normal distributed
data (Y1,Y>) is proposed. The missingness of Y5 is supposed to depend
on its own values. The model for missingness describes the probability of
nonresponse in dependency of Y itself and it is chosen nonparametrically
to allow flexible patterns. We try to get a reasonable estimate for the
expectation and especially for the variance of Y>. Estimation is done by
data augmentation and computation by common sampling methods.

Keywords: bivariate normal distributed data, variance estimate, selection model,
nonparametric missing model, data augmentation

1 Introduction

In some applications beside the expectation itself the estimated variance of a
random variable is of particular interest. This may, for example, be the case
in a pharmacological study if we ask for reliability of a certain treatment. A
further example is given by income studies of a population where the variability
defines the gaps between income classes. In this article we propose a model
for bivariate Gaussian variables (Y7,Y2), where informative missingness of Y»
occurs. Flexible missing models shall be allowed with the aim to estimate ex-
pectations and variances correctly. Missingness is assumed to depend on Y5.
The joint distribution of (Y7, Y2, R), where R measures whether Y5 is observed,
is factorized according to a selection model. For the definition of selection mod-
els see Little and Rubin (1987), p. 218ff. The model that measures whether Y5
is missing is chosen nonparametrically. It is a Bayesian Model that specifies a
function in Y5 with piecewise constant function values. Neighbored values are
smoothed by an underlying first order random walk. Nonparametric models of
this type are treated extensively in Fahrmeir and Lang (2001). The estimation
of the selection model is done by the help of data augmentation.

In the literature selection models are treated by numberous authors. The term
selection model dates, at least, back to to the well-known sample selection model



of Heckman (1976). A Bayesian Tobit Model is developed in Cowles, Carlin
and Connett (1996). Models for non-ignorable missing categorical response in
longitudinal data situations have been treated e.g. by Conaway (1993), Park and
Brown (1994) and Baker (1995), the case of general multivariate categorical data
e.g. by Fitzmaurice, Clifford and Heath (1996) and Park (1998). For log-linear
models see e.g. Chambers and Welsch (1993), for transitional models for binary
data see Albert (2000) and for generalized linear mixed models (GLMMs) see
Ibrahim, Chen and Lipsitz (2001). Nonignorable missing continuous (Gaussian)
response data in longitudinal data in case of monotone missingness is treated
by Diggle and Kenward (1994). Kenward (1998) presents a sensitivity analysis,
while Troxel, Harrington and Lipsitz (1998) and Troxel, Lipsitz and Harrington
(1998) treat the nonmonotone case. An extensive treatment of selection models
in the context of linear mixed models is given in Verbeke and Molenberghs
(2000). As far as we know, nonparametric methods for the missing model have
not been developed.

In the following section, the model will be described. The third section deals
with computational aspects. Finally, an implementation of the model is tested
in Section 4.

2 Model

We assume the random vector Y = (Y7,Y3)! to be Gaussian with expectation
= (p1, po)t and covariance matrix ¥. Whereas Y; is always observed, Y> may
be missing. The random indicator variable R shall take the value 0 if Y5 is
missing and 1 (Y3 is reported) else. The joint distribution can be factorized as

P(Y17Y27R) :P(Ylaié)P(R | Yla}/Q)-

This common type of factorization is called a selection model (Rubin 1987).
Suppose that missingness depends on Y5 and is independent of Y7 given Ys, i.e.,

P(R|Y1,Y2) = P(R|Y3) .

Usually, one is interested in an estimate of the expectation us of Y5 and, es-
pecially, in the case where the probability of R = 0 is monotone in Y5 itself.
Here, for example, a logit model for P(R | Y>) with a predictor that is linear in
Y5 can be chosen. We want to focus now on the case where the probability of
R = 0 (Y5 is missing) may for example be high for extreme (i.e. for high and
low) values of Y2 and low in the midrange of Y5. A logit model with a linear
predictor Y5 is no longer appropriate in this case. As an illustration, imagine
an income panel of only two time points with missing response on the second
time point. In econometrics a common perspective is that people with very low
and people with very high income refuse to answer about their income. More-
over, it seems more likely that missingness depends on the actual income or at
least on a function of the actual income than on the previous one. To answer
the question how many people are poor, not only the expected income but also
the variance is of interest. Note that for our application it is important, that



after transformation (e.g. logarithmization) we can assume Y7,Y5 to be of the
assumed distribution, i.e., Gaussian.

To address our problem we choose a logit model for R with a smooth function
in Y5

Pp,27®(}/1;Y2JR):PN7Z(Y17YTZ)P@(R|Y2) @:(Baaz) )

Po(R =0 Y2) = logit™"((¥2)) = %

where f(Y3) is explained in the further context.

Since our missing model depends on values of Y5 that are actually not observed,
common estimation routines fail. To solve this problem we choose a technique
called data augmentation (see Tanner (1991)).

Since data augmentation is a Bayesian method, we first have to choose appro-
priate prior distributions for the unknown parameters. Furthermore, we want
to specify the introduced function in Y2, f(¥2).

For the expectation of y we choose a diffuse prior,

P(u) o const.

A noninformative prior for ¥ (in the sense of Jeffrey; Riiger (1999)) is the
limiting distribution of an inverse Wishart distribution

W=t m,A),m = -1, A= 0.

Together, p and ¥ follow (see e.g. Schafer (1997))

P(p,%) oc| D7)

To construct the smooth function (compare Fahrmeir and Lang (2001)), we
choose an interval I = [a,b), which shall contain the main part of the observa-
tions of Ys.

This interval is now devided into k — 1 small intervals of the same length, i.e.,
I=Ja,b)=[a=a1,a2)Ulazaz) U...U[ax—1,ax =) .

Note: for estimation in Section 4 we chose a= —2.5, b=2.5, k=100. Let Iy be
the interval (—oo,ay),

I =lajai41) fori=1,... K -1
and

IK = [CLK,OO) .

Our smooth function consists of a logit model that specifies a different function
value for each interval I;. To make the estimation of the function values f(y2),



y2 € I;, i = 0,..., K stable, neighbored function values are assumed to be
similar. This fact is introduced by an informative prior for the coefficients 3;
(that address the function values) of indicator functions that measure whether
an observation lies in the interval I;, or not. To be more concrete we specify
the linear predictor of our logit model as

n; = Bo(y2i € Io) + B1(y2i € I1) + -+ + Br (Y2 € Ik)

where y5; denotes the i—th observation of Y5.

The model logit ~!(1) depends on the coefficients 3;. For the prior distribution
of the 3;’s we choose a random walk. In our computations we choose a first
order random walk. This random walk can be expressed due to the conditional
distributions of 3; given the other §’s as

P(Bi | Bi-1,Bi+1) ~ N(ji;,o%),

i = % fori=1,... . K—1,
p/O = ﬂl;
Pr = fiK-1 -

We assume 9 o const. The prior distribution P(3 | 02) for 8 = {Bo, B1, .-, Bk }
still depends on o?. A common choice for P(c?) is an inverse Gamma distribu-
tion.

We assume P(B | 0?)P(c?) to be independent of P, s o(Y1,Y2, R) and in-
dependent of P(u,X). On the other hand, P(u,X) shall be independent of
P(ﬂ | UQ)P(O'Q) and Pp,E,@(R | }/2)

The joint distribution now can be written as
Py (Y1,Y2)Po(R | Y2)P(u, B)P(8 | 0*)P(0?) .

To get estimates for p and X, values for the missing Y> are imputed and the
standard estimates

A_ln Y1i
'uk_nz<y2i

i=1

with

_f Y
are applied to the observations of (Y7, Y5). By the data augmentation procedure,
randomly drawn values are computed. We can repeat the imputation procedure



(I times) and take the means of the single estimates for p and ¥ as new estimates
themselves:

Data augmentation consists of two steps that are applied consecutively. That
is, the I(mputation)-Step where values for the missing values are drawn given
the observed values and actual parameter estimates. In the other step, called
P(robability)-Step we calculate new estimates for our parameters, as we draw
from the posteriors, using the new imputed values beside the observed ones.

In our case this looks as follows:
e [-Step
Draw from P(Ys | y1i, R =0, u, 3, 3, 02) for all missing yo;.
e P-Step

Draw f3,0% ~ P(3,0% | Y1,Ya, R, 11, % o< Po(R | Y2)P(8,0?) (see indepen-
dence assumptions from above).

Draw My Y~ P(M, X | Yl;YrbR;ﬂa 0% PM,Z(YthZ)P(MJ E) (See indepen—
dence assumptions from above).

3 Computation

We start by describing the P—Step in which we draw from the posteriori distri-
butions. Further, we assume that first starting values for our missing y»;’s are
chosen, for example, simply the mean of the observed y»;’s.

As P(B,0% | Y1,Ya, R, 1, Y) o< Po(R | Y2)P(B,0?) and P(u, X | Y1,Y2, R, 3,07)
P, »(Y1,Y5)P(u,X) do not depend on each other, from the posteriors of 3, o
and p, Y can be drawn separately.

Since our prior for ¥ is from a conjugate family, drawing from the posteriors of
p and X can be done straightforwardly as

Y|V, Y~ W (n—2,87Y),

where S~! denotes the empirical covariance matrix of the completed data (y1;, y2i),
i=1,...,n, and

© | E;YhYz NN(//EJE)a



where Ji denotes the empirical mean of the (y1;, y2;)t ’s, with the actual imputed
values for the missing yo;’s.

To draw P(83,0? | Y1, Ya, R, 1, ) we use Gibbs—sampling, combined with Metropo-
lis steps to update the 3;’s.

The following steps are applied several times until we can assume that the
values for 8 and o? correspond to the target distribution (examine for example
the autocorrelation).

1. Values for the conditional posterior distribution of o2 given values for all
B; can be drawn staightforwardly. If the priori of 2 is IG(a,b), than the
postrior is IG(a’,b") with

a =a+K
k-1 k-1
V' =b+ (65 +Br +222, B7 =232 Bibit1)-
For our computation we chose quite informative values for the inverse
Gamma distribution of the variance, o2, i.e. a= 5, b= 3. This seems to

be appropriate as very low or high probabilities in logit models are very
unlikely to be measured empirically correct.

2. Make proposals for (8, ... ,Bitk), i = 1,... ,n—k (in our implementation
we chose k = 2), starting with ¢ = 1 and continuouing consecutively,
accept (B, ..., Pirk)™V at each step with probability

Po(R | Y2)P((Bi-1,--- s Bith+1)" ™, 0?)

Po(R | Y2)P((Biz1,- -+, Bitk+1)?,02%) M

P((Bi—1, .-, Bizksr1)"®V,0%) denotes the full conditional distribution in
the case of our first order random walk (compare Knorr-Held (1999)).

As a proposal distribution for the (8;,...,Bitk),t = 1,...,n — k we choose
a random walk with multivariate normal changes with mean (0,...,0) and a
covariance matrix with no correlation and small variances. After a pre-run we
calculate the empirical variances of our accepted 3’s and continue with a normal
distribution with mean (0, ...,0) and the empirical covariances.

The I-Step is computed in the following way:

For each missing y»; we draw Y2"*" ~ P, (Y5 | Y1) and R ~ Po(R | Y2™F)
with the actual values for the parameters u, ¥ and ©. For the same y-; repeat
drawing Y7"°" and R until R = 0. If succeeded we choose Y7"°"" as our new
imputation for yo; and continue with the next missing ys;.

4 Validation

Depending on the data situation it might occur that more than one parameter
setting will describe the data situation in an appropriate manner. In these
cases the original distribution would be unable to be reconstructed exactly.
Our Bayesian estimation will then be more or less the mean of the distributions
that may fit to the data.



From a pragmatic point of view we want to see what we can expect about our
model in realistic situations. To do so, we created data sets, where the part of
missing y»;’s in the mean does not exceed 50%. The actual percentage depends
on the missing function. The following six functions were chosen to create the
data:

Po(R = 0]Y>) =logit—*(n), where

1. n=-15+0.75-Y7
2. n=-15+(3.0exp(Y?) — 1.0)/53.6))

3. n=—15c08(3.14159 - Y3/2) Yy € [-2,2]
n=-15 Y; € (=00, -2)
7721'5 Ys € (2,00)

4. n=-9/8+9/16Y2 +2/3Y;

5. n=-9/8+3/4(3.0exp(Y2) — 1.0)/53.6)) + 2/3V;

6. 1 =—9/8cos(3.14159 - Y>/2) + 2/3Y} Yy € [-2,2]
n=-9/8+2/3Y; Yy € (—00, —2)
n=9/8+2/3%; Yy € (2,00)

For the set—up, we chose functions that show low values for the middle range
and high values for the extremes. As nonparametric function estimates are often
sensitive at the edges, the chosen functions show a different behavior. Function
1 rises in quadratic terms, function 2 in exponential terms, whereas function 3
does not rise at the very edges. Functions 4 to 6 are the same as functions 1 to
3, but with an additional linear term. For functions 4 to 6, the estimation of
E(Y>) in addition is of special interest.

The functions are illustrated below.

For the the normal distribution the parameters

p1=p2 =0

Var(Y;) = Var(Y2) = 1, and

Cov(Y1,Y3) = 0.5, 0.7, 0.9 were chosen. We draw samples of the sizes
N =400, 700, 1000 or 2000.

For each setting we draw ten replications. This number is related to the time the
computations needed. Nevertheless, we can get some impression on the results
to be expected.

The means of the missing percentages of y2;’s over the replications are shown
in the Table below.

To get a comparison we additionally estimated the distribution of the bivariate
normal distribution under the assumption of an underlying MAR mechanism.
We used the same algorithm, but accepted each value drawn for Y5 in the I-Step.
The computation of the missing model is thus not required.

The estimation results are illustrated in the Tables 4.2 to 4.13 which show the
means and the standard deviations of the the interesting parameters of the ten
replications for each setting.



Function 1 Function 2
2 2
1 1
0 0
-1 -1
-2 -2
o - o a ~ A - o “ o
Function 3 Function 4
2 2
1 1
0 0
-1 -1
-2 -2
o < o a ~ o - o a o
Function 5 Function 6
2 2
1 1
0 0
-1 -1
-2 -2
o < o a ~ o - o a o~
Function 1  Function 2 Function 3 Function 4 Function 5 Function 6
N =400 p=20.5 33 24 41 33 30 42
N =400 p=0.7 32 25 41 32 30 42
N =400 p=209 32 25 41 33 31 41
N =700 p=205 33 24 41 32 30 43
N =700 p=0.7 33 25 40 34 31 42
N =700 p=209 34 24 42 32 30 44
N =1000 p=0.5 34 24 40 32 30 41
N =1000 p=0.7 34 25 39 32 30 43
N =1000 p=0.9 33 23 40 34 32 43
N =2000 p=0.5 33 25 41 33 29 43
N =2000 p=0.7 33 25 41 33 30 42
N =2000 p=0.9 33 25 41 33 31 42

Table 4.1: Mean percentage of missing Y5.
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VarYs Cov(Y1,Y3) EY> o(VarYs) o(Cov()1,Ys)) o(EYs)
N =400 p=05 1.05 0.488 0.00102 0.459 0.184 0.0763
N =400 p=0.7 0.844 0.597 0.0234 0.202 0.135 0.061
N =400 p=209 1.51 1.1 -0.0328 0.898 0.319 0.079
N =700 p=05 1.11 0.505 -0.0267 0.432 0.181 0.046
N =700 p=0.7 1.15 0.764 0.014 0.282 0.14 0.0544
N =700 p=209 0.975 0.879  -0.00576 0.0914 0.0609 0.0352
N=1000 p=0.5 0.892 0.454 0.0128 0.251 0.112 0.0477
N =1000 p=0.7 0.985 0.677 0.00254 0.182 0.0907 0.046
N=1000 p=0.9 1.18 0.996 -0.0202 0.171 0.0981 0.0321
N=2000 p=05 0.784 0.397 -0.0115 0.195 0.0877 0.0444
N =2000 p=0.7 0.95 0.678  0.000277 0.102 0.0563 0.0214
N =2000 p=09 0.986 0.89 -0.00882 0.0827 0.051 0.021

Table 4.2: Results for Function 1 using the selection model.

VarYs Cov(Y1,Ys) EY: o(Varys) o(Cov(Yy,Y2)) o(EYa)
N =400 p=205 0.608 0.341 0.00357 0.0387 0.0337 0.0394
N =400 p=0.7 0.648 0.502 0.0157 0.0513 0.0622 0.0561
N =400 p=209 1.2 0.987 -0.0208 0.781 0.314 0.0632
N =700 p=05 0.61 0.328  0.00314 0.0451 0.0441 0.0168
N =700 p=0.7 0.7 0.57 0.0135 0.0657 0.0702 0.0416
N =700 p=209 0.805 0.791 -0.0065 0.0586 0.0502 0.0307
N=1000 p=0.5 0.62 0.346 -0.00166 0.0227 0.0226 0.0433
N=1000 p=0.7 0.659 0.514 0.0137 0.0471 0.0424 0.0249
N =1000 p=0.9 0.93 0.881 -0.0163 0.114 0.0841 0.0272
N=2000 p=05 0.613 0.328 -0.00127 0.0249 0.0179 0.0281
N =2000 p=07 0.661 0.528 -0.00279 0.0258 0.0247 0.0197
N =2000 p=0.9 0.808 0.797 -0.00633 0.0588 0.0438 0.0199

Table 4.3: Results for Function 1 assuming MAR.




VarYs Cou(Y,Ys) EY: o(Varys) o(Cou(Y1,Ys)) o(EYs)
N =400 p=20.5 1.1 0.542 -0.0315 0.312 0.129 0.0683
N =400 p=0.7 1.09 0.731  -0.00992 0.31 0.123 0.0797
N =400 p=209 1.01 0.89 0.0275 0.0974 0.0653 0.0669
N =700 p=20.5 1.08 0.508 -0.0168 0.24 0.116 0.088
N =700 p=07 1.06 0.707 -0.0163 0.155 0.0974 0.0467
N =700 p=209 1.03 0.919 0.0257 0.0916 0.0633 0.0506
N =1000 p=0.5 1.17 0.553 0.0182 0.25 0.103 0.0391
N =1000 p=0.7 1.01 0.693 0.000303 0.107 0.0709 0.046
N =1000 p=0.9 1.04 0.922 0.00247 0.115 0.0789 0.0303
N =2000 p=0.5 1.14 0.542 0.0134 0.198 0.0767 0.0298
N =2000 p=0.7 1.02 0.708 -0.00175 0.115 0.0714 0.0274
N =2000 p=0.9 1 0.901 0.0154 0.0695 0.05 0.0209

Table 4.4: Results for Function 2 using the selection model.

VarY, Cov(Y1,Ys) EY,; o(Varys) o(Cov(Y1,Ys)) o(EYa)
N=400 p=05] 072 0414 -0.0106 0.0399 0.0572  0.0435
N=400 p=07| 0.809 0.618  -0.0083 0.0721 0.0508  0.055
N=400 p=09 | 0.889 0.832 0.0244 0.0518 0.0474  0.0597
N=700 p=05] 0753 0.394  -0.00341 0.0398 0.0496  0.0662
N=700 p=07| 0779 058  -0.0179 0.0753 0.0739  0.0378
N=700 p=09| 0914 0.862 0.0235 0.0647 0.0547  0.0485
N=1000 p=05| 0.748 0.406  0.00809 0.0307 0.033  0.0203
N=1000 p=0.7| 0.781 0.586  0.00334 0.0303 0.0371  0.0333
N=1000 p=09 | 0.903 0.855  0.00265 0.0814 0.0674  0.0271
N=2000 p=05] 0.752 0.394  0.00322 0.0287 0.0228  0.0179
N=2000 p=07| 0.794 0.602 -0.000947 0.0464 005  0.0177
N=2000 p=09 | 0.882 0.84 0.0136 0.0453 0.041  0.0191

Table 4.5: Results for Function 2 assuming MAR.
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VarYs Cov(Y1,Y3) EY> o(VarYs) o(Cov()1,Ys)) o(EYs)
N =400 p=05 0.919 0.435 0.0368 0.615 0.25 0.0778
N =400 p=07 1.06 0.675 -0.0283 0.491 0.192 0.054
N =400 p=209 1.1 0.915 -0.0155 0.438 0.211 0.0576
N =700 p=05 1.08 0.502 -0.0161 0.363 0.155 0.0832
N =700 p=0.7 0.972 0.655 0.000319 0.255 0.132 0.0466
N =700 p=209 1.05 0.919 0.00092 0.124 0.0727 0.0463
N=1000 p=0.5 1.04 0.524 -0.00513 0.307 0.136 0.0424
N =1000 p=0.7 1.21 0.773 0.00129 0.404 0.172 0.054
N=1000 p=0.9 1.15 0.953 0.00719 0.399 0.189 0.0193
N=2000 p=05 1.16 0.574  -0.00374 0.196 0.0767 0.0235
N =2000 p=0.7 0.987 0.689 0.00312 0.158 0.084 0.0273
N=2000 p=09 1.02 0.897  -0.00125 0.189 0.108 0.0242

Table 4.6: Results for Function 3 using the selection model.

VarYs Cov(Y1,Ys) EY: o(Varys) o(Cov(Yy,Y2)) o(EYa)
N =400 p=205 0.575 0.326  -0.00548 0.0907 0.0765 0.0391
N =400 p=0.7 0.594 0.48 -0.00812 0.0814 0.0625 0.0309
N =400 p=209 0.818 0.789 -0.0084 0.222 0.148 0.0457
N =700 p=05 0.58 0.318 -0.0078 0.0615 0.0489 0.032
N =700 p=0.7 0.619 0.488  0.00162 0.051 0.0615 0.0237
N =700 p=209 0.795 0.794  0.00645 0.061 0.0507 0.0361
N=1000 p=0.5 0.573 0.337 -0.00166 0.0223 0.0298 0.0145
N=1000 p=0.7 0.639 0.531 -0.00114 0.0442 0.0613 0.0397
N =1000 p=0.9 0.818 0.803 0.0109 0.183 0.13 0.0141
N=2000 p=05 0.583 0.34  0.00216 0.0263 0.0219 0.0149
N =2000 p=07 0.609 0.496  0.00326 0.0427 0.0412 0.0216
N =2000 p=0.9 0.776 0.771 0.00158 0.108 0.0826 0.0172

Table 4.7: Results for Function 3 assuming MAR.
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VarYs Cov(Y1,Y3) EY> o(VarYs) o(Cov()1,Ys)) o(EYs)
N =400 p=05 0.953 0.421 -0.0394 0.402 0.167 0.0887
N =400 p=0.7 1.22 0.771  -0.00154 0.449 0.221 0.0796
N =400 p=209 1.27 1 0.0189 0.589 0.271 0.0695
N =700 p=05 0.808 0.411 -0.0409 0.305 0.144 0.0429
N =700 p=0.7 1.22 0.796 0.0119 0.234 0.0955 0.0652
N =700 p=209 0.941 0.848 -0.0134 0.174 0.118 0.0337
N=1000 p=0.5 0.762 0.4 -0.0335 0.237 0.115 0.0479
N =1000 p=0.7 1.06 0.728  -0.00397 0.17 0.0823 0.0336
N=1000 p=0.9 1.04 0.92 0.00296 0.068 0.0387 0.0247
N=2000 p=05 0.831 0.434 0.000309 0.147 0.0677 0.0314
N =2000 p=0.7 0.924 0.661 -0.0253 0.0748 0.0439 0.0414
N=2000 p=09 1.04 0.922 0.00456 0.138 0.082 0.0351

Table 4.8: Results for Function 4 using the selection model.

VarY, Cov(Y1,Ys) EY, o(VarYs) o(Cov(Y1,Ys)) o(EY2)
N =400 p=205 0.621 0.311 -0.084 0.0515 0.0455 0.0376
N =400 p=0.7 0.706 0.571 -0.0472 0.0766 0.0862 0.0438
N =400 p=209 1 0.897 -0.00673 0.413 0.236 0.0601
N =700 p=05 0.613 0.33 -0.0883 0.0309 0.0467 0.0346
N =700 p=0.7 0.713 0.572 -0.0474 0.0573 0.0465 0.0388
N =700 p=209 0.785 0.766 -0.0334 0.108 0.0919 0.0352
N=1000 p=0.5 0.611 0.344 -0.0872 0.034 0.0402 0.0264
N=1000 p=0.7 0.677 0.543 -0.0547 0.0265 0.028 0.0194
N =1000 p=0.9 0.835 0.815 -0.0217 0.0444 0.0319 0.0233
N=2000 p=05 0.624 0.343 -0.0691 0.0235 0.0272 0.0208
N =2000 p=07 0.655 0.519 -0.0682 0.0291 0.0298 0.0274
N =2000 p=0.9 0.85 0.827 -0.0179 0.0874 0.0663 0.0292

Table 4.9: Results for Function 4 assuming MAR.
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—

—

VarYs Cov(Y1,Y3) EY> o(VarYs) o(Cov(Y,Y2)) o(EYa)
N =400 p=05 0.985 0.459 -0.0256 0.391 0.166 0.0778
N =400 p=0.7 1.07 0.706 -0.000414 0.224 0.103 0.0817
N =400 p=209 1.14 0.953 0.00441 0.307 0.177 0.0348
N =700 p=05 1.06 0.507 0.00878 0.334 0.129 0.0469
N =700 p=0.7 1.07 0.716 0.0121 0.178 0.106 0.0399
N =700 p=209 1.03 0.913 0.0216 0.0823 0.0574 0.0455
N=1000 p=0.5 0.858 0.43 -0.0146 0.188 0.0908 0.0547
N =1000 p=0.7 0.951 0.654 0.00662 0.184 0.126 0.0336
N=1000 p=0.9 0.983 0.884 -0.00771 0.155 0.105 0.0359
N=2000 p=05 1.03 0.516 0.00508 0.155 0.0661 0.0235
N =2000 p=0.7 1.01 0.705 -0.00186 0.0723 0.0401 0.0221
N=2000 p=09 0.964 0.876 0.00228 0.063 0.0431 0.0202

Table 4.10: Results for Function 5 using the selection model.

VarYs Cov(Y1,Ys) EY; o(VarYs) o(Cov(Y1,Y3)) o(EY2)
N =400 p=205 0.738 0.383 -0.0658 0.0579 0.0564 0.0408
N =400 p=0.7 0.815 0.599 -0.0524 0.0889 0.0621 0.0597
N =400 p=209 0.985 0.887 -0.0173 0.232 0.15 0.0296
N =700 p=05 0.754 0.401 -0.0426 0.0408 0.0295 0.0215
N =700 p=0.7 0.801 0.595 -0.034 0.057 0.0649 0.0217
N =700 p=209 0.9 0.85 -0.0036 0.0651 0.0526 0.0407
N=1000 p=0.5 0.731 0.384 -0.0633 0.0369 0.0294 0.0271
N=1000 p=0.7 0.761 0.566 -0.036 0.0496 0.0622 0.0229
N =1000 p=0.9 0.89 0.837 -0.023 0.135 0.1 0.0354
N=2000 p=05 0.764 0.41 -0.0521 0.0259 0.0181 0.0226
N =2000 p=07 0.781 0.595 -0.0438 0.0256 0.0245 0.0224
N =2000 p=0.9 0.868 0.826 -0.0161 0.0505 0.0398 0.0193

Table 4.11: Results for Function 5 assuming MAR.
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—

—

VarYs Cov(Y1,Y3) EY> o(VarYs) o(Cov(Y,Y2)) o(EYa)
N =400 p=05 0.987 0.47 0.0146 0.301 0.133 0.111
N =400 p=0.7 0.94 0.607 0.0262 0.431 0.207 0.0696
N =400 p=209 1.15 0.933 -0.00154 0.48 0.228 0.0535
N =700 p=05 1.09 0.534 0.00678 0.282 0.117 0.0429
N =700 p=0.7 1.01 0.703 -0.00182 0.256 0.132 0.0369
N =700 p=209 1.01 0.889 -0.000183 0.245 0.133 0.0535
N=1000 p=0.5 0.95 0.46 0.00366 0.249 0.113 0.0603
N =1000 p=0.7 0.999 0.693 -0.0162 0.217 0.107 0.0323
N=1000 p=0.9 1.07 0.931 0.0257 0.234 0.128 0.0252
N=2000 p=05 0.888 0.465 -0.0193 0.157 0.0718 0.0371
N =2000 p=0.7 0.951 0.677 -0.0109 0.131 0.0762 0.0321
N=2000 p=09 0.945 0.86 -0.0105 0.123 0.0788 0.0191

Table 4.12: Results for Function 6 using the selection model.

VarYs Cov(Y1,Ys) EY: o(Varys) o(Cov(Yy,Y2)) o(EYa)
N =400 p=205 0.626 0.334 -0.0912 0.0817 0.0444 0.0524
N =400 p=0.7 0.649 0.49 -0.0641 0.0558 0.0747 0.0465
N =400 p=209 0.892 0.829 -0.0388 0.249 0.161 0.0506
N =700 p=05 0.68 0.374 -0.103 0.0499 0.0331 0.0507
N =700 p=0.7 0.703 0.559 -0.0939 0.0623 0.0651 0.0216
N =700 p=209 0.839 0.803 -0.0307 0.155 0.105 0.0499
N=1000 p=0.5 0.648 0.342 -0.094 0.0487 0.0461 0.0153
N=1000 p=0.7 0.705 0.555 -0.078 0.0533 0.0435 0.025
N =1000 p=0.9 0.892 0.845 -0.00426 0.153 0.105 0.0232
N=2000 p=05 0.649 0.359 -0.113 0.0441 0.0355 0.0248
N =2000 p=07 0.711 0.555 -0.0739 0.0431 0.0371 0.0277
N =2000 p=0.9 0.811 0.788 -0.0387 0.0819 0.0638 0.0183

Table 4.13: Results for Function 6 assuming MAR.

5 Results and Conclusions

The estimates for Var(Y>) using the selection model lie around the origin value
of 1. Taking a closer look at the estimates for function 2, all lie above 1.
If in contrast we use the MAR estimator, the estimates seem to be biased
downwards. The estimates for E(Y3) using the selection model, lie around zero
for all functions. In contrast, for functions 4 to 6, the MAR estimates all lie

below zero.

Concluding, in case of an informative random missing process R the proposed
method of data augmentation is demonstrated to be superiour to estimation
under the MAR assumption.
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