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Abstract

This paper gives a detailed overview of the problem of missing data in
parametric and nonparametric regression. Theoretical basics, properties
as well as simulation results may help the reader to get familiar with the
common problem of incomplete data sets. Of course, not all occurences
can be discussed so this paper could be seen as an introduction to missing
data within regression analysis and as an extension to the early paper of
Little (1992). KEY WORDS: missing data mechanism, regression analysis,
generalized additive models, imputation, MSE-superiority;

1 Introduction

Statistical analysis with missing data is a common problem in practice. Non-
response in sample surveys or drop—out in clinical trials may be two of many
examples one could imagine. Apart from the estimation of sample statistics
regression analysis as a main tool within statistical analyses of dependencies
therefore often is affected by missing values, too. Whereas parametric regres-
sion has been investigated extensively, nonparametric methods haven’t been
considered within this context so far. Apart from the standard literature con-
cerning missing data, i.e., Little and Rubin (1987) and Schafer (1997), linear
regression (e.g. Little (1992)), logistic regression (e.g. Vach (1994)) and gener-
alized linear models (e.g. Ibrahim, Lipsitz and Chen (1999)) were considered
within the scope of parametric methods. Little emphasis has been put on non-
parametric regression analysis—e.g., Chu and Cheng (1995) or some simulation
experiments by Nittner (2002).

Before defining the basic terms and relations within the context of missing data,
the parametric as well as the nonparametric regression model is introduced.



1.1 Linear Regression Models

Assume the linear regression model
Y=Xifi+...+Xp0p +¢ (1.1)
and its sample version
y=XpB+e¢ (1.2)

where y is the (n x 1)-vector of observations of the dependent variable, X is
the (n x p)—matrix of the independent regressiors and € is the (n x 1)-vector of
disturbances. We confine ourselves to nonstochastic X and assume X to be of
full column rank. Further let

e~ (02, 1,) (1.3)
or
e~ N(o% I,) (1.4)
for testing hypothesis. If X is complete, the BLUE of 3 is given by
b= (X'X)1X"y. (1.5)

In statistical practice, however, we often have incomplete data—marked by ‘x'—
in the response y as well as in the data matrix, i. e.

yl T11 - - :Ulp
Y2 *
wX) =1 = * (1.6)
*
Un Tnl . . x’l’lp

In general, we may assume the following structure of the data which is discussed
in full detail in Rao and Toutenburg (1999), Chapter 6,

Yobs Xobs
Ymis = X;bs /3 + €. (17)
y;bs Xmis

Estimation of ypnis corresponds to the prediction problem. Based on these re-
sults, we may confine ourselves to the substructure

Yobs Xobs
* = +€ 1.8
< Yobs > < Xomis )ﬂ ( )
of (1.7) and change the notation as follows:

<§“>=<§c>5+(§“) <Z>~(0,021). (1.9)

The submodel
Ye = Xcﬁ + € (110)



stands for the completely observed data (c : complete), and we havey. : m x 1, X, :
m x p, and rank(X,) = p.

The other submodel
Ysu = Xuf + €4 (1.11)

is of dimension (n — m) = J. The vector y. is observed completely. In the
matrix X, some observations are missing. The notation X, will underline that
X, is partially incomplete, in contrast to the matrix Xy,;s, which is completely
missing. Combining both of the submodels in model (1.9) corresponds to the
so—called mixed model (Theil and Goldberger (1961)). Therefore, it seems to
be natural to use the method of mixed estimation.

1.2 Generalized Additive Models

Generalized Additive Models (GAM) became more and more popular since the
work of Hastie and Tibshirani (1990). One could consider GAMs as the gener-
alization of linear as well as generalized linear models and, of course, additive
models. Its flexibility concerning the modelling of the functional relation build
the main advantage over linear models and generalized linear models (GLM)
based on the a priori unknown function f(X) which has, for example, to be
specified within polynomial regression when the purpose is a non—linear rela-
tion between y and X.

Before introducing the GAM a short summary is given to generalized linear
models to get familiar with the necessary terms. Following the notation within
the previous section the observations y; are assumed to be independent identi-
cally distributed with p; = E(y;), the mean given by u; = z}8. GLMs may then
be described by

1. the distribution assumption which postulates the y; to be conditionally
independent of the z; with the conditional distribution of y; belonging to
a simple exponential family with p; = E(y; | ;) and a scaling parameter

0.
2. the structural assumption which relates p; with the linear predictor n; =
x} 3 according to

i = h(n;) = h(ziB), resp. m; = g(ui), (1.12)

with the one—to—one known function h and g being the inverse function of
h called link function.

Following Fahrmeir and Tutz (2001) a generalized linear model is characterized
by the type of the exponential family, the link function, and the design vector z;.

Generalized additive models differ from generalized linear models by assuming
an additive predictor instead of a linear predictor and are defined by

p

glw) =+ fi(X;), (1.13)

=1



with an appropriate link function. Partition (1.8) and, especially, the distri-
bution of the errors noted in (1.9) are assumed to hold here, too. The mixed
estimator within this context can not be written in such a way which forces us
to introduce the inference within GAMs just in general.

Similar to the minimization of the target function within the linear model we
formulate a target function with respect to the smoothness of f(z) according to

Z{yi — flz))} + /\/f”(a:)gda:, (1.14)

which is to be minimized with respect to the parameters of f(z). f’ and f" have
to be continuous, f has to be quadratically integrable. A controls the trade—
off between variance and bias well known from a simple scatterplot smoother.
A — oo equals a straight line, A = 0 leads to an unsmoothed estimate f(z;) = y;
meaning a reproduction of the data, see Tutz (2000).

The estimation is done by iteratively re—weighted least squares (IRLS) where
each least—squares step is replaced by a penalized one. The criterion is the
maximization of the penalized loglikelihood

n 1 m ,
la =AY Ly, XiB) — 5 ) 6:5'Sif, (1.15)
=1 i=1

where m quadratic penalties are to be applied to the parameter vector 3. The
matrix S; contains the penalties which imply each smoothing parameter 6;. 5*)
is estimated by Fisher—Scoring Algorithmus, see Table 1.1.

521 —1 &l :
gD = gk) 4 E[_m] 1 56% respectively,

Table 1.1: Fisher—Scoring.

Wl(lk) = g’(ugk))Vfl is a weighting matrix, V; is the variance of y with re-
spect to ,ugk); I = g’(,ugk)). g(w;) is a monotone link function.

Following Wood (2000), the determination of 3**1) within f with E(f(Y;)) =
f(B) is equivalent to solving the weighted penalized least squares problem

min) || W2 (=W — X8) |2 +3 6,858 (1.16)

with a pseudo data vector z*) = X3%) 4 T*)(y — u*)) the global smooth-
ing parameter \, the diagonal matrix of weights W and the nonnegative definite
matrix S of coefficients containing the penalty terms 6; for the smoothing param-
eters. (1.16) in practice is solved by minimizing the generalized cross validation



1. By the help of ) one gets estimates for x and
the variances V; for each y;; compute

(i)  the diagonal matrix of weights W with
Wi = (g'(e)*Vi) ™"
(ii)  the vector
ZZXﬂ‘*‘F(y_H) )
a vector of pseudo data with the diagonal matrix
Lii = (¢' (i) "

2. Compute A; by minimizing
w3 - xp)|12
(sp(I-A))2
with 3 being the solution of minimizing
1 .
IW2(z~XB) I + X X6'S; 8
with respect to 3 and A being the hat-matrix with
A=X(X'WX+ Y \088) 'X'W

Table 1.2: IRLS with GCV.

(GCV) scores

_IWE(y— AN 0)y) | /n
[L— tr(A(,0))/n]?

v (1.17)

with respect to %. [t = Ay holds for the hat-matrix A. Combining IRLS and
GCV represents the algorithm of interest, illustrated in Table 1.2 (see Gu and

Wahba (1991) or Wood (2000)).

Note that the degrees of freedom is an integrative part of the estimation. An
extensive description of estimating GAMs can be found in Tutz (2000).

2 Missing Data Pattern and Missing Data Mech-
anism

So far, we introduced just methods and assumptions analyzing the data set as
it is. Because of the effects of the missingness, i.e. the amount of missing values,
on the data structure and, therefore, the amount of information the analyst has
to deal with these problems. The missing data pattern and the missing data
mechanism are two important terms visualizing and characterizing the situation
of the data.

2.1 Missing Data Pattern

As already mentioned above, visualizing the structure of the data set with re-
spect to the missing values may be a first way to get an impression of the



situation. Also implemented in statistical software, the missing data pattern
do a good job; the observed cases of a variable correspond to one bar—the
more missing values, the shorter the bar of the variable, see Figures 2.1-2.4.
Figure 2.1 shows the situation when one variable is incomplete and all other

X, Xo ... X, Y X, Xo ... X, Y

L]

Figure 2.1: Univariate Missing Figure 2.2: Monotone Missing
Data Pattern Data Pattern
X X .. X, Y X1 X .0 X, Y

[ ] ]

Figure 2.3: Special Missing Figure 2.4: General Missing
Data Pattern Data Pattern

variables are completely observed—a special case of the monotone pattern in
Figure 2.2 where each variable X is observed for at least the cases of X;_;.
An example for a special pattern is shown in Figure 2.3 where X, is observed
for the cases where X; is missing and vice—versa. This is a common problem
known as double sampling, see Schafer (1997). Figure 2.4 illustrates a situation
with no special structure.

Although the missing data pattern represent an easy way to get a first impres-
sion, more complex dependencies between observed and incomplete variables or
incomplete variables themselves will reduce this ability strongly. This is one
reason why the missing data mechanism has to be considered.

2.2 Missing Data Mechanisms (MDM)

The main question within the context of analyzing incomplete data sets is
whether the missing data mechanism can be ‘ignored’—a term which is to be
specified—or not. One could make the assumption that the mechanism is ig-
norable in the sense described below; the other possibility consists of including
the missing data mechanism—which still is to define—in the statistical model.
Including the MDM means including the distribution of an indicator variable R
indicating if a component of the data matrix Z is observed or missing. Little
and Rubin (1987) define the data matrix Z = (Zobs, Zmis) representing the data
that would occur without missing values. The random variable R indicating the



missingness within the data matrix Z is defined according to

{1 if z;; observed
’I“ij_

0 if 2 missing Vi=1l,....,n,j=1,...,p+ 1. (2.1)

The question whether the missing mechanism can be ‘ignored’ for the estima-
tion of @ equals the question whether statistical inference is based on the density
f(Zobs, R | 6, ®)—with ® being an unknown parameter of the missing mecha-
nism and # being the parameter of the density of Zyps, Zmis—or on the simpler
density f(Zobs,#) which is ‘ignoring’ the missing mechanism. The classification
of the missing data mechanism is based on the density f(R | Zobs, Zmis, ®) and
leads to the definition of

1. MCAR (missing completely at random) if
f(R| Z,®)=f(R|®) VZ, (2.2)

2. MAR (missing at random) if
f(R|Z,®) = f(R] Zobs,®) YZmis, and (2.3)

3. MNAR (missing not at random)
f(R|Z,®) = f(R]| Zobs, Zmis, ) - (2.4)
Following Little and Rubin (1987), the missing data mechanism is said to be
ignorable in the context of likelihood inference when the distribution of the
missing mechanism is independent of the missing values [(2.3)] themselves. This

may be more apparent by computing the density of the actual observed data
obtained by integrating Z;s out of the density

F(Zovs, R | 6,8) = / FZobss Zunis | O)F (R | Zovss Zonie: ®)dZumss (2.5)
which by help of (2.3) leads to

f(Zobs: R, 07 <I)) = f(R | Zobs: (I)) / f(Zobs: Zmis: e)dZmis
= f(R | Zobs7 (P)f(ZObS | 0) . (26)

The likelihood—based inferences for 8 based on f(Zobs, R | 6, ®) and for 6 based
on f(Zobs | 0) are the same if the parameters 6§ and ® concerning the density
of Z and the missing mechanism, respectively, are distinct in the sense of each
parameter containing no information about the other (see for example Schafer
(1997)).

3 Inference and Missing Data

3.1 The Mixed Model with Missing Regressor Values

Following the concept of missing values introduced by Little and Rubin (1987)
leads to a partition of the sample (y1,...,¥yn) in two samples, the first contains



all those y; with completely given z;—vectors (say m < n elements of the sample).
Ye = X8+ €c (subscript ¢ : complete). (3.1)

In general we assume X, to be of full column rank p.

The second sub—sample contains all those y; where the associated x—rows are
partially or fully unknown (say J elements of the sample, m + J = n).

Ye = XuB + €s € ~ (0,0%17). (3.2)

That is, y., Ys and X, are known, but X, is partially or fully unknown. Com-
bining (3.1) and (3.2) gives the mixed model

() =)o+ (2) () ~0e w9

The optimal but due to the unknown elements of X, not operational estimator
(BLUE) of § is given by the mixed estimator (cf. Rao and Toutenburg (1999),
Ch. 5)

BX.) = (X Xe+ X, X)) (Xoye + Xoy)
= b+ S XLy 4+ XuS X)) T (g — Xobe) (3.4)

having the covariance matrix
V(B(X.) = 02(X. X, + X X.) ™ = 0%(S. + S.)7! (3.5)

where S, = X, X, and S, = X, X, and b. = (X'X.) ' X'y, is the OLSE in the
complete case submodel (3.1).

3.2 Common Missing Values Procedures
3.2.1 Complete Case Analysis

The first (and in many situations most obvious) method to obviate the problem
of an incompletely observed design matrix results in resigning the incomplete
model (3.2). This so—called classical LSE of  makes use of the completely
observed design matrix X., only. That is, the classical LSE (CLSE) estimates
(3 from the model (1.2) according to

be = (X, X) ™' X,y (3.6)

having
V(be) = 02(X,X.) "' = 02571 (3.7)

The CLSE discards the partial information contained in y, and the observed
elements of X, of the incomplete model (3.2). This may lead to a loss in
efficiency compared with estimators using a “repaired” version of model (3.2)
whereas repairing means to fill the gaps in X, by some substitution method, for
example.



3.2.2 Available Case Analysis

These methods estimate 8 from normal equations (see Haitovsky (1968)) ac-
cording to

cov(z;xj)B = cov(z;y) (i,j=1,...,p), (3.8)
where cov(z;x;) is the p x p covariance matrix with the (4, j)th element (i,j =
1,...,p) computed from the observations common to both z; and z;(i # j) as
well as from all existing measurements on x; for ¢ = j. Similarly, cov(z;y) is
computed from all measurements common to both z; and y (1 = 1,...,p).
From (3.8) we arrive at

cov(a:ia:j)E(B) = E{(ni;/niy)cov(z;x;)B + cov(ze€)} (3.9)

and hence at

E(B) = (cov(ziz;)) "' {(nij /niy)cov(ziz;)} 8 (i,j=1,...,p).  (3.10)

n;; and n;, are the numbers of measurements common to both z; and z;, and z;
and y, respectively, minus unity. So 3 is unbiased only when all n;,’s are equal.
Similarly, V(3) corresponds to the CLSE form when n;; = ni, = nj,(i,j =
1,...,n). In a Monte—Carlo experiment for various patterns of missing observa-
tions Haitovsky (1968) came to the conclusion that in most cases the complete
case estimator is superior to the available case estimator.

3.2.3 Imputation by Zero—Order—Regression (ZOR)

By this method (Wilks (1932)), which is also unconditional mean imputation,
missing values z;; of the jth regressor X; are replaced by the sample (column)
mean Z;; of the observed values of X;. This method is expected to be conve-
nient if the span or the range of the X -realizations is moderate. It may fail in
cases where the sample mean is not a satisfactory representative of the missing
sample elements of X;. This happens for example if trending time series or
growth curves are the laws generating the X ;—values.

The replacement of the missing z;;—values in X, by #;; transforms the (par-

tially or fully unknown) matrix X, into a known matrix X ;). Thus we are led
to the operational model of mixed regression type

(i) B (}éi)>ﬂ+ <;1)> ! (3.11)

€(1) = (X* - X(l)),@ + €4 (3.12)

where the error term

has
ey ~ {(Xu = X(1))B,0°1,}. (3.13)

Hill and Ziemer (1983) describe a version of this method, the so—called modified
zero—order—regression.



3.2.4 Imputation by First—Order—Regression (FOR)

By this notion there is understood a complexity of methods to estimate missing
elements of X,. In principle one constructs an auxiliary regression

P »
xij = boj + Z Tipnbuj + wij , igP®= U ®;, (3.14)
u=l Jj=1
n#j

(ug; : error term), ®; being the index set of missing values in z;, to esti-
mate the dependence between X; (j = 1,...,p, jfixed) and the other regressors
Xi,.., X521, X541,...,Xp. The missing value z;; then is estimated by

P
Zij = Ooj + Zmiuew‘ ; (i € ®;). (3.15)
n=1
n#j

(For examples compare Toutenburg (1992).)

To overcome the difficulty caused by overlapping index sets, there are proposed
certain methods depending on the pattern of missing values and on perceptible
laws in the design matrix. Afifi and Elashoff (1966) mentioned some averaging
procedures (see also Buck (1960)).

Another possibility is to use the auxiliary regression with the highest measure
of determination whereas remaining missing values are replaced by other esti-
mates, e.g., the corresponding sample means.

Dagenais (1973) proposed a generalized LSE procedure, where the matrix X, is
completed by first—order regression approximations.

Toutenburg and Nittner (2002) investigated some different procedures based
on the FOR within a linear regression model with an incomplete binary covari-
ate. The so called pi imputation—simply imputing the probabilities based on
the estimates of the logistic regression model—in terms of the empirical mean
squared error showed good results.

An extension to the FOR in the context of generalized additive models could
lead to an auxiliary regression which is also of the GAM type.

3.2.5 Imputation by Modified First—Order—Regression (MFOR)

The first order regression doesn’t use the response y for imputing the missing
data which is the idea of the modified first order regression (MFOR). Within the
auxiliary regression model additionally the completely observed response vec-
tor is used to predict the missing values. Buck (1960) considered this situation
within the context of estimating y and X in the normal model of (y, X1, ..., Xp).
Toutenburg, Fieger and Srivastava (1999) did some work on the asymptotic
properties of the MFOR estimates.

10



Regression parameters are biased when imputing for missing data using the
MFOR. The early work of Afifi and Elashoff (1966) provide some bias adjust-
ment for the univariate case. The reason for the biased estimates lies in the
inversion of the regression direction.

In Toutenburg and Nittner (2002) also a MFOR was compared to some al-
ternatives concerning an incomplete binary variable; the estimates showed the
expected larger variances resulting from the use of y.

3.2.6 Multiple Imputation

In this paragraph we will describe the main ideas of the multiple imputation.
For details see for example Schafer (1997) or Rubin (1996).

So far, we imputed values that are a ‘good’ fitting to the data, taking into
account either only the variable where missingness occurs, or additionally other
variables. A problem that will occur is that the empirical variances of the vari-
ables will reduce and in the case of first order or modified first order regression
association will be higher that they actually are.

Instead of imputing a ‘best’ value, draw values for the missing values, from
conditional distributions that consider the uncertainty due to the prediction.
The uncertainty arises from a distribution assumption and from the fact that
parameter estimates themselves have variances. In contrast to the former meth-
ods, we will not only produce one complete dataset, but draw several ones, that
vary in the imputed values. The variation over the datasets may now reflect the
uncertainty due to imputation.

First, distribution assumptions for the covariates where missing values may
occur have to be made. Together with the error distribution and the model
equation we obtain a common distribution

P@(y:Xmis | Xobs)a (316)

where Xp,;s denotes all covariates where missingness may occur, X,ps denotes
completely observed covariates that depend on the parameters 0, including the
variance of the errors e.

The method we will use to do multiple imputations is called data augmen-
tation. As data augmentation is a Bayesian procedure one has to choose an
appropriate prior distribution for the parameters ©. For choices see e.g. Box
and Tiao (1992).

Altogether we obtain
P(anmis:@ | Xobs) = P@(anmiS | XObS)P((_))' (317)

Dependent on the distribution assumptions, we are able to draw data from the
conditional distributions either directly or using sampling methods like MCMC.

11



Having chosen the first imputations for the missing values data augmentation
consists of two steps that are applied consecutively many times until we can
assume that the joint distributuion of the missing values and of the parameters
© converge.

The steps are:

1. Imputation Step: For every row of the data set where missing values occur,
draw from

P(Xmis | y, Xobs; ©), (3.18)

and impute the drawn values as new values. X ;s denotes the covariates
where missing values occur and X,s denotes the observed covariates.

2. Propability Step: Using the completed data set draw from
P(G) | anla"'an) (319)

and take the drawn values as new parameter values.

Applying this procedure leads to several completed data sets. Assume that we
have drawn M data sets we now obtain the following estimators using estimates
of the single data sets.

Let ¢z, t =1, ..., M be point estimates for the M completed datasets, and ﬁt be
the variance estimate of the estimator ¢;. As new estimates we obtain:

| M
Vi th, (3.20)
t=1
see Schafer (1997).
- LM M
Varg= 30+ Y@ - 0@ -2 (3:21)
t=1 t=1

The formulas above can be applied to scalar as well to multivariate estimators
and will in our context in general be the estimates of our parameter vector 3.

3.2.7 Nearest Neighbor Imputation

The nearest neighbor imputation has a long history but according to Chen and
Shao (2001) is still not fully investigated although it is used in many surveys.
Assuming the data structure with J missing values for the row indices ¢ =
n—J+1,...,n visualized by

fl;"'7xn7{73;n7!]+17"'7m73 and
obs;;ved mis‘s'ing
3.22)
yla'"JyanyyanJrlw“;er ) (323)
obs;;ved

12



a missing value z;,7 = n —J +1,...,n, is imputed by choosing that value
z;, 1 < i < n — J, which is the nearest neighbor of j. In this context the
distance determining the nearest neighborhood is measured in y-values such
that ¢ satisfies

lyi—yj| = mim<<ng |y —yj| - (3.24)

If the solution is not unique the mean of the corresponding z—values may be
imputed.

The nearest neighbor imputation is a hot deck imputation procedure which
yields values unlikely to be nonsensical. Population means and quantiles are
asymptotically unbiased and consistent (see Chen and Shao (2000)). Since it
is a nonparamteric method it is expected to be somewhat more robust against
model violations. Chen and Shao (2001) give a detailed overview over several
possibilities for adjusting the procedure in order to get asymptotically unbiased
and consistent variance estimates.

Nittner (2002) investigated a simple additive model with missing completely
at random in the covariate and came to the result that the nearest neighbor
imputation showed results similar to the complete case analysis—a procedure
with best asymptotic properties when the missingness is independent of y. A
forthcoming work considers the situation when the missingness depends on y;
first results showed that the CCA became worse and the nearest neighbor im-
putation still shows good results.

3.2.8 ML Estimation of the Missing Values

Let us now assume that the disturbances are normally distributed,
€c ~ N(0,0%I,,,), €x ~ N(0,0°I). (3.25)

Handling the nonobseved regressor values like unknown parameters which have
to be estimated common with 8 and o2 leads to the following considerations.
For reasons of simpler mathematical presentation we confine ourselves to models
without a constant and to the case of a fully nonobserved regressor matrix X,
which has to be estimated from the model

()= () ()

The logarithm of the likelihood is

<€c> ~ N(0,0%1,,) (3.26)

€x

InL(B,0% X,) = —gln(%) - 3(02)
1 t(ye — XcB
—orsve = Xeby - X.0) (T 1E). @am

Differentiating (3.27) with respect to 3,02, and X, and equating to zero results
in the normal equations and their solutions

B=b.=5"Xy., (3.28)

13



1 )
6% = E(yc — X.be) (yo — Xcbe) (3.29)

which are based on the complete observations, only. The maximum likelihood
estimator (MLE) X, is solution of the relation

v, = X,be (3.30)

which is uniquely determined in the case of p = 1, only. In general we have a
(J x (p—1))—dimensional manifold of admissible solutions X,. To find a unique
solution one may pose an additional criterion which chooses an X, such that it
fulfills relation (3.30) and that it is optimal with respect to the specified crite-
rion.

In the missing value regression the mixed estimation framework may be un-
derstood as a two—step procedure: first, replace X, by some X, and second,
estimate 3 by o o / N

B(X.) = (8. + X%~ (Xlye + XLa). (3.31)

Choosing X, according to the ML-normal equation (3.30) gives the result

B(X.) = (Se+X.X)(SB+ Xoee + XX, B+ XX, 57 X e,)
B4 (S, + X.X) NS + X.X)ST X e
= B+S.'X.e,
= b. (3.32)

That is, whatever the solution X, of (3.30), the corresponding mixed estimator
B(X.) coincides with the CLSE b,.

Note. The algorithms of Oberhofer and Kmenta (1974) and Dempster, Laird
and Rubin (1977) for solving ML-equations may be used for patterns of missing
values which are different from a fully unknown matrix X,.

For a further discussion of MLE in missing values regression see Weisberg (1980)

and Toutenburg, Heumann, Fieger and Park (1995).

3.3 The Mixed Regression Framework
3.3.1 Imputation and Biased Mixed Estimation

Let us go back to the completely observed model (3.1) and to the model (3.2)
with the incomplete X,—matrix. Model (3.2) may be interpreted as J additional
observations on the independent variable y but some of the independent vari-
ables are missing.

Certain methods of this section are such that missing observations in X, are
replaced by approximations transforming X, into a known matrix, say Xg.

Substituting X, in (3.2) by the nonstochastic (J X p)-matrix Xg leads to

y*:XRﬂ—i—(X*—XR)ﬂ—{—E*:XRﬂ-{—U*, say, (333)

14



where the disturbance term v, has
Ve = (X, — Xg)B + €x ~ (6,0°1) (3.34)
with
0= (X, —Xg)B. (3.35)
Combining the completely observed sample (3.1) with the additional sample

and by the substitution of X, by Xgr now operational information leads to the
mixed model (see Hill and Ziemer (1983))

@C) - ());;)ﬂ + (3) (3.36)
<ZC> - <<g>"’21"> : (3.37)

In the mixed regression framework due to Theil (1963) the relation (3.33) may
be interpreted as J additional linear stochastic restrictions r = Rf + v.. The
mixed estimator due to Theil was developed for the case 6 = 0. Investigations
on biased stochastic restrictions on 8 are given in Terdsvirta and Toutenburg
(1980). Toutenburg (1970) came to this problem in considering misspecified
linear restrictions.

with

The mixed estimator of 8 in the model (3.36) is just the OLSE, i.e.,

br = (Se + Sr) " (Xeye + Xpus) (3.38)
where S, = X;XC and Sg = XI/%XR. This estimator is biased
biasbp = (Se + Sr) ' Xpd (3.39)
and has the covariance matrix
V(bg) = 0®(S. + Sg)™". (3.40)

A variance comparison with the unbiased CLSE b., which discards the additional
information of (3.33), gives

V(be) = V(bgr) = 02S. ' X g (XS, ' X + 1) " XpS, 1 (3.41)

which is nonnegative definite. Thus replacing missing values of X, by some cho-
sen imputation method results in a biased estimator by having smaller variance
in the sense of (3.41) compared with the unbiased OLSE b.. Hence a mean—
squared—error—criterion appears to be a good device to weight the disadvantage
of bias and the advantage of smaller variance.

3.3.2 MSE-Criteria

The mean squared error (MSE) of an estimator  is defined as

MSE(3, 8) = V(B) + (bias 3, 8) (bias 3, 8)’ (3.42)

To compare the two estimators bg and b. with respect to their MSE or related
functions of MSE we may apply the following criteria (Rao and Toutenburg
(1999)) to our problem.
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3.3.3 MSE I-Criterion (Strong MSE—Superiority)
br is said to be MSE I-better than b, if
A(b.,br) = MSE(b., ) — MSE(bg, §) n.n.d. (3.43)

Now we have
MSE(b., 8) = 0250’1 (3.44)

and, using (3.39) and (3.40),
MSE(bg, 8) = 02(Se + Sr) ™" + (Se + Sr) ' X300 Xp(S. + Sg)~'.  (3.45)
By standard inversion formulae we get
(Se+ Sr) ™ =87 = ST X p(XRST X + 1) XSS (3.46)
and, therefore, it holds that
(Se+ Sp) ' Xp =S Xp(XpS;7 X+ 1) =D. (3.47)
As XpS:'X, 4+ I is p.d., we have the presentation
XpS:'Xp+I1=CC, (3.48)
where C is a regular matrix. Then (3.43) becomes

A(be,br) = 0D [C'C - 0*255’] D' =o*DC |1 -072¢' 165 ¢~1| CD'

(3.49)
which is n.n.d if and only if
I—072C'"'%66C™"  nnd (3.50)
This holds if
A=02C"1C"0=020(XpS. ' Xp+1)'6<1, (3.51)
where A is the non—centrality parameter of the test statistic
n — k 1 1 1 -1
F =2 (y. — Xab.) [XRSC Xp + I] (ys — Xrbe) (3.52)

with s> = (y. — Xgbe) (v« — Xgbe). F has an Fj,_(\)-distribution under
the null hypothesis Hy : A < 1. The test statistic F' can be used to provide a
uniformly most powerful test which tests whether the restricted estimator bg
is MSE I-better than b. (Ho : A < 1) or not (Hy : A > 1). Tabulation of
Fjn—r(A) for A =1 is given in Toro-Vizcarrondo and Wallace (1968).
Note. From a pre-testing standpoint one could use the PT—estimator

ﬁ _ | br if Hp: A <1is accepted,
1 b, otherwise

(see Hill and Ziemer (1983)).
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3.3.4 MSE II-Criterion (First Weak MSE—Criterion)

br is said to be MSE II-better than b, if
trA(be,br) > 0. (3.53)
Then (see Rao and Toutenburg (1999))
A < AminSe - trS X o (XpST X p + 1) " XS = Ao, (3.54)

would be a sufficient condition. Moreover, testing the MSE Il-superiority of
br over b. may be realized using the F—statistic (3.52), whereas Hp : A < Ag
[(3.54)] against Hy : A > Ag is tested.

3.3.5 MSE III-Criterion (Second Weak MSE—Criterion)

Another weaker scalar MSE—criterion is derived by changing the parameter
space. If one is interested in estimating X.3, the conditional mean of y. given
X, instead of estimating 3 itself, then bg is said to be MSE III-better than b,
if and only if

E(X.br — Xc8) (Xcbgr — Xef) < E(Xobe — Xof) (Xobe — XoB),  (3.55)
i.e. if (see (3.49))
trS.A(be, br) = 0*tr XS X — 8 XpS:' Xpd > 0. (3.56)

By using , / / ,
8§ (XrST'XR)6 <0 (XS Xp+ 15 =0"2) (3.57)

with A [(3.51)] the noncentrality parameter of F' (3.52), a sufficient condition
for (3.56) to hold is
A< trXpS; Xy (3.58)

3.4 The Weighted Mixed Regression Framework
3.4.1 The Weighted Mixed Regression Estimator (WMRE)

The mixed estimator b (3.41) in the model (3.39) is the solution to the mini-
mization problem

ming{(y. — Xc8) (yo — XcB) + (Y« — XrB) (v« — XrB)}. (3.59)

To give the observed ‘sample’ matrix X, a different weight than the nonobserved
matrix Xg in estimating 3, Schaffrin and Toutenburg (1990) suggested to solve

ming{(ye — XcB) (ye — XcB) + Ay — XrB) (y. — XrB)}, (3.60)

where ) is a scalar factor. Differentiating (3.60) with respect to 8 and equating
to zero gives the normal equation

(Se + ASR)B — (X.ye + AX pys) = 0. (3.61)
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The solution may be called the weighted mixed regression estimator (WMRE)
and is of the form

b(A) = (Se + ASR) " (Xoye + AX gya). (3.62)

This estimator may be understood as the familiar mixed estimator in the model

yC _ XC €c
(o) = (ana)?+ () @69
Let
Z(\) = Z = (S. + ASg). (3.64)
Then we have
b(A) = Z Y X.X.B+ X.ec + AXp X8+ AX pes)

= BHNT'Xp(X, —XR)B+Z N(Xiee + AXpe,).  (3.65)

Let again
0= (X, — Xg)pB. (3.66)
The WMRE is biased )
biasb(\) = AZ 7' X6 (3.67)
and has the covariance matrix
V(b(\) = ?Z7(S. + A\2Sg)Z 7. (3.68)

3.4.2 Minimizing the MSEP

A reliable criterion to choose A is to minimize the mean squared error of pre-
diction (MSEP) with respect to .
Let

G=% B+, &~ (0,0%), (3.69)

a nonobserved (future) realization of the regression model which is to be pre-
dicted by

1

p=7b(\). (3.70)
The MSEP of p is
E(p—9)° = E[& (0 -8 -
= [# biasb(A\)]> + & V(b(A)E + o> (3.71)

Minimizing with respect to A gives the solution

1
A= ., 0<A<, 3.72
Lo 2 ) (372

where , ,
p(\) =% Z 'S, Z 1 Xg'66 XpZ 'z, (3.73)
p2(N) =& Z'SpZ71S. 27 &, (3.74)
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Thus the optimal A minimizing the MSEP (3.71) of p = & b()\) is solution of the
relation (3.72). Noting that Z = Z(\) is a function of A, also, solving ((3.72) for
A results in a procedure iterating the A-values whereas 02 and § are estimated
by some procedure. The problem becomes somewhat simpler in the case that
only one row of the regressor matrix is incompletely observed,

Ysx — Ty /6+6*

(L,1) (L,p)(p,1) (1,1)° €« ~ (0,07). (3.75)

Then we have Sp = xray,d = (x, — )5 (a scalar) and

p1(N) = (2 Z2718.Z Yaeg)(xrZ '%)82, (3.76)
p2(N) = (F Z'ap) (22 1S.2715). (3.77)

So A becomes .
AT (3.78)

Interpretation of the result:

(i) We note that 0 < XA < 1, so that X indeed is a weight given to the
incompletely observed model.

(ii) A =1 holds for 0262 = 0. If o is finite, then the incompletely observed
but (by the replacement of x. by zg) ‘repaired’ model is given the same
weight as the completely observed model in case of 6 = 0, only. Now,
6= (z, — le)ﬁ = 0 means that the unknown expectation Ey, = x4 of
the dependent variable y, is estimated exactly by a:'R,B (for all 8). Thus
0 = 0 is fulfilled when z, = zg, i.e. when missing values in z, are re—
estimated exactly (without error ) by zg.

This seems to be an interesting result to be taken in mind in general
mixed regression framework in the sense, that additional linear stochatic
restrictions of type r = R+ v, should not be incorporated without posing
on them a prior weight A (and A < 1 in general).

Furthermore, it may be conjectured that weighted mixed regression be-
comes equivalent (in a sense to be specified) to the familiar (unweighted)
mixed regression, when the former is related to a strong MSE—criterion
and the latter is related to a weaker MSE—criterion.

Now, A = 1 may be caused by 02> — oo, also. As o? is the variance
common both to y. and y.,0? — oo leads to unreliable (imprecise) es-
timators in the complete model y. = X ;,8 + € as well as in the enlarged
mixed model (3.36).

(iii) In general, an increasing 0 decreases the weight X of the additional stochas-
tic relation y, = zx0 + vi. If d = 00, A = 0 and

lim b(\) = be. (3.79)
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3.4.3 The Two—Stage WMRE
To bring the mixed estimator b(\) with A from (3.78) in an operational form,o?
and § have to be estimated by 62 and § resulting in A = 1/(1+624%) and b(\).
Using the consistent estimators

. 1 '

52 = m——p(yc — Xcbe) (ye — Xcbe) (3.80)
and . ,

0 =y — Tpbe, (3.81)

~

what are then the properties of the resulting two—stage WMRE b(\). This
will depend on the statistical properties (e.g. mean and variance ) of A\ itself.
The bootstrap method (Efron (1979)) is one of the nonparametric methods in
estimating variance and bias of a statistic of interest.

4 Regression Diagnostics to Identify Non—-MCAR
Processes

The different methods to deal with the design matrix with missing observations
depend on the nature of missing data mechanism. The assumption that miss-
ing values are independent of the observed as well as unobserved data is more
restrictive than the MAR process in which the missing values depend on the
observed data.

Different diagnostic tests are available in the literature to identify the non-—
MCAR processes. One simple approach given by Cohen and Cohen (1983)
is based on the sample means of observed and unobserved data on response
variables. If the partitionary of y in y. and y,., based on missing values 7,
in x,, is random then it indicates that the process is MCAR. Another way to
test the MCAR assumption is to compare the variance covariance matrices of
estimates of # with complete and repaired data sets.

The “leave—one—out” strategy from sensitivity analysis (Chatterjee and Hadi
(1988)) allows to detect the influential missingness of any particular observation.
This strategy computes some scalar statistic based on complete data set or after
eliminating any particular observation from the data set.

Let BR be an estimator of 3 in the linear regression model

y= <§;> +e (4.1)

where Xpg is the matrix obtained after repairing z. through a chosen imputing
technique. Several diagnostic measures have been proposed based on this model.
For example, using Cook’s distance, one can compute

(Br — B.)' X' X (Br — Be)

D =
ps?

>0 (4.2)
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where s? is computed from the complete dataset. Another measure is based on

residual sum of squares and requires to compute

(RSSr—RSS.)
DRSS = W € (0, 00). (4.3)

(n—m—p+1)
Large values of DRSS are indicative of departure from MCAR process.

Based on kernel of Andrews—Pregibon statistics, the small values of the deter-

minant ,
| XCXC |

| X'X |
indicate the violation of MCAR assumption.
The distributions of D, DRSS and DXX are required to test Hp: MCAR vs.

H;: non-MCAR, but they depend on x, 3 and s2. One may obtain the solution
through Monte—Carlo simulation with following steps:

DXX = € [0,1] (4.4)

Fill missing values in x, by suitable MCAR substitute.

Using BR; s? and z., update y by calculating
yS = 7P, + € with e ~ N (0,52 1). (4.5)

Here “s” stands for simulated values.

o Calculate the diagnostic measure based on this data set.

Repeat the process N times with an updated €® in each step and estimate
the null distribution to of the required diagnostic measure.

With thus obtained null distribution, the critical values obtained are the N (1 —
a)t order statistics for D and DRSS and Na!”* order statistics for DXX re-
spectively. The decision rule is reject Ho if D (or DRSS) > fo n(1—a) Or if
DXX < fon, respectively. For more details see for example Fieger (2000),
Simon and Simonoff (1986) or Simonoff (1988).
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