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Abstract. This paper develops a Bayesian method for estimating and testing the 
parameters of the endogenous switching regression model and sample selection models. 
Random coefficients are incorporated in both the decision and regime regression models 
to reflect heterogeneity across individual units or clusters and correlation of observations 
within clusters. The case of tobit type regime regression equations are also considered.  A 
combination of Markov chain Monte Carlo methods, data augmentation and Gibbs 
sampling is used to facilitate computation of Bayes posterior statistics. A simulation 
study is conducted to compare estimates from full and reduced blocking schemes and to 
investigate sensitivity to prior information. The Bayesian methodology is applied to data 
sets on currency hedging and goods trade, cross-country privatisation, and adoption of 
soil conservation technology. Estimation and inference results on marginal effects, 
average decision or selection effect as well as model comparison are presented. The 
expected decision effect is broken down into average effect of individual’s decision on 
the response variable, decision effect due to random components, and differential effect 
due to latent correlated random components. Application of the proposed Bayesian 
MCMC algorithm to real data sets reveal that the normality assumption still holds for 
most commonly encountered economic data.     
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1. Introduction 

An econometric model  that specifies a decision process and the regression models 

associated with each decision option is the endogenous switching regression model1 in 

which the observational units are allocated to a specific regime, depending on the value 

of the latent decision variable relative to a  threshold value. The latent decision variable 

represents marginal cost and marginal benefit considerations or an individual’s expected 

utility. Sample-selection and disequilibrium models belong to this general class of 

switching models with the switch determined endogenously (Maddala and Nelson, 

1975).Various economic phenomena in labor, migration, health, finance and program 

evaluation studies can be modelled as an endogenous switching regression model. A 

firm’s decision whether or not to adopt a new technology  may be based on productivity 

gains and cost of adopting the new technology. Self-selection models were used by 

Gronau (1974), Lewis (1974) and Heckman (1974) to model women’s labor force 

participation decision. Lee and Trost (1978) and Charlier, Melenberg and van Soest 

(2001) applied  it to housing  choices of owning or renting. The problem of education and 

self-selection was analyzed by Willis and Rosen (1979). Mundaca (2001) modelled 

exchange rate regime switching based on central bank’s intervention criteria function as 

an endogenous switching regression model. A selection model in a study of the quality of 

hospital care was considered by Gowrisankaran and Town (1999).   

___________________________ 
1For the stochastic switching regression model, estimation methods are discussed by Quandt and Ramsey 

(1978) using the moment-generating function technique, Hartley (1978) using the EM algorithm, and 

Odejar and McNulty (2001) for the EM, data augmentation and Gibbs sampling algorithms. 
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Recent econometric papers focused on estimating panel data models with 

unobserved individual specific random effects.  Kyriazidou (1997) proposed a two-step 

estimation method which provides consistent and asymptotically normal estimators  for 

estimating a panel data sample selection model with latent individual specific effects in 

both the selection and regression equations. In the first step, the unknown coefficients of 

the selection equation are consistently estimated and in the second stage, the estimates are 

plugged into the regression equation of interest. In her methodology, the sample selection 

effect and the unknown coefficients are differenced out from the equation of interest. 

Barrachina and Engracia (1999) likewise introduced a two-step estimation method for a 

panel data sample selection model with individual specific effects in both the selection 

and regression equations.  The endogenous switching regression model may also be 

estimated by the full information maximum likelihood (FIML) method. FIML considers 

the entire system of equations, and all the parameters are jointly estimated. Estimators 

obtained by FIML enjoy all the properties of maximum likelihood estimators. They are 

consistent and asymptotically normally distributed. Most important of all these properties 

is that the estimators are asymptotically efficient  and achieve the Cramer-Rao lower 

bound. Thus, FIML estimators are most efficient among estimators of the simultaneous 

equations model which is the endogenous switching regression model in this case. The 

nonlinear optimization method  used to implement FIML is Newton‘s algorithm. Terza 

(1998) used FIML to estimate an endogenous switching regression model with count 

data. Compared to two-stage procedures, the FIML method is  computationally quite 

cumbersome to implement, especially with increasing number of regressors. Moreover, it 

may converge to a local maximum or even to a saddle point.  Another criticism of the 
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maximum likelihood method is that it does not provide parameter estimates accurate 

enough to be useful for small and moderately large samples. It is well known that the t-

test yields misleading results when the sample size is small. Nawata and McAleer (2001) 

demonstrated  that this finite sample problem with the t-test is alarming and more severe 

for binary choice and sample selection models. 

Charlier, Melenberg and van Soest (2001) introduced a semiparametric method of 

analyzing the endogenous switching regression model for panel data. They considered 

both fixed and random effects models.   

In contrast to the maximum likelihood method, the MCMC Bayesian methods are 

useful and reliable even for finite sample size since convergence results depend only on 

the number of iterations. 

 This paper develops a Bayesian method for estimating the parameters of the 

endogenous switching regression and the standard sample selection models. 

Heterogeneity across individual units or clusters and association within clusters are 

accounted for by incorporating random coefficients in both the decision and                        

regression models . Tobit type regime regression equations are also considered.  All 

variables in the model except the dummy  variables are assumed to be distributed as  log-

normal.  Markov chain Monte Carlo (MCMC) methods data augmentation and Gibbs 

sampling are implemented to facilitate computation of posterior estimates. A simulation 

study is conducted to determine the performance of two MCMC  algorithms for varying 

prior values of the parameters. These Bayesian methods are applied to a currency hedging 

and  bilateral trade study, cross-country privatisation data, and adoption of soil 

conservation technology study.           
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 The contents of this paper are outlined as follows: Section 2 specifies the 

endogenous switching regression and the standard sample selection models. Section 3 

develops a Bayesian framework for estimating these models. In section 4,  MCMC 

methods  and the algorithms for their implementation for the endogenous switching 

regression and standard sample selection models are discussed. In section 5, simulation 

results are presented, and in section 6  Bayesian implementation via MCMC methods are 

applied to real data. Section 7 contains a summary and conclusion.    

2. Endogenous Switching Regression Models 

In the endogenous switching regression model considered in this paper, the decision 

process is specified as a linear mixed model 

dij* = zij’γ +  wij’τi + ηij      i=1,…,s   j =1,…, ni .                           (1) 

Here dij* is the latent decision variable,   zij and  wij  are the regressors  affecting the 

decision rule,  γ are the fixed coefficients, τi are the random coefficients assumed to be  

normal with mean 0 and variance-covariance matrix  τΣ ,  ηij   is iid normal with mean 0 

and variance 1,  s  is the number of individual units or clusters and ni is the number of 

repeated observations over time per individual or number of individual units per cluster. 

The binary observed decision variable dij  is related to dij* through the threshold 

mechanism  

dij = 1 , dij* >0 

         = 0 , dij* ≤ 0  . 

If  dij* >0 , that is the marginal benefit or expected utility of belonging to regime 1 is 

positive then dij = 1, the individual chooses to be in regime 1. Otherwise, the individual 
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decides to belong to regime 2 and  dij = 0. The regression models corresponding to each 

regime are as follows 

Regime 1:    yij1 = xij1’β1 +  pij1’κi1 + εij1 ,  if dij = 1                        (2) 

Regime 2:    yij0 = xij0’β0 +  pij0’κi0 + εij0 ,  if dij = 0 .            (3)  

The covariances of the errors in the decision and regression models are 
1εη

σ and
0εη

σ . The 

regime errors are assumed to be uncorrelated. The joint model for the latent decision in 

(1)  and regime equations (2) and (3)  above may be expressed in matrix form as 

Yij = Xijβ + Vijκi+ εij                            (4) 
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Yij is the matrix of the response variables including the latent variables, Xij is the matrix 

of regressors for the fixed coefficients,  β is the vector of fixed coefficients, Vij is the 

matrix of covariates for the random coefficients, κi  is the vector of random coefficients 

and εij  is the vector of random errors.  The conditional distribution of Yij is multivariate 

normal  N(Mij, ijyΣ ). Conditional on  the fixed coefficients β and the random coefficients 

κi , M ij  is  (Xijβ + Vijκi ) and 
ijyΣ  is  εΣ . This will be referred to later in MCMC 
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algorithm1. However, with the conditional distribution of  Yij marginalized over the 

random coefficients κi  (as in MCMC algorithm 2), ijM~  is  Xijβ  and   
ijyΣ is   ( εΣ +  

Vij κΣ Vij ´). 

Tobit Type Endogenous Switching Regression Model  

Equations (2) and (3) may also be tobit type models i.e. 

Regime 1:    yij1 = yij1* =  xij1’β1 +  pij1’κi1 + εij1 , if yij1* >0  and dij = 1          (5) 

                        = 0  if yij1* ≤ 0  and dij = 1 

Regime 2:    yij0 = yij0* = xij0’β0 +  pij0’κi0 + εij0 , if yij0* >0  and if dij = 0           (6) 

           = 0     if yij0* ≤ 0  and dij = 0 . 

Sample Selection Model   

For the sample selection model the response variable is observed only when the latent 

decision variable dij* >0 or consequently when dij = 1.  Thus the specification of the 

sample selection model consists of equation (1) and the following regression model  

yij =  xij’β +  pij’κi + εij ,   if dij = 1                           (7) 

    =  0      ,   if dij = 0 

3. Bayesian Framework 

The likelihood function for the endogenous switching regression model with random 

coefficients is  

L( κβ ΣΣ ,,
iy ,Y) ( ) ( )∏∫∏

= =

∝
s

i
i

n

j
iyiij dgyf

i

i
1 1

|,,, κκβκ κκ ΣΣΣ           (8) 



 8
where

( )
( )

ij

i

d

iijijijiijij
iijijij

yiij

pxywz
pxy

yf

















































−

−−++










 −−
=

2

2

111112
11111

1

1

1

1

11

1

''''
''1,,,

ε

ηε

ε

ηε

εε
κ

σ

σ

κβ
σ

σ
τγ

σ
κβ

φ
σ

βκ ΦΣΣ

                   

( )
ijd

iiijijiijij
iijijij

pxywz
pxy

−

















































−

−−+−−










 −−

1

2

2

000002
00000

0

0

0

0

00

1

''''
''1

ε

ηε

ε

ηε

εε

σ

σ

κβ
σ

σ
τγ

σ
κβ

φ
σ

Φ . 

This likelihood is analytically intractable involving high-dimensional integral equal to the 

number of random coefficients which in this case is s .  To  ensure a proper posterior 

density, parameters are modelled with informative priors. It is trivial to obtain prior 

information from a subset of the sample data when no prior values are available from 

economic theory or previous research. Moreover, informative priors can easily be 

adjusted to reflect the degree of certainty or confidence on the priors. The prior 

distribution for the inverse variance-covariance of the vector of  responses and the latent 

decision variable  is ( )11 ,~ −−∑ yyy HW
i

α  , a Wishart distribution with mean 1−
yy Hα  and 

precision matrix 1−
yH . Likewise for the hyperparameter  1−

κΣ  the prior distribution is 

( )11 ,~ −−
κκκ α HWΣ  . The Wishart degrees of freedom for both 1−

κΣ  and 1−
iyΣ has to 

be small relative to the total sample size to allow the data to dominate the priors.  

Simulations in this research indicate that a reasonable degrees of freedom is at least 30 

for sufficiently accurate estimation. The priors for the random coefficients iκ  and the 
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fixed coefficients β  are multivariate normals  iκ ~ N(0 , κΣ ) and  β  ~ N(0 , βΣ ) 

respectively.  

If we let g( κβ ΣΣ ,,
iy  ), be the joint prior distribution for ( κβ ΣΣ ,,

iy ), the 

corresponding posterior distribution  then is 
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Inference on the random coefficients is based on the posterior distribution  
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These posterior distributions are too complicated to evaluate analytically. However, by 

using MCMC methods data augmentation and Gibbs sampling, this posterior distribution 

can be sampled indirectly by generating a sample of parameter values from the 

conditional distributions which are relatively simpler in form than the joint posterior 

distribution of interest. Posterior Bayes estimates are then obtained from the generated 

samples.   

4. Markov Chain Monte Carlo Methods 

Markov chain Monte Carlo (MCMC) methods facilitate Bayesian estimation of the 

endogenous switching regression parameters. MCMC methods aim to summarize the 

features of a distribution by sampling indirectly from the distribution of interest. These 

methods are most valuable for complicated distributions such as high dimensional joint 

distributions  which are analytically infeasible to evaluate. MCMC methods construct a 
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Markov chain θk 

( 1 ), θk 
( 2 ), ... , θk

( m ), ... with equilibrium distribution identical to the 

desired joint posterior distribution. Ergodic averaging of the Markov chain  θk (m)   or  

some function  h(θk
(m )) provides consistent estimators of the parameters θ   or a function  

h(θ ). A form of MCMC is Gibbs (Geman and Geman 1984) sampling where Markov 

chains are generated from full conditional distributions  f (θk | θ1,…,θk-1, θk+1,…,θr), 

k=1,…,r . The resulting iterations from 

(1) Generating θ1 (m+1)  from f(θ1 (m+1) | θ2 (m),...,θr (m)).  

(2) Generating θ2 (m+1)  from f(θ2 (m+1) | θ1 (m+1), θ3 (m),…,θr (m)). 
      . 

. 

. 
 (r) Generating θr (m+1)  from f(θr (m+1) | θ1 (m+1)

 ,…,θr-1 (m+1)) 

provide a Markov chain with transition probability  from θ (m) to θ (m+1)  given by the 

product of the above r full conditional probabilities. Under regulatory conditions (Tierney 

1991), as the number of iterations m approaches infinity (θ1 ( m ),..., θr ( m )) converges in 

distribution to  (θ1 ,..., θr ) and likewise θk
(m) converges in distribution to θk . After 

equilibrium is reached at iteration a , sample values are averaged  to provide consistent 

estimates of the parameters or their function, 
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The marginal posterior distribution is estimated as 
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and the estimate of the conditional predictive ordinate (CPO) is  
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In contrast to the maximum likelihood method and the bootstrap resampling method, the 

MCMC Bayesian methods are useful even for finite sample size since convergence 

results depend only on the number of iterations. 

In data augmentation (Tanner and Wong 1987), a form of Gibbs sampling, there 

are only two blocks  f(MY| θ) and  f(θ | MY ) corresponding to an imputation step and a 

posterior step where MY is the vector of latent variables that augment the original data and 

simplifies analysis of complicated models. 

The key to analyzing the endogenous switching regression model is to apply data 

augmentation to generate the missing variables My = [dij
*, yij1

 m
 , yij0 m] where dij

* is the 

latent decision variable and yij1
 m

 and yij0 m are the potential response variables if dij =0 

and if dij =1 respectively. With the original data plus the latent decision variable and 

potential variables known, the data is complete and evaluation of the likelihood and the 

joint posterior distribution is greatly simplified.   Hence, the likelihood in (8) simplifies to 

that of the multivariate linear model  
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for balanced clusters, where  =
iyΣ εΣΙ ⊗

in  
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for clusters with unequal sample size. 
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When dij=1, that is the decision is to select the first option, dij

* is generated 

from the conditional distribution [dij
* | θ] ~ TN(0,∞) [ (zij‘γ+ wij‘τi) , 1 ]  which is a 

truncated normal distribution with support (0,∞) . Using the inversion method (Devroye 

1986), samples from the truncated normal are therefore generated from(zij‘γ+ wij‘τi)+    

Φ-1(1-Φ(zij‘γ+ wij‘τi) + UΦ(zij‘γ+ wij‘τi))  where U is the standard uniform distribution. 

Rejection method and Geweke’s (1991) method can also be used to sample from the 

truncated normal. The latent potential variable yij0
m, is then generated from the 

untruncated normal distribution  

[yij0
 m | dij

*, θ] ~ N[xij1’β0 + pij1’κio + 
0ηεσ (dij*-zij‘γ-wij‘τi) , 22

00 ηεε σσ − ]            

If the decision is to choose option 2, that is dij=0, the latent decision variable dij
*  is then 

generated from the truncated normal  [dij
* | θ] ~ TN(-∞ , 0) [ (zij‘γ+ wij‘τi) , 1 ] with support 

(-∞ , 0). Using the inversion method samples are drawn from (zij‘γ+ wij‘τi)+ Φ-1( U(1-

Φ(zij‘γ+ wij‘τi))). The latent potential variable yij1
m, is generated from the conditional 

distribution [yij1
 m | dij

* , θ] ~ N[xij0’β1 + pij0’κi1 + 
1ηεσ (dij*-zij‘γ-wij‘τi) , 22

11 ηεε σσ − ] . 

Algorithm 1 

The complete Gibbs sampling algorithm for a  two regime endogenous switching 

regression model in (1)-(3) with initial values γ (0), τi
(0), β1

(0), β0
(0), κi1

(0), κi0
(0), )0(

0ηεσ , 

)0(
1ηεσ ,  )0(2)0(2

10
, εε σσ   proceeds as follows:    

Imputation Step:  

Generate  My
(m)  from  [My

(m) | θ (m-1)]  as follows: 

1a. Generate  dij
*(m)  from  



 13
[dij

* | θ (m-1)] ~ TN (0,∞ ) [ (zij‘γ+ wij‘τi) , 1 ] with support (0,∞) if dij=1. 

1b. Generate yij0
(m)

  from  

[yij0
 m | dij*  (m), θ (m-1)] ~ N[xij1’β0 + pij1’κio + 

0ηεσ (dij*-zij‘γ-wij‘τi) , 22
00 ηεε σσ − ]. 

2a. Generate dij
*(m)  from  

[dij
* | θ (m-1)] ~ TN(-∞ , 0) [ (zij‘γ+ wij‘τi) , 1 ] with support (-∞ , 0) if dij=0. 

2b. Generate yij1
m  (m)

  from  

[yij1
 m | dij*  (m), θ (m-1)] ~ N[xij0’β1 + pij0’κi1 + 

1ηεσ (dij*-zij‘γ-wij‘τi) , 22
11 ηεε σσ − ]. 

Posterior Step:  

Generate  θ (m)  from  [θ  | My
(m)]  as follows: 

3. Generate )(1 m−
κΣ  from the Wishart   
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s) and  I  using Bartlett’s (1933) decomposition method described in Ripley (1987). 
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In  generating the variance-covariance matrices in (3) and (4), the simulations ensure that 

these matrices are positive definite.  

Gibbs sampling is not only a powerful technique but it is also flexible. For the 

sample selection model, there are only two rows in the matrices in (4) with the 

corresponding columns also deleted. Thus the above algorithm is modified by skipping 

(1b) with all other steps  unchanged. 

For a tobit type endogenous switching regression model, the above algorithm can 

be easily modified by two additional steps (1c) and (2c) to generate additional latent 

variables corresponding to the censored values or zero’s . In (1c)  yij1
* m

  is generated from 

the truncated normal  

[yij1* m | dij*, θ (m-1)] ~ TN(-∞ , 0) [xij1’β1 + pij1’κi1 + 
1ηεσ (dij*-zij‘γ-wij‘τi) , 22

11 ηεε σσ − ]  

with support  (-∞ , 0) for yij1=0.  In (2c)  yij0
* m

  is generated from the truncated normal  

[yij0* m | dij*, θ (m-1] ~ TN(-∞ , 0) [xij0’β0 + pij0’κi0 + 
0ηεσ (dij*-zij‘γ-wij‘τi) , 22

00 ηεε σσ − ]  

with support  (-∞ , 0) for yij0=0.   

If the random coefficients are not included in both the decision and regression 

equations, the algorithm excludes (3) and (5), and in all the conditional distributions in 

the other steps, the terms corresponding to the random coefficients are not included.                                  
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Parameters are considered significant at the  5% significance level if the 

interval between the 2.5th and 97.5th percentiles of the MCMC samples from  the 

posterior distribution exclude zero.  

For individual units that selected regime one, the  actual decision effect for 

individual  j  in cluster i may be measured  by comparing the actual response for regime 

one to the expected potential response for regime two,  

yij1 – E(yij0 / dij=1) = yij1 – 



 +′+′

10101 0
λσκβ ηεiijij px           (16) 

where ( )
( )iijij

iijij
wz

wz
τγΦ

τγφλ ''
''

1 +
+

=  .  

On the other hand, the average or expected decision effect for individual  j  in 

cluster i  for those that decided  to be in regime 1 is 

E(yij1 / dij =1) – E(yij0 / dij=1)                                   (17) 

= 



 +′+′

11111 1
λσκβ ηεiijij px – 



 +′+′

10101 0
λσκβ ηεiijij px  

= ( ) ( ) ( ) 1011011 01
λσσκκββ ηεηε −+−′+−′

iiijij px . 

It is the difference between expected response from choosing to be in regime 1 and the 

expected potential response from opting to be in regime 2. Thus, the decision effect also 

referred as counterfactual or conditional effect may be decomposed into three parts, the 

average effect of the individual’s decision on the response variable, decision effect due to 

random components and the differential effect of the decision on the response variable 

due to the unobserved correlated  random components. Significance of each of these 

terms can be tested from the MCMC samples of the posterior distributions. For program 

evaluation studies, the total actual effect of the program may be evaluated by summing 
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(16) across individuals and clusters, while the total average effect of the program 

maybe evaluated by summing (17) across individuals and clusters. The average program 

effect may also  be evaluated at the mean values of the regressors. This saves a lot of 

computer time than evaluating the average program effect at each individual 

observations.  If any of the three components in (17) is significant, we can infer that the 

average decision effect is also significant without actually evaluating (17) for each 

individual unit and cluster. 

The marginal effect of xij1h on the response variable yij1 is   

  ( )
1

1

1
1

1/ δσγβ ηεhh
hij

ijij
x

dyE
+=∂

=∂                        (18) 

where ( )
( )iijij

iijij
wz

wz
τγΦ

τγφλ ''
''

1 +
+

=   and ( )iijij wz τγλλδ ''1
2

11 ++= . 

Again the estimates of the marginal effects and their significance can be tested from the 

MCMC samples of the posterior distributions. Actual and average decision effects and 

marginal effects for observations that belong to regime 2 are similarly evaluated. 

Algorithm 2 

A reduced blocking scheme is also implemented in an attempt to accelerate convergence 

and improve mixing properties of the Markov chains by grouping together elements of 

the parameter vector  that are highly correlated (Liu, Wong and Kong, 1994) and  using 

available reduced conditional distributions (Gelfand and Smith, 1990).  In algorithm 2, 

the imputation steps are unchanged . However, in the posterior step, the fixed coefficients 

β  and the inverse-variance covariance  1−
iyΣ    are generated in one block and the 
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random coefficients κi and their inverse variance covariance matrix 1−

κΣ   are drawn in 

another block.  The reduced blocking algorithm 2 procedure is then 

Imputation Step:  

Generate  My
(m)  from  [My | θ (m-1) ]  . 

Posterior Step:  

Generate  θ (m)  from  [θ | My
(m)]  . 
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where 
1

11
−

−− 




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i
ΣΣκκ  and ( )


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 −′= − βκκ iiyi XYPVM

i

1Σ . 

5. Simulation Study 

To compare parameter estimates for the algorithms with full and reduced MCMC 

blocking scheme and to assess robustness to prior information, 100 data sets were 

generated each with 50 clusters and 20 observations per cluster. The endogenous 

switching regression model considered in the simulations is  

dij* = zij’γ +  wij’τi + ηij      i=1,…,50   j =1,…, 20 .                     (19) 

Regime 1:    yij1 = xij1’β1 +  pij1’κi1 + εij1 ,  if dij = 1            

Regime 2:    yij0 = xij0’β0 +  pij0’κi0 + εij0 ,  if dij = 0             

where  γ ’ =[1, -0.004, 0.3] ,  β1 ’ =[14, -0.3, 0.53] ,  β0 ’ =[-1, 0.7,- 0.3] ,  
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For each data set, each MCMC algorithm is implemented with a burn in or warm up 

period of  a=2000 iterations and monitoring period of  t=5000 iterations. Estimates of the 

posterior mean θ
)

, standard deviation θŝ , and the 2.5% and 97.5% quantiles of the 

marginal posterior distributions were computed for each parameter and for each data set. 
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Tables 1-5 present the true parameter values θ , the average parameter estimate θ

)
 over 

100 data sets, the standard deviation of the parameter estimates 
θ̂s  over 100 data sets, the 

average estimate of standard deviation θŝ  over 100 data sets, mean absolute deviation 

from the true parameter values, and the actual coverage of the nominal 95% Bayes 

interval from the 2.5th  to 97.5th  percentiles for varying priors. Three different prior 

combinations were used pβ  = 0.9 β ,  Hy = 0.9
iyΣ   Hκ= 0.9 κΣ , pβ  = 0.7 β ,  Hy = 

0.7
iyΣ   Hκ= 0.7 κΣ and  pβ  = 0.5 β ,  Hy = 0.5

iyΣ   Hκ= 0.5 κΣ . Prior values are 

specified as certain fractions of the true parameter values. Simulation results show that 

there is not much difference in posterior statistics obtained from the full and reduced 

blocking algorithms. This conforms with the results of Gelfand and Smith (1990) that the 

gain in efficiency from using substitution sampling or data augmentation relative to 

Gibbs sampling is only likely to be of consequence when the number of reduced 

conditionals is a relatively large fraction of the total number of conditionals involved in a 

cycle.  Sample paths for the fixed effects are very stable for both algorithms. However, 

the reduced blocking algorithm 2 has more stable sample paths for the inverse variance-

covariance matrix of the error components 1−
iyΣ and the random coefficients 1−

κΣ  than 

full blocking algorithm 1.  That is, algorithm 2 rarely gets trapped in an absorbing state 

which is extremely large values for 1−
κΣ  and extremely small values for 1−∑

iy . These 

can be remedied by either reinitialising these chains or setting extremely large generated 

parameter values to a reasonable upper bound like a function of the maximum response 

values and extremely small generated parameter values to a reasonable lower bound.  In 
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the simulation results presented here, the absorbing states are not observed. However, 

for some parameter values I have also tried (but results are not presented here) from 

which the data sets were generated in the simulations, the absorbing states sometimes 

occur. For the privatisation and hedgerow adoption data sets these absorbing states were 

observed but not for the currency hedging and goods trade data. The occurrence of an 

absorbing state for Gibbs Markov chain for the variance-covariance matrix of the random 

effects κΣ  was also observed by Zeger and Karim (1991) for GLM models with random 

effects. Moreover, the reduced blocking algorithm 2 provided model estimates with better 

fit in terms of the sum of log conditional posterior ordinate as evidenced by real data 

analysis for the privatisation study. For both algorithms, estimation and inference results 

are fairly robust to prior information and parameter estimates are quite accurate 

especially for the fixed parameters. The standard deviation estimates θŝ  are 

approximately unbiased providing consistent inferences. The actual coverage 

probabilities of the nominal 95% Bayes  posterior intervals is 100% for all parameters 

using any prior.  

6. Real Data Applications 

The proposed Bayesian MCMC method for parameter estimation and hypothesis testing 

are utilized for analysing real data on currency hedging and goods trade, cross-country 

privatisation study, and adoption of soil conservation technology. For the real data sets, 

the Bayesian method is implemented using MCMC method algorithm 2. 

Currency Hedging and Goods Trade 

The currency hedging and goods trade data of 45 bilateral trade partners for 1970, 1980, 

1990, and 1992 is analysed using Bayesian MCMC method for a two regime endogenous 
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switching regression with fixed effects, random intercepts and known threshold value. 

The decision model which specifies which country pairs are likely to have developed 

hedging instruments based  on the value of the latent variable indicating virtual trade or 

trade level in the absence of any hedging instrument is  

dij* = τ0i +  ∑
=

4

1k
ijkk zγ   +  ηij ,   i=1,…,45  ,  j=1,…,4                              (20) 

where τ0i is the random intercept specific to the ith bilateral trade partners, the regressors 

zijk for the fixed coefficients are distance between the economic centers of the two 

countries (dist), real exchange rate volatility as measured by the standard deviation of the 

first difference of the natural logarithm of monthly exchange rates  during the year 

(xrvol), the product of two countries per capita GNPs (gnpc) and a dummy variable for 

country pairs with common language or some historic/colonial ties (comlink).  It is 

assumed that a hedging market will emerge if the level of potential trade dij*  exceeds 

10.5. The bilateral trade level corresponding to this regime is 

1

4

1
11101 ij

k
ijkkiij xy εβκ ∑

=

++=    i=1,…,45  ,  j=1,…,4,                  (21) 

otherwise, the trade level is 

0

4

1
00000 ij

k
ijkkiij xy εβκ ∑

=

++= .                     (22) 

The regression equations are basically of the same form as the decision equation except 

that the dependent variable is total trade between the country pairs and the regressors are 

dist, xrvol, comlink and gnp which is the product of country pairs GNPs. For both the 

decision and regime equations, all variables except the dummy variables are in natural 

logarithm. The choice of variables and gravity specification are from Wei (1999). An 



 22
explanation proposed for the difficulty in identifying large negative effects of 

exchange rate volatility on trade is the hedging hypothesis which states that the 

availability of hedging instruments reduces the effect of exchange rate volatility. If the 

hedging hypothesis holds, the volatility elasticity of trade is reduced possibly to zero for 

bilateral trade partners that have access to hedging instruments. From table 6, it can be 

inferred that the hedging hypothesis can be rejected at the 5% significance level. For 

country pairs with large trade potential and most likely to develop currency hedging 

instruments, exchange rate volatility deters goods trade enormously. On the other hand, 

for bilateral trade partners with small trade potential, stochastic volatility has small 

positive effect on goods trade.  Results presented in table 8  show that the difference in 

stochastic volatility effects on trade is statistically significant  at the 5% level. Since the 

first and third components of the average decision effect in (17) are statistically 

significant at the 5% level, we can also conclude that the average effect of hedging on 

trade is significant. 

The quantile-quantile (Q-Q) plot in figure 3 shows that the normality assumption 

of errors is satisfied. The residual plot does not deviate far from the normal line.  

Cross-Country Privatisation Study  

The Bayesian methodology for sample selection with fixed effects, random coefficients 

and known threshold value is applied to a cross-country privatisation study of Bortolotti, 

Fantini and Siniscalco (2001).  The data consists of observations from 23 countries for 16 

annual periods. It is assumed that governments privatise when their expected utility dij* 

exceeds an unobservable threshold which is assumed to be zero in this study. Thus the 

decision model is specified as 



 23

dij* = τ0i +  ∑
=

6

1k
ijkk zγ   +  ηij ,   i=1,…,23  ,  j=1,…,16                                    (23) 

where τ0i is the country-specific random intercept, the regressors zijk for the fixed 

coefficients are lagged capitalisation (capl),  lagged debt to gdp ratio (debtl), per capita 

gdp (gdp), lagged turnover ratio (turno), and dummy variables for a non-democratic form 

of government (nondem) and for a right-wing government (right). The regression 

equation is  

∑∑∑
===

+++=
4

1'
''

4

1

4

1
0

k
ijijkijkkk

kk
ijkkiij xxxy εββκ ,   i=1,…,23  ,  j=1,…,16           (24) 

where the dependent variable rev/gdp is the total gross revenues from privatisation sales 

scaled by gdp, κ0i is the country-specific random intercept, the regressors xijk for the fixed 

coefficients are capl, debtl, gdp and turno. All variables except the dummy variables for 

both the decision and state regression models are in natural logarithm. From table 9 it can 

be inferred that privatisation apparently coincides with financial market development as 

well as economic development and high foreign debt level. Coefficients of lagged 

capitalisation, lagged debt to gdp ratio, lagged turnover ratio and per capita gdp  are all 

positive  and significant at the 5% level. Moreover, right-wing governments are more 

likely to resort to privatisation. Table 9 shows that rev/gdp varies with capl , debtl and 

turno in a quadratic manner. Interactions among stock market liquidity, economic 

development and debt level are manifested as interactions between capl and debtl, capl 

and gdp, and gdp and turno which are significant at the 5% level. The covariance 

between the decision and regression random errors is significantly different from zero 

which implies that governments’ decision to privatise is based on some utility 



 24
maximizing criterion and not a random process. From table 9 it is evident that the 

random intercepts are significant at the 5% level.   Table 11 presents marginal effects of 

capl, debtl , gdp and turno which are all positive and significant at the 5% level except for 

turno. These results assert the significant role of market liquidity and debt level in 

determining privatisation revenue.   

Model goodness of fit is gauged using sum of log conditional predictive ordinate 

(CPO) for cross validation sample. Results presented in table 13 show that the model 

with more regressors model 1 is preferable to model 2 based on higher sum of log CPO 

although the difference is not really substantial.     

The quantile-quantile (Q-Q) plot in figure 4 shows that the normality assumption 

of errors is satisfied. The residual plot does not deviate far from the normal line.  

Soil Conservation Technology Adoption Study 

To demonstrate the flexibility of the MCMC method, that is, it is easily implemented to 

suit simpler models with least modifications, it is used to analyze agricultural data on 

adoption of soil conservation technology using a two-regime switching regression model 

with known threshold value and only fixed effects. Data for this empirical estimation is 

from a sample of 150 parcels with and without contour hedgerows from a primary survey 

of 70 farmers from Cebu in central Visayas and 60 farmers from Claveria, Misamis 

Oriental in the Philippines for the 1995 crop year. Data consists of observations from one 

parcel per farmer for different seasons and corn variety whenever applicable. The survey 

sites are upland areas where corn is the main crop.   

The decision process of whether or not to adopt a soil conservation technology is 

specified by the latent adoption decision variable  
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dj* =  ∑
=

13

0k
jkk zγ   +  ηj ,    j=1,…,150                               (25) 

and the farmer’s corn yield is specified by the regression model which in this case is the 

production function considered to be of a general flexible translog form which allows for 

interaction among variables, 
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      for non-adopters or if dj* ≤ 0  .            (27)         

V refer to inputs, D are dummy variables and W are condition factors. The input variables 

for this study are the natural logarithm of labor mandays and the natural logarithm of the 

total amount of fertilizer applications. The dummy variables are the indicator variable for 

some form of agricultural training or agricultural extension program participation, 

location (for either Cebu or Claveria) , corn variety (native and modern hybrid) and dry 

or wet (rainy ) season. The other variables are the farmer characteristics age and 

education, and farm characteristics soiltype and slope. Table 14 contains the estimates of 

the adoption decision model and the parameter estimates of regime coefficients with 

associated standard deviation and 2.5% and 97.5% quantiles, regime error variances and 

covariances of errors from the adoption decision model and production regime models 

obtained using reduced MCMC method. The significant determinants of adoption are 

location, age, education, training, land tenure status, parcel size, soiltype, interaction of 

slope and location, distance of farm to road, and occurrence of erosion. These results 
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agree with those of Schultz (1975) and Fuglie and Bosch (1995) that some form of 

formal education or training enable farmers to adjust to technological innovation. 

Farmers from Cebu and Claveria apparently differ in terms of their adoption decision  

process. Farmers’ productivity  depend on whether or not they are adopters or non-

adopters. For adopters, the significant explanatory variables for productivity are location, 

farmer’s average household age, education, training, ln of labor in mandays, soiltype, ln 

of amount of fertilizer applications, season and corn variety. Corn yield increases with 

the amount of labor and amount of fertilizer input in a quadratic manner.  Corn yield also 

significantly varies with interactions of ln labor and age, ln labor and education, ln labor 

and soiltype, ln fertilizer and education, ln fertilizer and soiltype, and ln fertilizer and 

slope. For farmers who choose not to adopt soil conservation technology, the factors 

significantly influencing productivity are all regressors  except the square of fertilizer 

applications, interactions ln fertilizer and education , and ln fertilizer and slope. Results 

show that the modern hybrid of corn variety yields more output than the traditional 

variety for both adopters and non-adopters.  From table 15 it is evident that all the 

coefficients are significantly different for the production regimes of adopters and non-

adopters except soiltype, square of ln fertilizer and interactions ln labor and ln fertilizer, 

ln fertilizer and education. These results indicate that the average productivity effect is 

significant since the first term in equation (17) is significant. The covariance of the errors 

from the adoption decision model and the  production regime errors are positive for both 

adopters and non-adopters.  Both adopters and non-adopters base their decision on a 

latent utility maximizing criterion. However, only the covariance for non-adopters is 

significantly different from zero at the 5% level although the covariance for adopters are 
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almost significant.  The same signs of 

1ηεσ and  
0ηεσ  indicate hierarchical sorting. This 

implies that farmers who adopt soil conservation technology have above average 

productivity whether they choose to be an adopter or a non-adopter. But they are more 

productive if they opt to be adopters rather than non-adopters. On the other hand, farmers 

who choose not to adopt have below average productivity whether they adopt soil 

conservation technology or not. However, their productivity is higher from non-adoption. 

This is not surprising since farmers who adopt soil conservation technologies are better 

educated and had formal training on soil conservation technology and agricultural 

extension and they are relatively younger compared to non-adopters. Non-adopters are 

less educated compared to adopters and only 40% of them had some training on soil 

conservation technology and/or agricultural extension programs. Table 16 shows that the 

marginal effect of ln fertilizer of corn yield is higher  for adopters of contour hedgerows 

than for non-adopters. Farmers who adopt soil conservation technology are probably 

knowledgeable of the optimum input mixture. The productivity differential coefficient or 

the difference between the error covariances for the production regimes of adopters and 

non-adopters is 0.2964 and is not significantly different from zero at the 5% level 

although almost significant. However, it is still economically significant since it implies 

that the benefit from adoption due to latent productivity attributes  is 30%.  Thus, the 

expected gross productivity from adoption which is the sum of the average productivity 

and differential effect is at least 30%.  

The quantile-quantile (Q-Q) plot in figure 5 shows that the normality assumption 

of errors is satisfied. The residual plot does not deviate far from the normal line.  

7. Summary and Conclusion 
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Estimation and inference procedures for the parameters of the endogenous switching 

regression model and sample selection models are developed. Random coefficients are 

incorporated in both the decision and regime regression models to account for 

heterogeneity across individual units or clusters and correlation within clusters. Tobit 

type regime regression equations are also considered.  A combination of Markov chain 

Monte Carlo methods, data augmentation and Gibbs sampling is used to facilitate 

computation of Bayes posterior statistics. From the simulations, we can conclude that for 

both the full and reduced  blocking algorithms, estimation and inference results are fairly 

robust to prior information and parameter estimates are quite accurate especially for the 

fixed parameters.  However, the MCMC reduced blocking algorithm performs better than 

the full blocking algorithm both in the simulation study and real data applications in that 

it rarely gets trapped in absorbing states and it provides models with better fit. It is 

evident from MCMC methods application to real data sets that the normality assumption 

still holds for most commonly encountered economic data.     

The endogenous switching regression model specification considered in this paper 

may be extended to include nested or multilevel sources of heterogeneity and more than 

two regimes.  Moreover, error components in the decision and regime equations may be  

modelled as GARCH errors.      
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Table 1 

Algorithm 1 (and Algorithm 2) Simulation Results For Varying Priors 

 
 
 0γ  1γ  2γ  

θ 1.0000 -0.0040 0.3000 

θ
)

    

pβ  = 0.9 β ,  Hy = 0.9
iyΣ ,  Hκ= 0.9 κΣ  0.9659 

(0.9673) 
-0.0042 

( -0.0046) 
0.2921 

(0.2978) 

pβ  = 0.7 β ,  Hy = 0.7
iyΣ ,  Hκ= 0.7 κΣ  0.9537 

(0.9601) 
-0.0027 

(-0.0020) 
0.2874 

(0.2898) 
pβ  = 0.5 β ,  Hy = 0.5

iyΣ , Hκ= 0.5 κΣ  0.9297 
(0.9461) 

-0.0018 
(-0.0027) 

0.2715 
(0.2784) 

θ̂
s     

pβ  = 0.9 β ,  Hy = 0.9
iyΣ ,  Hκ= 0.9 κΣ  0.0526 

(0.0517) 
0.0077 

(0.0080) 
0.0410 

(0.0516) 

pβ  = 0.7 β ,  Hy = 0.7
iyΣ ,  Hκ= 0.7 κΣ  0.0502 

(0.0496) 
0.0086 

(0.0083) 
0.0522 

(0.0545) 

pβ  = 0.5 β ,  Hy = 0.5
iyΣ ,  Hκ= 0.5 κΣ  0.0440 

(0.0414) 
0.0089 

(0.0083) 
0.0423 

(0.0530) 

θŝ     

pβ  = 0.9 β ,  Hy = 0.9
iyΣ ,  Hκ= 0.9 κΣ  0.0621 

(0.0474) 
0.0184 

(0.0185) 
0.0478 

(0.0474) 

pβ  = 0.7 β ,  Hy = 0.7
iyΣ ,  Hκ= 0.7 κΣ  0.0582 

(0.0456) 
0.0184 

(0.0185) 
0.0463 

(0.0459) 
pβ  = 0.5 β ,  Hy = 0.5

iyΣ ,  Hκ= 0.5 κΣ  0.0538 
(0.0436) 

0.0184 
(0.0184) 

0.0441 
(0.0440) 

Mean Absolute Deviation from True 
Parameter    

pβ  = 0.9 β ,  Hy = 0.9
iyΣ ,  Hκ= 0.9 κΣ  0.0506 

(0.0488) 
0.0061 

(0.0064) 
0.0313 

(0.0412) 
pβ  = 0.7 β ,  Hy = 0.7

iyΣ ,  Hκ= 0.7 κΣ  0.0562 
(0.0530) 

0.0072 
(0.0069) 

0.0430 
(0.0451) 

pβ  = 0.5 β ,  Hy = 0.5
iyΣ ,  Hκ= 0.5 κΣ  0.0730 

(0.0584) 
0.0074 

(0.0069) 
0.0422 

(0.0459) 
Coverage of Nominal  95% Interval    

pβ  = 0.9 β ,  Hy = 0.9
iyΣ , Hκ= 0.9 κΣ  100 

(100) 
100 

(100) 
100 

(100) 



 34
pβ  = 0.7 β ,  Hy = 0.7

iyΣ ,  Hκ= 0.7 κΣ  100 
(100) 

100 
(100) 

100 
(100) 

pβ  = 0.5 β ,  Hy = 0.5
iyΣ ,  Hκ= 0.5 κΣ  100 

(100) 
100 

(100) 
100 

(100) 
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Table 2 

Algorithm 1 (and Algorithm 2 ) Simulation Results For Varying Priors 

 
 10β  11β  12β  

θ 14.0000 -0.3000 0.5300 

θ
)

    

pβ  = 0.9 β ,  Hy = 0.9
iyΣ , Hκ= 0.9 κΣ  13.8958 

(13.9121) 
-0.2836 

(-0.3028) 
0.4246 

(0.4334) 
pβ  = 0.7 β ,  Hy = 0.7

iyΣ ,  Hκ= 0.7 κΣ  13.8923 
(13.8877) 

-0.2872 
(-0.2768) 

0.4192 
(0.4042) 

pβ  = 0.5 β ,  Hy = 0.5
iyΣ  , Hκ= 0.5 κΣ  13.8823 

(13.8953) 
-0.2652 

(-0.2768) 
0.4040 

(0.3971) 

θ̂
s     

pβ  = 0.9 β ,  Hy = 0.9
iyΣ ,  Hκ= 0.9 κΣ  0.1083 

(0.0977) 
0.0756 

(-0.0746) 
0.0828 

(0.0743) 

pβ  = 0.7 β ,  Hy = 0.7
iyΣ ,  Hκ= 0.7 κΣ  0.1065 

(0.1060) 
0.0768 

(0.0862) 
0.0677 

(0.0726) 
pβ  = 0.5 β ,  Hy = 0.5

iyΣ ,  Hκ= 0.5 κΣ  0.1170 
(0.1060) 

0.0807 
(0.0865) 

0.0781 
(0.0751) 

θŝ     

pβ  = 0.9 β ,  Hy = 0.9
iyΣ , Hκ= 0.9 κΣ  0.1138 

(0.1044) 
0.0883 

(0.0879) 
0.0928 

(0.0916) 
pβ  = 0.7 β ,  Hy = 0.7

iyΣ ,  Hκ= 0.7 κΣ  0.1067 
(0.0985) 

0.0851 
(0.0841) 

0.0889 
(0.0875) 

pβ  = 0.5 β ,  Hy = 0.5
iyΣ ,  Hκ= 0.5 κΣ  0.0984 

(0.0920) 
0.0804 

(0.0795) 
0.0833 

(0.0823) 
Mean Absolute Deviation from True 

Parameter    

pβ  = 0.9 β ,  Hy = 0.9
iyΣ ,  Hκ= 0.9 κΣ  0.1204 

(0.1043) 
0.0599 

(0.0619) 
0.1124 

(0.1029) 

pβ  = 0.7 β ,  Hy = 0.7
iyΣ ,  Hκ= 0.7 κΣ  0.1224 

(0.1245) 
0.0628 

(0.0736) 
0.1144 

(0.1284) 

pβ  = 0.5 β ,  Hy = 0.5
iyΣ , Hκ= 0.5 κΣ  0.1385 

(0.1226) 
0.0663 

(0.0731) 
0.1307 

(0.1352) 
Coverage of Nominal  95% Interval    

pβ  = 0.9 β ,  Hy = 0.9
iyΣ  , Hκ= 0.9 κΣ  100 

(100) 
100 

(100) 
100 

(100) 
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pβ  = 0.7 β ,  Hy = 0.7

iyΣ , Hκ= 0.7 κΣ  100 
(100) 

100 
(100) 

100 
(100) 

pβ  = 0.5 β ,  Hy = 0.5
iyΣ ,  Hκ= 0.5 κΣ  100 

(100) 
100 

(100) 
100 

(100) 
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Table 3 

Algorithm 1 (and Algorithm 2) Simulation Results For Varying Priors 

 
 
 00β  01β  02β  

θ -1.0000 0.7000 -0.3000 

θ
)

    

pβ  = 0.9 β ,  Hy = 0.9
iyΣ ,  Hκ= 0.9 κΣ  -0.9072 

(-0.8748) 
0.6896 

(0.6716) 
-0.0669 

(-0.0659) 
pβ  = 0.7 β ,  Hy = 0.7

iyΣ , Hκ= 0.7 κΣ  -0.8423 
(-0.8405) 

0.6655 
(0.6833) 

-0.0614 
(-0.0624) 

pβ  = 0.5 β ,  Hy = 0.5
iyΣ  , Hκ= 0.5 κΣ  -0.7898 

(-0.8035) 
0.6580 

(0.6508) 
-0.0579 

(-0.0560) 

θ̂s     

pβ  = 0.9 β ,  Hy = 0.9
iyΣ , Hκ= 0.9 κΣ  0.0866 

(0.1004) 
0.0922 

(0.1032) 
0.0194 

( 0.0181) 

pβ  = 0.7 β ,  Hy = 0.7
iyΣ ,  Hκ= 0.7 κΣ  0.1036 

(0.1054) 
0.0911 

(0.0928) 
0.0185 

(0.0164) 
pβ  = 0.5 β ,  Hy = 0.5

iyΣ ,  Hκ= 0.5 κΣ  0.0928 
(0.1021) 

0.1048 
(0.1002) 

0.0220 
(0.0192) 

θŝ     

pβ  = 0.9 β ,  Hy = 0.9
iyΣ  , Hκ= 0.9 κΣ  0.1147      

(0.1045) 
0.0972 

(0.0957) 
0.0569 

(0.0569) 

pβ  = 0.7 β ,  Hy = 0.7
iyΣ ,  Hκ= 0.7 κΣ  0.1052 

(0.0952) 
0.0898 

(0.0892) 
0.0518 

(0.0517) 
pβ  = 0.5 β ,  Hy = 0.5

iyΣ ,  Hκ= 0.5 κΣ  0.0921 
(0.0846) 

0.0790 
(0.0785) 

0.0463     
(0.0461) 

Mean Absolute Deviation from True 
Parameter    

pβ  = 0.9 β ,  Hy = 0.9
iyΣ   Hκ= 0.9 κΣ  0.1063 

(0.1363) 
0.0744 

(0.0872) 
0.2331 

(0.2341) 

pβ  = 0.7 β ,  Hy = 0.7
iyΣ ,  Hκ= 0.7 κΣ  0.1618 

(0.1667) 
0.0799 

(0.0752) 
0.2387 

(0.2376) 
pβ  = 0.5 β ,  Hy = 0.5

iyΣ  , Hκ= 0.5 κΣ  0.2108 
(0.2000) 

0.0911 
(0.0898) 

0.2421 
(0.2440) 

Coverage of Nominal  95% Interval    

pβ  = 0.9 β ,  Hy = 0.9
iyΣ ,  Hκ= 0.9 κΣ  100 

(100) 
100 

(100) 
100 

(100) 
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pβ  = 0.7 β ,  Hy = 0.7

iyΣ , Hκ= 0.7 κΣ  100 
(100) 

100 
(100) 

100 
(100) 

pβ  = 0.5 β ,  Hy = 0.5
iyΣ ,  Hκ= 0.5 κΣ  100 

(100) 
100 

(100) 
100 

(100) 
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Table 4 

Algorithm 1 (and Algorithm 2) Simulation Results For Varying Priors 

 
 

1
2
εσ  0

2
εσ  1ηεσ  

0ηεσ  

θ 9.0000 2.0000 0.4000 -0.2000 

θ
)

     

pβ  = 0.9 β ,  Hy = 0.9
iyΣ , Hκ= 0.9 κΣ  8.5771 

(8.3950) 
1.9207 

(1.8901) 
0.2324 

(0.2197) 
-0.1153 

(-0.1108) 

pβ  = 0.7 β ,  Hy = 0.7
iyΣ ,  Hκ= 0.7 κΣ  7.6522 

(7.4778) 
1.5724 

(1.5481) 
0.1857 

(0.1736) 
-0.0875 

(-0.0840) 

pβ  = 0.5 β ,  Hy = 0.5
iyΣ ,  Hκ= 0.5 κΣ  6.6169      

(6.5100) 
1.2150 

(1.2117) 
0.1364      

(0.1264) 
-0.0612 

( -0.0591) 

θ̂s      

pβ  = 0.9 β ,  Hy = 0.9
iyΣ ,  Hκ= 0.9 κΣ  0.2205      

(0.2330) 
0.0381 

(0.0378) 
0.0131     

(0.0133) 
0.0044 

(0.0055) 

pβ  = 0.7 β ,  Hy = 0.7
iyΣ ,  Hκ= 0.7 κΣ  0.2195 

(0.2158) 
0.0332 

(0.0457) 
0.0115 

(0.0139) 
0.0048 

(0.0047) 
pβ  = 0.5 β ,  Hy = 0.5

iyΣ ,  Hκ= 0.5 κΣ  0.2037      
(0.1777) 

0.0344 
(0.0471) 

0.0106 
(0.0116) 

0.0047 
(0.0049) 

θŝ      

pβ  = 0.9 β ,  Hy = 0.9
iyΣ ,  Hκ= 0.9 κΣ  0.2949 

(0.2821) 
0.0839 

(0.0816) 
0.0835     

(0.0830) 
0.0391 

(0.0391) 

pβ  = 0.7 β ,  Hy = 0.7
iyΣ ,  Hκ= 0.7 κΣ  0.2628 

(0.2514) 
0.0689 

(0.0668) 
0.0772 

(0.0765) 
0.0343 

(0.0342) 

pβ  = 0.5 β ,  Hy = 0.5
iyΣ ,  Hκ= 0.5 κΣ  0.2272      

(0.2185) 
0.0531     

(0.0524) 
0.0702     

(0.0699) 
(0.1388) 
(0.0293) 

Mean Absolute Deviation from True 
Parameter 

 
    

 pβ  = 0.9 β ,  Hy = 0.9
iyΣ , Hκ= 0.9 κΣ  0.4263      

(0.6058) 
0.0794 

(0.1099) 
0.1675 

(0.1803) 
0.0847     

(0.0892) 

 pβ  = 0.7 β ,  Hy = 0.7
iyΣ , Hκ= 0.7 κΣ  1.3477 

(1.5222) 
0.4276 

(0.4519) 
0.2143 

(0.2263) 
0.1125 

(0.1160) 
 pβ  = 0.5 β ,  Hy = 0.5

iyΣ , Hκ= 0.5 κΣ  2.3831      
(2.4900) 

0.7850      
(0.7883) 

0.2636      
(0.2736) 

0.1388 
(0.1409) 

 Coverage of Nominal  95% Interval     

pβ  = 0.9 β ,  Hy = 0.9
iyΣ ,  Hκ= 0.9 κΣ  100 

(100) 
100 

(100) 
100 

(100) 
100 

(100) 
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pβ  = 0.7 β ,  Hy = 0.7

iyΣ ,  Hκ= 0.7 κΣ  100 
(100) 

100 
(100) 

100 
(100) 

100 
(100) 

pβ  = 0.5 β ,  Hy = 0.5
iyΣ ,  Hκ= 0.5 κΣ  100 

(100) 
100 

(100) 
100 

(100) 
100 

(100) 
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Table 5 

Algorithm 1 (and Algorithm 2) Simulation Results For Varying Priors 

 
 

0
2
τσ  1

2
τσ  10

2
κσ  11

2
κσ  00

2
κσ  01

2
κσ  

θ 0.1000 0.0700 0.1000 0.0600 0.1000 0.0500 

θ
)

       

pβ  = 0.9 β ,  Hy = 0.9
iyΣ , Hκ= 0.9 κΣ  0.0796    

(0.0781) 
0.0588    

(0.0582) 
0.0882    

(0.0887) 
0.0532    

(0.0535) 
0.0896 

(0.0886) 
0.0415 

(0.0415) 

pβ  = 0.7 β ,  Hy = 0.7
iyΣ , Hκ= 0.7 κΣ  0.0650 

(0.0635) 
0.0476 

(0.0475) 
0.0698 

(0.0700) 
0.0420 

(0.0421) 
0.0715 

(0.0712) 
0.0327 

(0.0326) 

pβ  = 0.5 β ,  Hy = 0.5
iyΣ , Hκ= 0.5 κΣ  0.0496 

(0.0488) 
0.0362    

(0.0359) 
0.0506    

(0.0509) 
0.0302 

(0.0302) 
0.0536    

(0.0533) 
0.0237    

(0.0237) 

θ̂s        

pβ  = 0.9 β ,  Hy = 0.9
iyΣ , Hκ= 0.9 κΣ  0.0032 

(0.0031) 
0.0026    

(0.0019) 
0.0020    

(0.0021) 
0.0009   

(0.0009) 
0.0024 

(0.0022) 
0.0005 

(0.0004) 

pβ  = 0.7 β ,  Hy = 0.7
iyΣ , Hκ= 0.7 κΣ  0.0033 

(0.0024) 
0.0023 

(0.0019) 
0.0018 

(0.0015) 
0.0008 

(0.0008) 
0.0022 

(0.0025) 
0.0004 

(0.0005) 

pβ  = 0.5 β ,  Hy = 0.5
iyΣ , Hκ= 0.5 κΣ  0.0027    

(0.0022) 
0.0019    

(0.0016) 
0.0011    

(0.0013) 
0.0005 

(0.0005) 
0.0025    

(0.0028) 
0.0004 

(0.0004) 

θŝ        

pβ  = 0.9 β ,  Hy = 0.9
iyΣ , Hκ= 0.9 κΣ  0.0141    

(0.0136) 
0.0109 

(0.0107) 
0.0174    

(0.0176) 
0.0106 

(0.0107) 
0.0179 

(0.0175) 
0.0077 

(0.0077) 

pβ  = 0.7 β ,  Hy = 0.7
iyΣ , Hκ= 0.7 κΣ  0.0118 

(0.0114) 
0.0091 

(0.0090) 
0.0140 

(0.0141) 
0.0085 

(0.0085) 
0.0146 

(0.0144) 
0.0062 

(0.0061) 

pβ  = 0.5 β ,  Hy = 0.5
iyΣ , Hκ= 0.5 κΣ  0.0095    

(0.0092) 
0.0073    

(0.0071) 
0.0104    

(0.0104) 
0.0062    

(0.0062) 
0.0114 

(0.0113) 
0.0045 

(0.0045) 
Mean Absolute Deviation from True 

Parameter 
      

pβ  = 0.9 β ,  Hy = 0.9
iyΣ , Hκ= 0.9 κΣ  0.0204    

(0.0218) 
0.0112 

(0.0118) 
0.0117    

(0.0113) 
0.0068    

(0.0065) 
0.0104    

(0.0114) 
0.0084 

(0.0085) 

pβ  = 0.7 β ,  Hy = 0.7
iyΣ , Hκ= 0.7 κΣ  0.0350 

(0.0365) 
0.0223 

(0.0225) 
0.0302 

(0.0299) 
0.0180 

(0.0179) 
0.0285 

(0.0288) 
0.0173 

(0.0174) 
pβ  = 0.5 β ,  Hy = 0.5

iyΣ , Hκ= 0.5 κΣ  0.0504 
(0.0511) 

0.0338 
(0.0341) 

0.0494    
(0.0491) 

0.0298  
(0.0298) 

0.0464    
(0.0467) 

0.0262 
(0.0263) 

Coverage of Nominal  95% Interval       

pβ  = 0.9 β ,  Hy = 0.9
iyΣ , Hκ= 0.9 κΣ  100 100 100      

(100)
100 100 100       

(100)
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Figure 3.  Quantile-Quantile Plot of Residuals for Currency   
                                Hedging and Goods Trade Data 
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Table 6 

Estimates for the Currency Hedging and Goods Trade Study  

 
       Decision Model         
            Variables 

Coefficients 
 

Standard 
Error 

2.5% 
Quantile 

97.5% 
Quantile 

dist -0.6644 0.0231 -0.7089 -0.6176 
gnpc 0.1413 0.0120 0.1180 0.1652 

comlang 0.5773 0.0518 0.4770 0.6801 
xrvol 3.6863 0.0803 3.5308 3.8454 

Regression Model 
Variables for Non-

Hedgers 

Coefficients 
 

Standard 
Error 

2.5% 
Quantile 

97.5% 
Quantile 

dist -0.4952 0.0187 -0.5314 -0.4590 
gnp 0.8028 0.0083 0.7865 0.8190 

comlang 0.6180 0.0501 0.5208 0.7169 
xrvol 2.2861 0.0549 2.1782 2.3934 

Regression Model 
Variables for Hedgers 

Coefficients 
 

Standard 
Error 

2.5% 
Quantile 

97.5% 
Quantile 

dist -0.5809 0.0215 -0.6227 -0.5381 
gnp 0.7302 0.0116 0.7079 0.7535 

comlang 0.5977 0.0508 0.4997 0.6966 
xrvol -28.7620 0.3201 -29.4302 -28.1562 

Error Variance-
Covariance 

Posterior  
Mean 

Standard 
Deviation 

2.5% 
Quantile 

97.5% 
Quantile 

0ηεσ  0.7096 0.3225 0.0744 1.3442 

1ηεσ  -0.4141 0.2032 -0.8299 -0.0297 

0
2
εσ  11.0916 1.1415 9.0450 13.5353 

1
2
εσ  3.6103 0.5232 2.6637 4.7319 

0
2
τσ  0.3609 0.0743 0.2405 0.5290 

00
2
κσ  0.3772 0.0847 0.2485 0.5732 

10
2
κσ  0.9546 0.1913 0.6407 1.3956 
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Table 7 

Marginal Effects Estimates for the Currency Hedging and Goods Trade Study 

 

 
 
 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Variables for Non-
Hedgers 

Posterior 
Mean 

Standard 
Deviation 

2.5% 
Quantile 

97.5% 
Quantile 

Dist -0.3066 0.1376 -0.5314 -0.4590 
Gnp -28.7620 0.3201 2.1782 2.3934 

Xrvol 0.3593 0.1290 0.5208 0.7169 

Variables for Hedgers 
Posterior 

Mean 
Standard 
Deviation 

2.5% 
Quantile 

97.5% 
Quantile 

Dist -0.4952 0.0187 -0.5674 -0.0246 
Gnp 2.2861 0.0549 -29.4302 -28.1562 

Xrvol 0.6180 0.0501 0.0946 0.5994 
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Table 8 

Estimates of Difference for Hedgers and Non-Hedgers for the Currency Hedging 

and Goods Trade Study  

 

Regression Model 
Variables 

Coefficient 
Difference 
(Posterior 

Mean) 

Standard 
Deviation 

2.5% 
Quantile 

97.5% 
Quantile 

              dist  -0.0857 0.0284 -0.1406 -0.0290 
              gnp -0.0727 0.0143 -0.1002 -0.0444 
              comlang -0.0203 0.0716 -0.1621 0.1178 

xrvol -31.0481 0.3256 -31.7271   -30.4290 

Error Variance-
Covariance 

Posterior  
Mean 

Standard 
Deviation 

2.5% 
Quantile 

97.5% 
Quantile 

0ηεσ -
1ηεσ  -1.1237 0.3864 -1.8911 -0.3672 
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Figure 2. Normal Q-Q Plot of Residuals
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Figure 4.  Quantile-Quantile Plot of Residuals for  
                      Cross-Country Privatisation Data 
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Table 9 

Estimates for the Cross-Country Privatisation Study Model 1 

 
       Decision Model         
            Variables 

Coefficients 
 

Standard 
Error 

2.5% 
Quantile 

97.5% 
Quantile 

              capl 0.3902 0.0733 0.2448 0.5321 
              debtl 0.0369 0.0155 0.0064 0.0680 
              gdp 0.0471 0.0134 0.0219 0.0742 

turno 0.4160 0.0961 0.2337 0.6033 
Nondem -0.2483 0.2495 -0.7449 0.2375 

              Right 0.4641 0.0937 0.2830 0.6495 
Regression Model 

Variables 
Coefficients 

 
Standard 

Error 
2.5% 

Quantile 
97.5% 

Quantile 
capl 1.8524 0.6053 0.6580 3.0590 
debtl 0.4692 0.1669 0.1483 0.7950 

              gdp 0.4915 0.1914 0.1077 0.8707 
 turno -1.6937 0.7808 -3.1476 -0.1593 
(capl)2 -0.1158 0.0343 -0.1848 -0.0502 
(debtl)2 -0.0608 0.0129 -0.0863 -0.0360 
(gdp)2 0.0147 0.0140 -0.0130 0.0431 

(turno)2 -0.1580 0.0560 -0.2672 -0.0472 
(capl) x (debtl) -0.0734 0.0166 -0.1055 -0.0408 
(capl) x (gdp) -0.0537 0.0493 -0.1520 0.0424 

(capl) x (turno) 0.0436 0.0543 -0.0624 0.1480 
(debtl) x (gdp) 0.0326 0.0111 0.0113 0.0541 

(debtl) x (turno) 0.0136 0.0088 -0.0037 0.0310 
(gdp) x (turno ) 0.1530 0.0645 0.0246 0.2750 

1ηεσ  -1.1486 0.1418 -1.4321 -0.8810 

1
2
εσ  4.5939 0.3466 3.9778 5.3039 

0
2
iτσ  2.7188 0.6064 1.7742 4.1133 

10
2

iκσ  10.1260 2.2420 6.6528 15.2328 
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Table 10 

Estimates for the Cross-Country Privatisation Study Model 2 

       Decision Model         
            Variables 

Coefficients 
 

Standard 
Error 

2.5% 
Quantile 

97.5% 
Quantile 

             debtl 0.0096 0.0153 -0.0209 0.0382 
             gdp -0.0088 0.0101 -0.0283 0.0113 
              Right 0.5451 0.1248 0.3075 0.7959 

Regression Model 
Variables 

Coefficients 
 

Standard 
Error 

2.5% 
Quantile 

97.5% 
Quantile 

              gdp 0.5856 0.0333 0.5249 0.6556 
turno -1.2918 0.8869 -3.0739 0.3045 

(capl) x (debtl) -0.0559 0.0142 -0.0836 -0.0282 
(capl) x (turno) -0.0620 0.0791 -0.2222 0.0948 
(gdp) x (turno ) 0.1182 0.0752 -0.0215 0.2681 

1ηεσ  -1.5135 0.1873 -1.9283 -1.1870 

1
2
εσ  4.8908 0.6271 3.9415 6.3575 

0
2
τσ  3.0086 0.6882 1.9141 4.6425 

10
2
κσ  9.2238 2.0087 6.1601 14.0787 
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Table 11 

Marginal Effects Estimates for the Cross-Country Privatisation Study Model  1 

 
 

Variables 
Posterior 

Mean 
Standard 
Deviation 

2.5% 
Quantile 

97.5% 
Quantile 

Capl 1.1072 0.1793 0.7569 1.4633 
Debtl 0.8681 0.1284 0.6186 1.1185 
Gdp 0.7725 0.1227 0.5271 1.0148 

Turno 0.1444 0.2331 -0.3287 0.5967 
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Table 12 

 Marginal Effects Estimates for the Cross-Country Privatisation Study Model  2 

 
 

Variables 
Posterior 

Mean 
Standard 
Deviation 

2.5% 
Quantile 

97.5% 
Quantile 

capl -0.1837 0.0613 -0.3044 -0.0650 
debtl 0.1010 0.0308 0.0453 0.1661 
gdp 0.3498 0.0723 0.2115 0.4954 

turno -0.1156 0.4993 -1.1662 0.7908 
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Table 13 

Model Comparison for the Cross-Country Privatisation Study  

 
 

Model 
 

Sum of Log Conditional Predictive Ordinate 
 for Cross-Validation Sample 

 Algorithm 1 Algorithm 2 
Model 1 -86.4425 -74.9771 
Model 2 -94.1465 -77.1314 

 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 59
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         Figure 5. Quantile-Quantile Plot of Residuals for Adoption    
                          of Soil-Conservation Technology Data 
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Table 14 

Estimates for the Soil Conservation Technology Adoption Study 

 

Decision Model 
Variables 

Coefficients 
(Posterior 

Mean) 

Standard 
Deviation 

2.5% 
Quantile 

97.5% 
Quantile 

Constant 1.4928 0.0332 1.4286 1.5585 
Location -1.9055 0.0335 -1.9715 -1.8396 

Age (years) -0.0860 0.0081 -0.1024 -0.0706 
Education (years) 0.0676 0.0254 0.0180 0.1185 

Ln (Labor) 0.0616 0.0329 -0.0030 0.1251 
Training 2.0037 0.0330 1.9385 2.0693 

Tenure status  0.2021 0.0332 0.1381 0.2668 
Ln(Parcel Size) 0.3836 0.0325 0.3199 0.4469 

Soiltype -0.1893 0.0325 -0.2544 -0.1251 
Slope (percent) 0.0081 0.0106 -0.0121 0.0294 

Distance to Road  0.4657 0.0330 0.4008 0.5308 
Erosion 0.9699 0.0330 0.9056 1.0352 

Location x Slope 0.0695 0.0112 0.0486 0.0916 

Regression Model 
Variables for Adopters 

Coefficients 
(Posterior 

Mean) 
Standard 
Deviation 

2.5% 
Quantile 

97.5% 
Quantile 

Constant 1.9875 0.0302 1.9292 2.0465 
Location 0.5945 0.0302 0.5361 0.6530 

Age 0.0539 0.0186 0.0175 0.0915 
Education 0.1153 0.0284 0.0597 0.1715 
Training 0.3845 0.0301 0.3260 0.4439 

Ln(Labor) 0.8681 0.0298 0.8098 0.9250 
Slope 0.0204 0.0233 -0.0251 0.0672 

Soiltype -0.5348 0.0301 -0.5939 -0.4776 
Ln(Fertilizer) 0.1529 0.0302 0.0941 0.2116 

Season -0.2181 0.0303 -0.2766 -0.1599 
Variety 0.6871 0.0300 0.6277 0.7451 

Ln 2  (Labor) 0.1261 0.0276 0.0709 0.1810 
Ln 2 (Fertilizer) 0.0309 0.0094 0.0123 0.0498 

Ln(Labor) x Ln(Fertilizer) 0.0314 0.0204 -0.0070 0.0717 
Ln(Labor) x Age -0.0363 0.0063 -0.0493 -0.0241 

Ln(Labor) x Education -0.0391 0.0127 -0.0640 -0.0139 
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Ln(labor) x Soiltype 0.0859 0.0274 0.0332 0.1410 
Ln(Labor) x Slope 0.0004 0.0072 -0.0139 0.0146 
Ln(fertilizer) x Age 0.0015 0.0018 -0.0021 0.0052 

Ln(Fertilizer) x Education -0.0150 0.0072 -0.0294 -0.0009 
Ln(Fertilizer) x Soiltype 0.0679 0.0243 0.0207 0.1157 

Ln(Fertilizer) x Slope -0.0060 0.0030 -0.0120 -0.0002 
Regression Model 

Variables for 
Non-Adopters 

Coefficients 
(Posterior 

Mean) 
Standard 
Deviation 

2.5% 
Quantile 

97.5% 
Quantile 

Constant 8.9927 0.0298 8.9345 9.0526 
Location 0.2914 0.0296 0.2330 0.3506 

Age -0.1869 0.0187 -0.2234 -0.1509 
Education -0.2274 0.0291 -0.2861 -0.1716 
Training -0.3940 0.0302 -0.4528 -0.3353 

Ln(Labor) -1.0341 0.0301 -1.0920 -0.9753 
Slope 0.2184 0.0244 0.1698 0.2667 

Soiltype -0.5284 0.0294 -0.5866 -0.4704 
Ln(Fertilizer) 0.3778 0.0293 0.3207 0.4352 

Season 0.1850 0.0299 0.1257 0.2419 
Variety 0.9838 0.0298 0.9255 1.0424 

Ln 2  (Labor) 0.2297 0.0277 0.1762 0.2860 
Ln 2 (Fertilizer) 0.0103 0.0095 -0.0079 0.0289 

Ln(Labor) x Ln(Fertilizer) 0.0644 0.0182 0.0295 0.1026 
Ln(Labor) x Age 0.0289 0.0055 0.0180 0.0395 

Ln(Labor) x Education 0.0342 0.0132 0.0088 0.0606 
Ln(labor) x Soiltype 0.5635 0.0278 0.5081 0.6190 
Ln(Labor) x Slope -0.0754 0.0067 -0.0888 -0.0620 
Ln(fertilizer) x Age -0.0049 0.0014 -0.0079 -0.0022 

Ln(Fertilizer) x Education -0.0058 0.0067 -0.0191 0.0073 
Ln(Fertilizer) x Soiltype -0.3467 0.0254 -0.3964 -0.2946 

Ln(Fertilizer) x Slope 0.0022 0.0019 -0.0015 0.0062 
Error Variance-

Covariance 
Posterior  

Mean 
Standard 
Deviation 

2.5% 
Quantile 

97.5% 
Quantile 

1ηεσ  0.1712 0.1671 -0.1385 0.5297 

0ηεσ  0.4676 0.1704 0.1529 0.8349 

1
2
εσ  1.3527 0.2087 1.0014 1.8334 

0
2
εσ  1.2267 0.1791 0.9234 1.6404 
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Table 15 

Difference of Estimates for Adopters and Non-Adopters of Soil Conservation 
Technology 

 

Regression Model 
Variables 

Coefficient 
Difference 
(Posterior 

Mean) 

Standard 
Deviation 

2.5% 
Quantile 

97.5% 
Quantile 

Constant -7.0052 0.0424 -7.0885 -6.9205 
Location 0.3032 0.0420 0.2202 0.3860 

Age 0.2408 0.0266 0.1887 0.2939 
Education 0.3427 0.0411 0.2629 0.4249 
Training 0.7785 0.0425 0.6957 0.8627 

Ln(Labor) 1.9022 0.0420 1.8183 1.9842 
Slope -0.1980 0.0335 -0.2641 -0.1297 

Soiltype -0.0064 0.0418 -0.0891 0.0744 
Ln(Fertilizer) -0.2249 0.0421 -0.3072 -0.1433 

Season -0.4031 0.0429 -0.4853 -0.3181 
Variety -0.2968 0.0427 -0.3809 -0.2141 

Ln 2  (Labor) -0.1036 0.0384 -0.1833 -0.0275 
Ln 2 (Fertilizer) 0.0205 0.0142 -0.0074 0.0484 

Ln(Labor) x Ln(Fertilizer) -0.0329 0.0273 -0.0859 0.0202 
Ln(Labor) x Age -0.0652 0.0084 -0.0819 -0.0485 

Ln(Labor) x Education -0.0733 0.0183 -0.1091 -0.0374 
Ln(labor) x Soiltype -0.4775 0.0384 -0.5523 -0.4007 
Ln(Labor) x Slope 0.0758 0.0099 0.0564 0.0953 
Ln(fertilizer) x Age 0.0064 0.0024 0.0019 0.0111 

Ln(Fertilizer) x Education -0.0093 0.0101) -0.0291 0.0109 
Ln(Fertilizer) x Soiltype 0.4146 0.0343 0.3448 0.4817 

Ln(Fertilizer) x Slope -0.0082 0.0036 -0.0158 -0.0014 
Error Covariance Posterior  

Mean 
Standard 
Deviation 

2.5% 
Quantile 

97.5% 
Quantile 

1ηεσ -
0ηεσ  -0.2964 0.1682 -0.6351 0.0332 
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Table 16 

 
Marginal Effects for the Soil Conservation Technology Adoption Study 

 
 

Variables 
Posterior 

Mean 
Standard 
Deviation 

2.5% 
Quantile 

97.5% 
Quantile 

For Adopters 
Ln(Labor) 0.1967 0.1839 -0.1807 0.5561 

Ln(Fertilizer) 0.3483 0.0857 0.1817 0.5223 
For Non-Adopters 

Ln(Labor) 1.2366 0.2028 0.8498 1.6313 
Ln(Fertilizer) 0.0045 0.0885 -0.1648 0.1780 

 
 
 
 
 

 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


