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Abstract

For high speed trains there is a potential risk of derailment when driving
very fast and being hit by an extraordinary strong gust at the same time. The
risk depends on both the wind speed and the angle between train and gust.
Several techniques have been established to minimize this risk to acceptable
values. To decide which of these techniques at a given site is most appropriate,
precise knowledge of the wind process at extreme levels is necessary. Therefore
methods adapted to the special requirements of the application are needed.
We discuss directional modelling using an approach proposed by Coles and
Walshaw [2]. We focus on estimating extreme quantiles and their confidence
intervals. Different types of confidence intervals are compared and we show
how these calculations can be used for risk analysis.

Keywords: Directional data; Extreme values; Risk assessment; Precision of esti-

mates

1 Introduction

To shorten the travelling time, and therefore improve the attractiveness of using

railway as choice of transport, modern high speed trains are built to go faster, have

increased acceleration, and run most energy efficient. One strategy to achieve this

goal is to use less heavy materials. So due to higher speed and lower weight, the sta-

bility of the train is reduced and the effect of extreme winds should be investigated

closer. The problem we face therefore is to assess the risk of derailment caused by

extreme gusts. Several factors like speed of the train, track curves, and others have
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an influence on this risk. One apparent and important factor is the wind speed itself.

As the stability of the train to wind varies with relative wind direction this variable

has to be taken into account. For the simultaneous analysis of wind speed and its

direction we apply a model proposed by Coles and Walshaw [2]. It uses the r largest

order statistics of every year to estimate the parameters of the Generalized Extreme

Value Distribution (GEV), the asymptotic distribution of annual maxima. The pa-

rameters of the GEV vary according to harmonic terms with direction. We apply

two methods. The first simply employs the raw data as recorded. The second uses

a special procedure processing data before model estimation; data of one direction

contribute to neighboring directions by their value being multiplied by the cosine

of the distance in angle. So an order statistic of any one direction might be each

an actual observation or a reduced value of a neighboring one. It might therefore

be regarded as the power of the wind which is being modelled rather than the wind

speed itself. To distinguish the two approaches we refer to the second as component

model and corresponding data as component data. We discuss both methods and

their different interpretation and usefulness in the context of risk analysis.

After having estimated the model, there are two possibilities of risk assessment we

will look at. The first one is the classical approach where extreme quantiles, often

referred to as return-levels, are calculated; here, the exceedance probability is fixed

and the corresponding wind speed is calculated. The second possibility is to fix a

critical wind speed value and calculate its probability of being exceeded. The first

approach is sensible if we want to know which wind speeds we must expect to face in

order, for example, to think about measures like wind protection, while the second

is favorable if we know the wind speed which leads to derailment of the train at a

particular point of the track. To get an impression of the precision of either, the

return-level or the exceedance probability, confidence intervals are calculated. Two

methods are commonly applied: the so called delta method, which yields symmetric

intervals; and the profile likelihood method, allowing for asymmetric intervals. We

will discuss both methods.

The whole risk assessment is based on the assumption that the applied model using

harmonic terms is an appropriate choice. The model’s performance is investigated

through a simulation study. Then for one particular choice confidence intervals of

extreme quantiles are used to judge the adequacy. Conversely, this simulation study

at the same time serves as an analyze on different methods of constructing confi-

dence intervals of return-levels.

The paper is organized as follows. In the subsequent section we give a short sum-

mary of the theory, which is followed by simulation results on different strategies for
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calculating confidence intervals. In Section 4 we study data from a German gauging

station. We conclude with some discussion in Section 5.

2 Theoretical Background

2.1 Model for extreme wind speeds

In investigating processes at extreme levels it is common practice to employ para-

metric models which have an asymptotic justification. The classical approach is to

consider the maximum Mn = max{Z1, . . . , Zn} of independent and identically dis-

tributed random variables Zi. For large n the distribution of the maximum Mn is

usually approximated by the Generalized Extreme Value family, which, as n → ∞,

constitutes the entire class of non-degenerate limiting distributions of normalized

maxima. The distribution function of the GEV is given by

G(x) = exp

{
−

[
1 + ξ

(
x − μ

σ

)]−1/ξ
}

(1)

whenever {x : 1 + ξ(x − μ)/σ > 0} with μ ∈ IR and σ > 0 being location and scale

parameters, respectively. The shape parameter ξ determines whether or not the

distribution has an upper bound. The former is true whenever ξ < 0, which corre-

sponds to a Weibull distribution, while there is no upper limit for ξ > 0, which is of

Frechet type and ξ = 0 being interpreted as ξ → 0 yielding a Gumbel distribution.

We analyze annual maxima of wind speed in direction φ, which may be regarded as

the maximum of 365 daily maxima. As the asymptotic theory is still valid under

mild dependence conditions (see for example [4]), the deviation of the independence

assumption is not essential. We therefore assume the GEV to be an appropriate

model for annual maxima; for a comprehensive account see [3].

Taking only the maximum value of each year is apparently a high loss of informa-

tion; as, additionally, in most applications only data from a few years are available,

the precision of resulting estimates is low. Exploiting the information of other high

values leads to a generalization of the GEV which is the limiting distribution of the

r largest order statistics. This distribution is characterized by the same parame-

ters as the GEV. Denote the order statistics for a given direction φ ∈ Φ ⊂ (0, 2π]

by x
(1)
φj ≥ x

(2)
φj ≥ · · · ≥ x

(n)
φj . Then the joint density of �xφj = (x

(1)
φj , . . . , x

(r)
φj ) for

{xφj : 1 + ξφ(xφj − μφ)/σφ > 0} is
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h
(r)
φ (�xφj) = σ−r

φ exp

⎧⎨
⎩−

[
1 + ξφ

(
x

(r)
φj − μφ

σφ

)]−1/ξφ

−

−
(

1 +
1

ξφ

) r∑
k=1

log

[
1 + ξφ

(
x

(k)
φj − μφ

σφ

)]}
. (2)

Since we assume the wind process to vary smoothly over directions, we model the de-

pendence of the parameters on direction φ by a continuous function. The functional

relationship is given by harmonic terms having the form

θc(φ) = ac +
nc∑
t=1

bct cos(tφ − wct) (3)

with θc, c = 0, 1, 2, corresponding to the parameters ξφ, μφ, and σφ. For the model

to be well defined the restrictions bct ≥ 0 and 0 < wct ≤ 2π are imposed. With the

parameters of interest, namely ξφ, μφ, and σφ being restated accordingly by ac, bct,

and wct, nc is the number of harmonic terms necessary to account for the variation

in direction. The model is therefore determined by a total number of 3 + 2
∑3

j=1 nc

parameters. Let N be the number of intervals, say years, and r denote the number

of order statistics for a subset Φ ⊂ (0, 2π), then the logarithm of the likelihood is

l =
∑
φ∈Φ

N∑
j=1

log h
(r)
φ , (4)

with h
(r)
φ being the density given in (2). After substituting the parameters of the

density by harmonic terms as given in (3) usual maximization procedures will sup-

ply parameter estimates of ac, bct, and wct. Related standard errors are calculated

from the observed Hessian HO = −∇2l(�ϑ) evaluated at �ϑ = �̂ϑ, where �ϑ denotes the

vector of all parameters ac, bct, and wct.

The alternative approach is by using component data, which implies a processing

of data before analyzing them. For each direction α the data consist of all values

Yα = Yφ cos(α−φ) whenever |α−φ|(modulo π) < π/2 holds; Yφ represents a gust in

direction φ. From these values the r largest ones of any direction contribute to the

likelihood in the usual way. The dependence induced by the processing procedure

does not alter the maximum likelihood estimate itself; it needs, however, to be

accounted for when calculating the standard errors of estimated parameters. Let

l(�ϑ) denote the logarithm of the likelihood as given in (4) stressing the dependence

on parameters. Then, by applying an approximation using Taylor series expansion,
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the covariance matrix of �̂ϑ becomes

cov(�̂ϑ) ≈ H−1VH−1, (5)

where H = −E(∇2l(�ϑ)) and V = cov(∇l(�ϑ)); ∇ and ∇2 denote gradient and hessian

respectively. Dependence across directions invalidates the equality H = V. To

estimate the covariance matrix the following method may be applied: let h
(r)
φj denote

the density of the r largest order statistics in year j; with the annual contributions

�uj(�ϑ) = ∇∑
φ∈Φ ln h

(r)
φj (�x) being independent and identically distributed random

variables, the score vector can be restated as ∇l(�ϑ) =
∑n

j=1 �uj(�ϑ) and therefore its

corresponding covariance matrix is given by

V = cov(∇l(�ϑ)) = nV�uj

where V�uj
= cov(�uj(�ϑ)). An apparent estimator of V�uj

is

V̂�uj
=

1

n

n∑
j=1

�uj(�̂ϑ)�uj(�̂ϑ)′.

Substitution of V�uj
by V̂�uj

and consequently V by V̂ as well as replacing the

expected Fisher information matrix H−1 by its observed counterpart yields, when

applying (5), the desired covariance matrix.

2.2 Risk assessment via quantiles

Traditionally, quantiles G(xp) = p or an equivalent formulation, frequently used in

the context of extreme value statistics, return-levels G(x(J)) = 1 − 1/J ,

x
(J)
φ = μφ − σφ

ξφ

{1 − [− log(1 − 1/J)]−ξφ} (6)

are the quantities of interest. There are two methods of calculating confidence

intervals of return-levels, which are commonly applied. A detailed treatment of both

methods in the simple case of non-directional modelling may be found at [1]. The

first one, often referred to as delta method, is to construct a symmetric interval by

employing the asymptotic normality of the estimated return-level; the corresponding

variance is calculated via an approximation based on Taylor series expansion,

VηJ
φ
≈ �d′V�ϑ

�d. (7)

In (7) we have �d = ∇η
(J)
φ (�ϑ), with η

(J)
φ (�ϑ) denoting the return-level given in (6)

stressing dependence on the vector of parameters �ϑ.
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The alternative approach to calculate confidence intervals is the so called method

of profile likelihood, which is derived from a likelihood ratio test. We first express

one parameter, say the constant a1 of the harmonic term of μφ, as a function of the

return-level x
(J)
φ and all remaining parameters. Using (6) and (3) this is

a1 = x
(J)
φ +

θ2φ

θ0φ

{
1 − [− log(1 − 1/J)]−θ0φ

} − (θ1φ − a1) (8)

where θiφ, i = 0, 1, 2, are the parameters according to (3) at the point φ. Maximiza-

tion of the likelihood (4) after substitution of a1, and maximizing over a reasonable

range of return-level-candidates x
(J)
φ for every φ ∈ {10, . . . , 360} yields (after com-

parison with the required quantiles of the χ2-distribution) the desired confidence

bands.

2.3 Risk assessment via probability of exceedance

While the preceding paragraph focuses on calculating extreme quantiles, risk assess-

ment here results from determining the exceedance probability for a given critical

value, which in the subsequent application is the critical wind speed. Let vcrit be

this critical value, then from (1) we will get the probability of vcrit being exceeded in

any one year by P (V > vcrit) = 1 − G(ξ,μ,σ)(vcrit) =: ν(�ϑ). In practice, however, the

parameters will be replaced by their estimates, which are subject to sampling error,

and so, in turn, is the estimated probability of the risk. To get an impression of the

precision of the estimated risk probability, confidence bounds or bands are desirable.

One way to calculate confidence intervals is via the delta method. Setting d =

∇ν(�ϑ) and replacing this in (7) yields the variance of the exceedance probability.

Because of the approximate normality, again, it is straightforward to calculate con-

fidence bounds. It is worth mentioning that this way of determining confidence

intervals may result in a negative lower interval bound; it is clear that it needs to be

set equal zero. When using component data the covariance matrix V�ϑ is replaced

by (5).

It is also possible to apply the profile likelihood method to gain confidence intervals

for the risk probability. Set p = 1/J and replace x
(J)
φ by vcrit equation (8) can be

stated as

a1 = vcrit +
θ2φ

θ0φ

{
1 − [− log(1 − p)]−θ0φ

} − (θ1φ − a1). (9)

For the calculation of the confidence intervals we now require p to vary across a

reasonable interval and again maximize the likelihood at each step. The profile

likelihood intervals are getting the more asymmetric the more extreme the values

are they are calculated for.
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3 Simulation Study

To investigate the validity and performance of the model a simulation study was

carried out assuming true parameters according to the estimated values described

in Section 4, see Table 3. As the data there are discretized to ten degree, we will

have φ ∈ {10, . . . , 360}. The simulation procedure then works as follows. For any

direction the parameter values of ξφ, μφ, and σφ for direction φ are re-calculated

from the given parameters ac, bct, and wct using (3). As simulation of the r largest

order statistics directly from (2) is complicated, we sample 365 daily maxima and

take the five largest values. Employing the max-stability property of the GEV, the

distribution F for the daily maxima is calculated by

F (x) = G1/n(x).

Then by definition G is the distribution of the annual maxima. Note that F is again

of extreme value type with a change in the parameters μφ and σφ while ξφ remains

the same. Then for each direction φ ∈ {10, . . . , 360} n values are simulated from

the distribution F . The r largest values of each direction φ are extracted and used

for model estimation.

As already mentioned, important quantities in applications are extreme quantiles.

It is therefore sensible to judge the model by its return-levels. A natural approach

is to first calculate the return-levels from simulated data for every point within 0◦

and 360◦; then compute (pointwise) corresponding confidence bands for them; and

finally check (again pointwise) whether or not the true values are lying within the

confidence bounds. We simulate 200 samples .

The simulation study uses the delta method yielding symmetric confidence inter-

vals. In the following we will use a model having a constant for the parameter

ξφ, one and four harmonic terms to describe variation in σφ and μφ, respectively;

this model will be abbreviated (0,4,1)-model in the subsequent. After having simu-

lated data for any direction using the method described above, the parameters of a

(0,4,1)-model (and return-levels for 10, 50, 100, and 1000 years with corresponding

95%-confidence bands) are estimated. Due to high computational costs the simu-

lation size being 200 is rather small. However, we can recognize basic features and

get a rough impression of the model’s performance. The results are shown in Table

1; for every direction and any return-level the table states the number of values

smaller than the lower interval bound in the upper line, while the number of cases

exceeding the upper bound are given in the second line. There seems to be a slight

systematic pattern of some neighboring directions to have more values outside the

required interval as others. However, as repeated simulations with different seeds
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show the complete opposite phenomenon, we assume it to be random. A striking

fact, in contrast, is that most points outside the interval are larger than the interval

and only a very little amount being smaller than the required bounds. This might

be justified by considering the general shape of confidence intervals based on pro-

file likelihood, which demonstrate an asymmetric shape for extreme return-periods.

More precisely, those plots show that the upper bound of the interval has a greater

distance to the maximum likelihood point estimate than its lower counterpart. Due

to the symmetry of intervals produced by the delta method the number of points

lying outside the interval must be higher for larger values.

4 Analysis of German wind data

The model described above is now applied to data of the DWD’s (Deutscher Wet-

ter Dienst) gauging station of Würzburg, a town in the southern part of Germany,

which constitutes one end of the railway track under consideration. The data consist

of 22 years (1976-1997) of daily maximum wind speeds and the time of day they

occurred. The wind-direction of the maximum itself is not available, but the average

of wind-direction within each hour being recorded with an accuracy of 10 degree.

Analyses of data from shorter time intervals for one year have shown that the aver-

age of the wind direction constitutes a reliable measurement for the exact direction

corresponding to the maximum. Having 144 missing values the data to analyse

consist of 7892 obersvations. To get an impression of the data, Figure (1) shows

boxplots of the wind speeds of daily maxima for all directions as well as a histogram

reflecting corresponding frequencies of directions. The angle φ = 0 = (360) corre-

sponds to the direction north and angles are recorded clockwise. There is a clear

pattern supporting the choice of a model for wind speeds which varies smoothly over

directions.

One common problem with wind data when considering direction is the masking

problem, which is described in detail at [5]. This problem is easiest understood

by an example: there is a very strong gust from, say east, and at the same day a

slightly stronger one from west. If maxima are recorded daily, the data contains the

one from west, but that one of east, which might rank among the greatest ones of

this direction, got lost. In this case we say that the gust from east was masked by

the one from west and this may apparently cause biased estimates. An immediate

consequences of masking is the down-shift of many recorded values compared to the

true, unknown ones. A reasonable assumption is therefore expecting return-levels to

be underestimated. Moriarty and Templeton [5] found in their analysis of directional

sectors, using annual maxima only, that in many directions calculated return-levels

rather overestimate the true values; they argue, that the most extreme values of
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the whole observation period in most directions are not masked, but lower ones of

other years are, a consequents of which is a larger estimate of the scale parame-

ter. Considering equation (6), a larger scale parameter, in turn, results in a larger

return-level. In our case the situation is not clear. Analysis of 10-minute data over

an investigation period of one year, however, have shown, that within directions

containing large wind speeds the amount of masking is little.

A convenient feature of the r largest order distribution is its capability to incor-

porate different numbers of order statistics for different years or, as in our case, for

different directions. The former case often arises when analyzing data where just

annual maxima are known for the first years, while in the later ones complete data

are available; both data may then be analyzed at the same time contributing to the

same likelihood function. In the present case, the number of order statistics varies

with different directions, but not over years. We restrict the number of largest ob-

servations r to be at most five, so each direction within each year contributes by

r ≤ 5 values. Table 2 shows the number of least available order statistics in any

of the 22 years for each direction. For example, taking direction 20◦: in each year

there are at least 2 observations recorded. Directions indicated by NA are those

having at least one year with no observation being made at all. For the subsequent

analysis is based on at most the five largest values in each direction and year, those

being five or greater are both indicated by ≥ 5. Data of directions indicated by

NA are excluded. Note that the masking effect could be high in that directions and

that the most extreme values of all directions do not occur in that direction. For

directions being essential for the risk analysis the data basis we use is sufficient. The

model is then estimated for different numbers of harmonic terms for each parameter.

Model discrimination is carried out by employing a likelihood ratio test with a sig-

nificance level of 5% using a forward selection procedure. As the location parameter

is usually most sensitive, model selection starts with a (0,1,0)-model. Separately,

for each of the parameters ξ, μ, and σ one harmonic term is added and the maxi-

mum change in log-likelihood is taken to yield the improved model if this change is

significant according to a likelihood ratio test. The procedure terminates when non

of the three models proposed results in a significant change in the log-likelihood.

This favours a (0,4,1)-model, our final choice. Estimated parameters and related

standard errors are given in Table 3.

As we are to judge the risk of extreme events return-levels are the quantities we are

interested in. To assess precision of the estimation confidence-bands are calculated

additionally. The two alternative possibilities are, as described in preceding parts,

those based on the delta method and those using the profile likelihood method.
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Graph (2) shows a plot of the 100-year return-level for the Würzburg data together

with a 95%-profile likelihood confidence band. The equivalent graph with confidence

intervals based on the delta method is to be found in Figure 3. The alternative ap-

proach is to process the data receiving components as described in Section 2.1. In

this case we have r = 5 for any year and direction. The estimation results are given

in Table 3.

For comparison of the two methods we have calculated the 100 year return-levels

and corresponding confidence bands, see Figure 4. When using the likelihood ratio

test for model selection using component data the reference distribution needs to be

adjusted in order to account for dependencies across directions; for it’s calculation

see [2]. Applying this model selection procedure yields a (1,2,1)-model. One can

see a higher overall level of the 100 year return-level for the latter model. This is

due to the different definition of the problem, since in this case the components are

analysed.

The alternative way to quantify the risk when knowing a critical value is to calculate

its probability of being exceeded. In section 2 the two alternative approaches on

how to calculate confidence intervals considered in this paper are described. The

delta method is now applied to the unprocessed data shown in Figure 5 and to

component data in Figure 6 for a critical wind speed of 38 m/s. Using just the

non-processed data for one direction (260◦) but two different critical values profile

likelihood intervals are visualized in Figures 7 and 8. As with return-levels the

confidence interval of the exceedance risk is getting the more asymmetric the more

extreme the values considered are and the bigger is the departure from symmetric

approximations based on the delta method. Unfortunately, this departure of the

delta method is anti-conservative leaving its applicant possibly expecting himself in

a safer position than he actually is.

5 Discussion

To model extreme wind behavior we applied a model extending the annual extreme

value approach by employing the largest order statistics. Another possibility would

be to consider exceedances of a suitably high threshold; for a recent publication

see [6]. We have discussed a directional model for extreme value data and two risk

measures derived therefrom. The first risk measure is the classical approach using

quantiles, while the second is based on the exeedance probability. As the model

parameters are subject to sampling variation, so are the risk measures. A natural

way to account for this uncertainty is to calculate confidence intervals providing

us with the precision of the estimate under consideration. The two most important
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methods of calculating intervals, the delta method and the profile likelihood method,

are dealt with in detail.

To estimate the model’s parameters, two approaches were applied. In both cases,

a fixed number of order statistics in each direction were extracted for parameter

estimation. The first approach took data from different directions without being

processed. One has to be cautious when taking this approach. One problem is, that

in a number of directions there are only very few observations so the asymptotics

do not hold to justify application of the model used. As the extreme value family,

however, is very flexible, this doesn’t really pose difficulties. The other problem

is possible dependencies, both between neighboring directions and successive data.

Unlike many other analysis working with hourly data, the present one uses daily

maxima - a much longer period - so the problem of dependence is not that critical.

By using components and calculating the variance adjusted for this situation, in

contrast, directional dependencies are accounted for. Furthermore, the problem of

scarcity of data in some directions is not present any more, so asymptotic arguments

apply in the usual way. This advantage is on expense of straightforward calculation:

both, components have to be computet as well as the variance needs to be adjusted;

additionally a reference distribution for model discrimination via a likelihood ratio

test needs to be calculated, which implies a high amount of additional computing

cost.

Considering the most extreme observation of the whole investigation period, which

is 42.7 m/s having direction 260◦, is around the upper limit of the confidence band

of the 1000 year return-level when looking at the ordinary model, and far away of

the estimate of the corresponding 100 year return-level. This casts serious doubts

on the practical applicability of using a model with non-processed data. Though,

a comparison of the largest observation would be more appropriate with a return-

period of 22 years, a comparison of the 100-year return-level using the component

model proves this model to supply far more plausible and reliable results.

The analysis can be used for risk assessment at a track of the German rail. Since

there are no wind measurements available it is assumed that the wind at the track

differs from that at a close weather station by a constant factor. This factor is

determined by meteorological methods. The critical wind speed perpendicular to

the track is determined by technical considerations; it’s probability of being exceeded

has then to be estimated. This can be done by our methods. Furthermore we can

give confidence intervals for this probability. This local risk estimates serve as a

sensible input for a risk measure of the whole track which adds up the risk over
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all points. So the methods give substantial improvement of the risk measurement

compared to the usage of empirical quantiles of the wind speed distribution.
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10◦ NA 130◦ r=1 250◦ r=3

20◦ r=2 140◦ r=2 260◦ r ≥ 5

30◦ r=3 150◦ r=2 270◦ r ≥ 5

40◦ r ≥ 5 160◦ r=1 280◦ r ≥ 5

50◦ r=4 170◦ NA 290◦ r ≥ 5

60◦ r=4 180◦ NA 300◦ r=2

70◦ r=1 190◦ NA 310◦ r=2

80◦ r=2 200◦ r=1 320◦ r=3

90◦ r=3 210◦ r=3 330◦ r=1

100◦ r=3 220◦ r=4 340◦ NA

110◦ r=1 230◦ r ≥ 5 350◦ NA

120◦ r=2 240◦ r ≥ 5 360◦ r=1

Table 2: Number of least available order statistics for each direction in any year for

the Würzburg data; directions indicated by NA have at least one year without any

one observation

raw data components

(0,4,1) (1,2,1)

â0 -0.197 (0.011) -0.106 (0.023)

b̂01 NA 0.061 (0.022)

ξ̂φ ŵ01 NA 1.014 (0.517)

â1 14.451 (0.150) 20.061 (0.451)

b̂11 4.843(0.157) 6.668 (0.380)

μ̂φ ŵ11 4.542 (0.047) 4.493 (0.049)

b̂12 4.686 (0.212) 2.677 (0.278)

ŵ12 2.579 (0.036) 2.451 (0.078)

b̂13 1.086 (0.168) NA

ŵ13 0.797 (0.167) NA

b̂14 0.589 (0.172) NA

ŵ14 3.619 (0.288) NA

â2 3.733 (0.06) 2.705 (0.186)

b̂21 0.890 (0.074) 0.793 (0.137)

σ̂φ ŵ21 4.536 (0.116) 4.603 (0.141)

Table 3: Estimated parameters for the (0,4,1)-model in case of raw data, and the

(1,2,1)-model in case of component data; the number of harmonic terms are accord-

ing to (ξφ, μφ, σφ) for the gauging station Würzburg; standard errors are given in

parenthesis.
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Figure 1: Boxplots of the wind speeds of all observations within the 22 years for

different directions; histogram of directions
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Figure 2: Plot of the (0,4,1)-model of Würzburg: maximum likelihood estimate and

95%-profile likelihood confidence bands; points are estimated return-levels based on

data of that direction only.
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Figure 3: Plot of the (0,4,1)-model of Würzburg: maximum likelihood estimate and

95%- confidence bands by the delta method; points are estimated return-levels based

on data of that direction only.
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Figure 4: Plot of the (1,2,1) harmonic model of Würzburg: maximum likelihood

estimate of the COMPONENT data and 95%- confidence bands by the delta method;

points are estimated return-levels based on data of that direction only.
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Figure 5: Plot of the exceedance probability of the critical wind speed 38m/s across

directions using the (0,4,1)-model based on unprocessed data
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Figure 6: Plot of the exceedance probability of the critical wind speed 38m/s across

directions using the (1,2,1)-model based on component data
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Figure 7: Plot of the exceedance probability of the critical wind speed 32m/s using

the (0,4,1)-model; profile likelihood with horizontal line indicating the interval limits

and dashed vertical lines indicate corresponding interval based on the delta method
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Figure 8: Plot of the exceedance probability of the critical wind speed 42.7 m/s using

the (0,4,1)-model; profile likelihood with horizontal line indicating the interval limits

and dashed vertical lines indicate corresponding interval based on the delta method
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