LMU

LUDWIG-
MAXIMILIANS-
UNIVERSITAT
MUNCHEN

INSTITUT FUR STATISTIK
SONDERFORSCHUNGSBEREICH 386

Kiselev, Hahn, Auer:

Is the Brain Cortex a Fractal?

Sonderforschungsbereich 386, Paper 297 (2002)

Online unter: http://epub.ub.uni-muenchen.de/

Projektpartner

MAX-FLANCK-CESELLECHAFT



http://www.stat.uni-muenchen.de/
http://www.gsf.de/
http://www.mpg.de/
http://www.tum.de/

Is the Brain Cortex a Fractal?

Valerij G. Kiselev*, Klaus R. Hahn',
and Dorothea P. Auer?,

* Institute of Medicine, Research Center Jiilich,

present address: Section of Medical Physics, Department of Diagnostic Radi-
ology, University Hospital Freiburg, Freiburg, Germany.

Corresponding author, e-mail: kiselev@ukl.uni-freiburg.de .

f Max Plank Institute of Psychiatry, Munich, Germany.

! Institute of Biomathematics and Biometry, GSF, Research Center for Envi-
ronment, and Health, Oberschleissheim, Germany.

Running title: Is the Brain Cortex a Fractal?
Address for Correspondence:

Dr. Valerij G. Kiselev

Section of Medical Physics
Department of Diagnostic Radiology
University Hospital Freiburg
Hugstetterstr. 55

D-79102 Freiburg, Germany

Tel.: +49 761 2705182
Fax: +49 761 2703831
E-mail: kiselev@ukl.uni-freiburg.de



Abstract

The question is analysed if the human cerebral cortex is self-similar in a sta-
tistical sense, a property which is usually referred to as being a fractal. The
presented analysis includes all spatial scales from the brain size to the ulti-
mate image resolution. Results obtained in two healthy volunteers show that
the self-similarity does take place down to the spatial scale of 2.5 mm. The
obtained fractal dimensions read D = 2.73 + 0.05 and D = 2.67 + 0.05 cor-
respondingly, which is in a good agreement with previously reported results.
The new calculational method is volumetric and is based on the fast Fourier
transform of segmented three-dimensional high-resolved magnetic resonance
images. Engagement of FF'T enables a simple interpretation of the results and
achieves a high performance, which is necessary to analyse the entire cortex.



1 Introduction

The complexity of the cerebral cortex geometry suggests a description based
on the notion of fractal, a mathematical construction dedicated to describe the
self-similarity of various objects in dead and living nature (see, e.g., Liu, 1986,
a brief introduction into the notion of fractal is given below). The first question
to be answered on this way is whether the cortex is indeed self-similar. This
would mean that the statistical properties of the gyrification pattern of small
cortex structures are similar to that of the large ones. This approach refers
to averaged characteristics of the brain in contrast to the precise anatomic
description of individual structures.

The present problem has its own history. Hofman (Hofman, 1991) gave a strong
argument in favour of the fractal geometry of the human cortex based on a
surface-to-volume relation in the mammalian brains. Majumdar and Prasad
(Majumdar and Prasad, 1988) found a fractal dimension D = 2.60 £ 0.5 for
the external cortex surface in the normal subjects. The performed analysis was
based on magnetic resonance (MR) images of brain sections with a unity added
to the final result. A three-dimensional analysis of a fixed brain specimen
was performed by Chuang et al. (Chuang et al., 1991) with the result D =
2.20. Both studies were criticized by Free et al. (Free et al., 1996). They
investigated the interface between the human white and grey matter obtained
from segmented volumetric MR data. They found that a smoothing of the
white matter surface reduces its area in agreement with the hypothesis of the
fractal geometry and found a corresponding fractal dimension D = 2.30 &+
0.01. Note that this fractal dimension was obtained from five smoothing levels
the extent of which ranged from 1.4 to 6.1 mm with the original voxel size
interpolated to 0.47 x 0.47 x 0.36 mm?®. This result does support the hypothesis
that the white matter surface has a fractal geometry, but the small amount
of smoothing levels does not allow to conclude about its entire geometry.

Although plausible the property of being a fractal needs to be verified. In this
paper we analyse the geometry of the human cortical grey matter. We find
a range of spatial scales in which the grey matter arrangement is self-similar
and calculate the fractal dimensions in this range. This is enabled by a new
computational method, which is suitable for fast automated analysis of given
cortices over the whole range of spatial scales.

2 Materials and Methods
2.1 A Brief Introduction to Fractal Geometry

Let us briefly review the properties of fractals which are essential for the
present study. The notion of dimensionality stems from the everyday experi-



ence. For example, a thin wire is one- and a sheet of paper is two-dimensional.
A mathematical definition, that digests this common sense, can be formulated
as follows. Consider an object, the dimension of which is to be determined.
One has to take an element of this object. The element may be for example a
voxel or a molecule. One has to surround it with a sphere of a given radius R
and count the amount of object elements v inside the sphere. The measure of
v can be arbitrary, it can be, for example, the amount of voxels or the volume.
Of importance is only the dependence of v on the sphere radius upon averag-
ing over the elements put in its origin. This value scales as v oc R? where D
is the dimension by definition. This definition not only resolves the expected
dimensions in the simplest cases mentioned above, but also takes into account
the fact that the relevant dimension of an object depends on the spatial scale.
For example both the wire and the paper sheet show the dimension of three at
short distances for which the sphere radius R is smaller than their thickness.
At higher R a transition to the dimensions of one or two occurs. Thus even
the simplest examples instructively highlight the importance of crossovers in
the dependence of the dimension on the spatial scale R. These change points
indicate the characteristic lengths which are present in the investigated object.

The above definition can be reformulated in order to become a practical math-
ematical tool. The average amount of matter v in the sphere of radius R is
equal to

v(R) = [ plr)d’r, 1)

where p(r) is the probability to find two object elements at the separation r
and the integration is performed over the sphere volume. The function p(r)
provides a detailed description of the geometry of the considered object. This
function is known under different names in many physical contexts. Here we
refer to it as the density-density correlation function, the name borrowed from
the condensed matter physics.

Consider objects, which are isotropic in the statistical sense. The above defi-
nition of the fractal dimension with account for eq. (1) requires p to depend
on a power of r, the absolute value of the vector r: r = |r|.

p(r) = Const - 7”73 (2)

Self-similarity is the second issue involved in the present analysis. It implies
that the object looks similar to its zoomed part. The words “looks similar” de-
mand a proper mathematical definition. As such, one requires that at least the
density-density correlation functions derived from the main and the zoomed
images have the same form. In view of eq. (2) this means an invariance of the
object dimension D with respect to zooming.

The fractals are nontrivial self-similar objects. The trivial ones are, for ex-



ample, a straight line, a plane or three-dimensional space. The dimension D
for fractals takes fractional values hence the name. For any example, which
exists in Nature, one can find a range of spatial scales over which the fractal
geometry holds. For example the coast line remains a fractal over the lengths
from the island size to that of a single rock. In the present study a special
attention is paid to inspecting the self-similarity range of the human cerebral
cortex.

2.2 Analysis of Cortex Geometry

The presented method refers to the density-density correlation function p(r),
which, for the case of the cerebral cortex is the probability to find two voxels
in the cortex separated by a given vector r. In fractals this function scales
according to eq. (2) as P73, where r = |r| and D is the fractal dimension.
This dependence yields a straight line when plotted in the double logarithmic
scale. The reported method is applied to segmented brain images (obtained as
described below), in which the grey matter is assigned a value of unity, while
the brightness of all other voxels is set to zero.

In principle, calculation of p(r) is possible via a straightforward voxel counting
in the segmented brain images. However this procedure results in a huge num-
ber of operations of the order of N? where N is the total number of voxels. For
a high-resolution anatomical MR images as those used in the present study
N = 2% and the data processing becomes extremely time-consuming. The
same problem is inherent in the previous approaches based on measuring the
cortical area (Majumdar and Prasad, 1988; Chuang et al., 1991; Free et al.,
1996).

We solve this problem by working with the Fourier transform f(k) of the
segmented cortex from which we recollect the necessary information about
the correlation function p(r). The use of the fast Fourier transform (FFT)
helps to avoid a huge amount of computations, since it requires only about
N In N operations. The gain in performance for the high-resolution anatomical
images is two orders of magnitude.

For the analysis the squared magnitude | f(k)|? is averaged over the directions
of the wave vector k. This yields a function F(k) which is real and depends
only on the absolute value & = |k|:

F(b) = — [ 11097y, ®)

where df; integrates over two angles, that define the direction of vector k.

As shown in the Appendix, F' o< k=P for fractals. Thus a straight segment
in the double logarithmic plot of F(k) indicates a self-similarity range of the
cortex. There might be several straight sections with different values of D.



The cross-overs between them indicate scales at which the cortex geometry
changes.

2.8 MR Brain Imaging

Magnetic resonance images were obtained at 1.5 T scanner (GE Medical
Systems). High resolution, whole brain T1-weighted spoiled gradient echo-
datasets (SPGR, IR-PREPPED, repetition time (TR) = 10.3 ms, echo time
(TE) = 3.4 ms, field of view (FOV) = 23 x 23 ¢m?, matrix size = 256 x 256,
flip angle = 20°) were acquired in the sagittal plane with an in-plane resolu-
tion 0.90 x 0.90 mm?. Three-dimensional data sets consisted of 128 contiguous
slices of thickness 1.3-1.4 mm. Two young healthy normal volunteers were
included in this study.

2.4  Image Segmentation

The grey matter was segmented from the measured data by a method which
was published in preliminary versions in several proceedings (Hahn et al.,
2000, 2001a,b), a more detailed description of an essentially improved variant
including validation examples is submitted for publication. This nonparamet-
ric intensity segmentation method eliminates after skull pealing via several
correction steps distortion and noise artifacts. Finally, after nonlinear edge
preserving noise elimination global thresholds are introduced to separate CSF,
grey and white matter. In case of data with a large grid cell width d, the
boundary surface between white and grey matter is smoothed to avoid irreg-
ular blocking effects on small scales, before introducing global thresholds. To
achieve that, the corrected data are interpolated to a finer grid (e.g. d/2) and
then smoothed by a narrow Gaussian filter (standard deviation= d/2). No
shape prior is used, so the method applies equally well to normal and mal-
formed brains. The main new features are axial and irregular bias corrections
which are based on an estimate of the cortex distortions in contrast to the
frequently used white matter based corrections with subsequent extrapolation
to the cortex, see e.g. (Dale et al., 1999). The nonequivalence of grey or white
matter based distortion fields is one of the interesting outcomes of this seg-
mentation study (Hahn et al., 2001a,b). This method is especially well suited
for the present fractal analysis, as the considered measure is derived from
volumetric cortex properties and as the cortex distortions are removed with
higher precision than those in white matter. The method requires few user
interactions to control the parameter settings, by renunciation of a perfect
automaticity it gains flexibility and precision. To test precision, the Montreal
brain phantom (Kwan et al., 1996; Cocosco et al., 1997) was segmented for
a noise level of 3% and a distortion of 40% RF nonuniformity, which roughly
approximates the distortions in our real data. A quantitative measure of the



Fig. 1.
CSF, grey and white matter of an axial and a sagittal slice in obvious coloring.
Left panels show the labeling of the Montreal brain phantom, right panels the
thresholded result of the segmentation method applied to the phantom with a 3%
noise level and with 40% RF nonuniformity.

segmentation quality is given by a k-statistics (Ashburner and Friston, 2000),
measuring the separation of CSF, grey and white matter for the whole brain.
The presented segmentation method improves k = 0.913 for the distorted and
noisy phantom to x = 0.962. A recently published value of kK = 0.95 achieved
by the SPM method (Ashburner and Friston, 2000) indicates this to be a good
quality. This is also exemplified by Figure 1 where the segmentation result for
an axial and a sagittal slice is compared to the corresponding phantom tissues.



Fig. 2.
Segmented sagittal slice in Volunteer 1. White matter and the cerebellum were
removed before further processing.

2.5 Analysis of Geometry

The segmented images had a doubled resolution (d/2) of 512 x 512 x 256 voxels
with the voxel size 0.45 x 0.45 x 0.5mm?. The white matter and the cerebellum
were removed. The resulting grey matter (GM) maps contained only the cor-
tical and subcortical GM voxels with unitary brightness. These images were
Fourier transformed with an FET routine resulting in function f(k), eq. (3).
The integration in eq. (3) was performed numerically by subdividing k-space
in a number of spherical shells with logarithmically spaced thickness and com-
puting the average k and F'(k) in each shell. The fractal dimension was found
by fitting a linear function to the dependence of Ig F' on k. All computations
were performed with house-written C programs.

3 Results

An example of a segmented sagittal slice is shown in Figure 2. There are minor
artifacts, such as the grey matter layer at the brain stem or a small GM island
near the cerebellum. The GM maps also contained the striatum and parts of
other subcortical nuclei. Their effect on the final result is negligible however
due to their low statistical weight as compared to the correctly segmented
cortical GM voxels.

Plots of the function F(k) are shown in Figure 3. The presence of an initial
straight segment suggests that the cortex geometry is self-similar up to k =
1.3 mm~!. The corresponding length defined as 7/k is 2.5 mm. The fractal
dimensions in this range were found by fitting a linear function to the data
points from the 1st to the 36th (which corresponds to the above given value
of k). The results for two volunteers were D = 2.73 + 0.05 and D = 2.67 +
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The function lg F'(k) plotted v.s. k& which is shown in the logarithmic scale for
both volunteers. The straight lines show the result of an equal-weight fitting of the
formula lg F(k) = Const — D1gk to the data for the points through 1st to 36th.
This gives the fractal dimension D = 2.73 £0.04 (left) and D = 2.67 +0.04 (right).
The arrows indicate the values of & which correspond to given structure sizes in real
space defined as m/k. The errors in the data are discussed in the text.

0.05 (error bar at one standard deviation of the fitting result, correlation
coefficients of the linear fit R = 0.9998 in both cases). The actual accuracy
of the calculated fractal dimension is smaller due to the ambiguity in the
interval in which the fitting is performed. For example, an application of the
fitting only to the data points from the 18th to the 36th (Figure 3) results
in D =2.5940.04 (R=0.99996) and D = 2.41 +0.03 (R = 0.99998). The
corresponding intervals in Fourier and real spaces are 0.23-1.27 mm~! and
13.6-2.5 mm respectively.

4 Discussion

The main result of the performed study is that the human cerebral cortex
does show a nearly fractal geometry down to the spatial scale of 2.5 mm. This
limit reasonably corresponds to the cortex thickness. At larger k a finer spatial
scale is probed at which the cortex is not subjected to folding.

The coarse spatial scale (small k in Figures 3) is described with poor statis-
tics. This follows from small numbers of grid points in Fourier space, which
are averaged by computing individual F-values (Figure 4). One could expect
that the shape of the F(k) curve in this range is determined by the overall
cortex structure, which is not subjected to statistical averaging involved in the
definition of the fractal dimension. In contrast to these expectations, the self
similarity of the cortex folding sets up already for the largest spatial scales as
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Fig. 4.

Number of data points involved in the averaging over the orientations of the wave
number £ in computing F'(k). The upper line is obtained for 59 intervals presented
in Figures 3, left. The lower line shows the same value for 5870 intervals. F(k)
for this case is presented in Figure 7 The coinciding initial parts of both lines are
determined by a few grid points near the origin of k-space. The slope of their main
parts shows the dependence N o k2. To explain this exponent, note that each k-
interval represent a thin spherical shell of radius k£ selected in three-dimensional
k-space. The shell surface increases quadratically, and its thickness is proportional
to k for the used logarithmic spacing. The drop at large k is due to the rectangular
shape of sampled k-space.

suggested by the averaged linear behaviour seen in Figure 3 for the smallest
k.

4.1 Comparison with Spherical Geometry

Let us compare the function F(k) characterizing the cortical geometry with
that for a sphere of radius R. The latter takes the form

F(k) = (42—2R>2 (Cos kR — SiZZR>2 (4)

We selected R = 67 mm in order to match the peculiarities seen for low k
data points in Figure 3. This value reasonably matches the brain size. Both
dependencies are shown in Figure 5. Although similar for the initial few points,
the curves significantly differ from each other. First, the overall slope set by
the first factor in eq. (4) is equal to —4. Second, the oscillating factor in
eq. (4) results in many dips, which are asymmetric in logarithmic scale. The
apparent irregular shape of the sphere F'(k) is due to an insufficient sampling
of an oscillating line. The number of periods of the second factor in eq. (4) is
close to 11 for k¥ = 1 mm '. This comparison suggests that the peculiarities
seen in the left Figure 3 at small £ do not originate from any noise. Rather

10
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Fig. 5.
A comparison of F(k) for the cortex (the same line as shown in the left Figure 3
with F(k) calculated for a sphere of radius 67 mm eq. (4) (the irregular line). The
dashed line shows the first non-oscillating factor in eq. (4).

they can be attributed to the overall brain shape. The same conclusion is
suggested by the similarity of F(k) for two subjects seen in Figure 3.

Equation (3) shows that the residual deep grey matter, which is included in
the processed images, does not significantly affect the results. First, it has
a lower volume, which defines its contribution to F'(0) (point £ = 0 is not
shown in Figures 3 — 7). Second, it is unfolded, which suggests a decrease in
its contribution to scale as k~*. Thus its relative contribution to the fractal
dimension can be estimated as a square ratio of its volume to the cortical one.
The volume of basal ganglia are known to be less than 2.5% of the intracranial
volume Gunning-Dixon et al. (1998) and the total GM including basal ganglia
and cerebellum in young adults was estimated as 53.7% Kaufmann et al.
(2002). The above estimate takes the form (2.5/53.7)%> = 2.2 x 1073, Such a
contribution in the fractal dimension can be neglected as it is smaller than
the fit error.

4.2 More Details about Data Averaging

The coarse brain structure clarifies the origin of the apparently large error in
the data presented in Figures 3. Figure 6 shows the error corridor for the data
presented in the left Figure 3. The error bars were obtained as the standard
deviation o of the F-values upon averaging in each k-interval. The nearly
constant o (k) rules out a purely random origin. Indeed, the number of averaged
voxels enormously increases for large £ as shown in Figure 4. The conventional
averaging of randomized deviations would result in a fast decreasing o(k).
Why this is not the case can be explained by the following reasons. Consider
an idealized cortex having an overall shape of an ellipsoid and the folding of
which is similar in any direction from its center. Consider the function |f(k)|?

11
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Apparent errors in data shown in the left Figure 3. The middle line reproduces
the function lg F'(k). The error corridor is formed by the standard deviation o of
data averaged to obtain the values attributed to each k-interval. Its magnitude is
typically close to that of F(k) and it marginally depends on k. The upper line
shows 1g[F (k) + o(k)]. The lower line presents lg F'(k) — o(k)/F (k). The latter
formula coincides with Ig[F'(k) — o(k)] for small o(k) and helps avoiding negative
values in the logarithmic scale. A deterministic origin of this seemingly large error
is discussed on the text.

eq. (3), which results in F'(k) after averaging over the direction of vector k.
The dependence |f(k)|*> plotted against & would show a fractal dimension,
which would be the same for all directions of vector k. At the same time, the
magnitude of |f(k)|*> would be different in different directions according to
the ellipsoid shape. The F(k) values are obtained by the angular averaging
in eq. (3). In the considered example, this would be an averaging of many
parallel lines with a significant spreading in their offsets. It would result in
a constant o(k) similar to one presented in Figure 6. For the ellipsoid, this
effect could be corrected by an appropriate rescaling of, e.g., k, and k,. For
real cortex, this is difficult due to its more complicated structure even at the
coarser spatial scales.

The above reasoning is supported by data presented in Figure 7 showing the
effect of a finer k-gridding by computing the function F'(k). Treating of F'(k)
with less k-intervals leads to more averaged values in each of them, while the
smaller intervals present more individual contributions. Practically an appar-
ently smooth F'(k) emerges when the number of averaged data point reaches
one hundred, as it is seen from comparison of Figures 7 and 4. The averag-
ing, which is not performed in the fine k-intervals, is effectively done later by
fitting performed for computing the fractal dimension. One can initially cal-
culate more averaged F(k) or let this job be done by fitting. These ways are
not equivalent though. The former methods works with F'(k), thus complying
with the definition of fractal dimension, while in the latter the effectively av-
eraged quantity is lg F'(k). The averaging of logarithm should yield a smaller

12
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Effect of reducing the k-intervals in computing F(k). The grey line with black
points presents the same data as in the left Figure 3. The less regular black line
shows F'(k) for a subdivision of k-axis in 5870 intervals. The number of data points
in each interval is shown in Figure 4. The fractal dimension found for the finely
gridded data for the same k-interval as in the left Figure 3 is D = 2.47 £ 0.01
(R = 0.9996). This is smaller than D = 2.73 £ 0.05 obtained for the coarse gridding
(Figure 3, left) as it should be expected by mathematical reasons discussed in the
text.

dimension, which is the case shown in Figure 7.
4.3 Summary of Result Uncertainties

The notion of fractal dimension is applicable to definite scale intervals, which
should be given along with the final results. Obviously, intersubject compari-
son is only meaningful if equal intervals are applied. There may be several ways
to equalize them. The simplest would be to always select equal k-intervals. This
is however less meaningful for cortices with a significant difference in size. A
better way would be to appropriately rescale the considered k-interval. Note
that an image scaling does not change its fractal dimension up to the obvious
restriction of the finite sampling. This uncertainty produces an error of a few
per cent, which is comparable with the fit accuracy.

Another uncertainty stems from the above discussed way of averaging, which
yields the F'(k) curve (Figure 7). As it is shown by the considered example,
the fractal dimension can change by up to 10% for the extreme case presented
in Figure 7. The averaging way should obviously be the same to enable inter-
subject comparison.

The present, study shows the method’s feasibility and reports first results for
two healthy subjects. A larger number of subjects, possible correlations with
brain diseases, as well as the issue of optimal averaging will be reported else-
where.

13



4.4 Comparison with other Methods

Let us discuss the relation of the present method to known approaches in
characterizing the cortex folding. Hofman (Hofman, 1991), has observed that
the convoluted brains of terrestrial mammals possess an overproportional in-
crease in the total cortical surface as a function of the brain volume, which is
an indication of the fractal geometry. This areametric approach was further
used by Majumdar and Prasad (Majumdar and Prasad, 1988) and Free et al.
(Free et al., 1996). Appropriate computational methods imply counting the
smoothed cortical area as a function of the smoothing extent. The smoothing
hides fine details, thus providing a probe for different spatial scales. Its specific
realization used in (Free et al., 1996) was a dilation of the grey-white matter
interface. This approach suffers from the abuttal of gyri (Free et al., 1996),
which explains its application to only the inner cortical surface (Free et al.,
1996). This requires intensive computations thus yielding a restricted amount
of points for fitting the fractal dimension (for example, their result is based on
five data points). The good fit quality obtained in (Free et al., 1996) does not
show this restriction as a disadvantage. However it does not allow to probe
the cortical geometry over all scales.

In contrast, the present method is based on a volumetric approach. It avoids
the problem of defining the interface areas in discretized three-dimensional im-
ages. The high computational efficiency allows for visualizing the grey matter
geometry over all scales as shown, for example, in Figure 3.

The price for these different advantages is an incomplete understanding of the
relation between results of the areametric and the volumetric calculations of
the fractal dimension. Basically, both methods should yield similar results.
Consider, for example, an idealized situation of the cortex with a constant
thickness. Smoothing implies that the convolved cortex is replaced with a flat
slightly curved surface at fine spatial scale up to some size R (Figure 8). The
surface structure at coarser scales is preserved. The original surface area a(0)
inside the smoothing sphere can be estimated as the volume inside this sphere
divided by the cortex thickness A. This is a(0) oc R”/A according to the
definition of the fractal dimension. This area is replaced upon smoothing by
a(R) o« R?*/A, which corresponds to an unfolded surface. Thus the surface
area inside the smoothing sphere is reduced by a factor a(R)/a(0) < R?>~P.
As this estimate is applicable to each cortex element, the same relation holds
for the whole smoothed surface area. This is exactly the formula used by Free
et al. (Free et al., 1996) to measure the fractal dimension.

This example supports the idea that the areametric and the volumetric ap-
proaches give close results for the fractal dimension. It is though difficult to
say how close the results should be. First, the cortex thickness is not con-
stant. Second, any practical realization of the areametric approach needs to
specify a way of smoothing. The implementation in (Free et al., 1996) involves

14



Fig. 8.
An illustration of the smoothing of a convolved surface. The extent of smoothing is
set by a sphere of radius R, which is shown before (left) and after the smoothing
(right). Inside this sphere the convolved surface is replaced with a piece of a flat
one (transition from left to right in the Figure). At larger scales the overall surface
shape is preserved (figure in the middle). The black dots represent a cortex element
put in the origin of the sphere.

non-analytical operations such as thresholding, which hinders a precise ana-
lytical analysis. Third, the available areametric results are obtained for either
inner or outer cortical surface, while the present method works with the whole
cortical volume. By these reasons, it should be expected that the discussed
methods yield fractal dimensions with numerically small, but systematic de-
viations from each other.

This is supported by the available results (Majumdar and Prasad, 1988; Free
et al., 1996). The fractal dimension found in (Free et al., 1996) for the inner
cortical surface is 2.30 4 0.01, which is reasonably smaller that the volumetric
one found in the present study. One can expect that the volumetric result is
closer to the outer cortical area, as the latter is larger. The fractal dimension
of this interface was found to be 2.60 4+ 0.05 (Majumdar and Prasad, 1988).
The agreement with the presented results D = 2.744+0.05 and D = 2.69+0.05
is better than it could be expected in view of the above discussed systematic
difference in the computation methods.

An established measure of the cortex folding is the gyrification index (GI)
(Zilles et al., 1988). It is based on length measurements in brain sections. The
gyrification index for a section is the ratio of the total length of the dissected
cortical area to the length of outer contour around the section. The mean GI
for a hemisphere is defined as the ratio of sum over sections of all total lengths
to the sum of all outer contour lengths.

The notions of both the fractal dimension and the GI relay on a comparison
between the overall size of the brain and the size of the folded cortex. The
similarity ends here though. Calculations of GI make use of the extreme of
the largest scale (the outer contour) and of the finest scale, at which the total
cortical section length is measured. Since the outer contour cannot be treated
statistically, it is difficult to deduce a mathematical relation between the GI
and the cortical fractal dimension. It would be in spirit of the fractal calculus

15



to consider the contours, which are smoothed to different extent. In practice,
the GI focuses on rather location-specific information without referring to
variable spatial scales.

5 Summary

An analysis of the cortical geometry is performed in all spatial scales. It shows
that the brain grey matter does possess a self-similarity range down to details
of about 2.5 mm. The fractal dimension in this range reasonably agrees with
previously reported values. The calculational method is based on the Fourier
transform of segmented three-dimensional high-resolved magnetic resonance
images. The resulted computational algorithm is extremely effective and in-
volves only standard methods of classical mathematics.
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Appendix: Equivalence of Direct and Fourier Determination of Frac-
tal Dimension

The presented proof is a modification of one given in (Liu, 1986) for the context
of brain MRI.

The function F'(k) defined in eq. (3) has the following explicit form:

/f ko
—/f —zkrr)dd/

where f(r) is unity in cortex and zero otherwise, df); performs integration
over the orientations of k. Let us change the integration variable from r’ to
Ar =r — r’ and integrate first over r. This gives

dSdy

e (5)

= / f(r) f(r+Ar)e’ikArdArdr@
m
, ds
:/p(Ar)e_lkArdAer—ﬂ_k, (6)
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where p(Ar) is the two-point correlation function of the cortex for the given
spacing Ar. Now we use the property of the Fourier transform that a rotation
in the source results in the opposite rotation of the image. To do it accurately,
let us define a fixed vector ky and obtain all orientations of the integration
variable k as k = Okg, where O is a rotation matrix. We obtain

/p AI‘ —ikoO~ lArdA ko

Ar

. dQ2
:/p(OAr')e_ZkOAr dAr'4—Trk, (7)

where we have changed the integration variable Ar to Ar' = O~!Ar and used
the property O' = O~!. Note that € still defines the rotation angles of the
matrix O. Thus the integration over {2 performs the averaging of p(OAr’)
over the orientations of its argument. This gives the definition of the fractal
dimension D:

/p Ar — o (Ar)PL, (8)

Substituting this into (eq. (7)) and calculating the Fourier integral we finally
obtain that

F(k) oc k=P (9)

if D does not depend on Ar.
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