LUDWIG-

MAXIMILIANS- | | INSTITUT FUR STATISTIK
e SONDERFORSCHUNGSBEREICH 386

Adebayo, Fahrmeir:

Analyzing Child Mortality in Nigeria with Geoadditive
Survival Models

Sonderforschungsbereich 386, Paper 303 (2002)

Online unter: http://epub.ub.uni-muenchen.de/

Projektpartner

MAX-FLANCK-CESELLECHAFT


http://www.stat.uni-muenchen.de/
http://www.gsf.de/
http://www.mpg.de/
http://www.tum.de/

Analyzing Child Mortality in Nigeria
with Geoadditive Survival Models

Samson B. Adebayo!? and Ludwig Fahrmeir!

I Department of Statistics, University of Munich, Ludwigstr. 33, D-80539 Munich,

Germany.

2 Department of Statistics, University of Ilorin, P.M.B. 1515 Ilorin, Nigeria.

Abstract

Child mortality reflects a country’s level of socio-economic development and quality
of life. In developing countries, mortality rates are not only influenced by socio-
economic, demographic and health variables but they also vary considerably across
regions and districts. In this paper, we analyze child mortality in Nigeria with
flexible geoadditive survival models. This class of models allows to measure small-
area district-specific spatial effects simultaneously with possibly nonlinear or time-
varying effects of other factors. Inference is fully Bayesian and uses recent Markov
chain Monte Carlo (MCMC) simulation. The application is based on the 1999
Nigeria Demographic and Health Survey. Our method assesses effects at a high
level of temporal and spatial resolution not available with traditional parametric

models.
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1 Introduction

Child mortality and malnutrition are among the most serious socio-economic and
demographic problems in sub-Saharan African countries, and they have great impact
on future development. Demographic and Health Surveys (DHS) are designed to
collect data on health and nutrition of children and mothers as well as on fertility
and family planning. In this paper, we focus on child mortality in Nigeria, using data
from the 1999 Nigeria Demographic and Health Survey (NDHS), which was jointly
sponsored by the Nigerian National Population Commission (NPC), the United
Nations Population Fund Activities (UNPFA) and the U.S. Agency for International
Development (USAID). The main objective of the 1999 NDHS is to provide an up-to
date information on fertility and childhood mortality levels, on awareness, approval
and use of family planning methods, on breastfeeding practices, and on nutritional
level. This is intended to assist policy makers and administrators in evaluating and
designing programmes, and to develop strategies for improving health and family

planning services in Nigeria which in turn should reduce childhood mortality levels.

The 1999 NDHS includes information on survival time of respondent’s children,
who were born 3 years before the survey. This permits calculation of various child
mortality rates such as neonatal, post-neonatal and infant mortality rates. Tables 1
and 2 show child mortality rates stratified by regions and districts (states) in Nigeria
respectively. The geographical information given in Table 1 is highly aggregated
and may therefore conceal local and district specific effects. Moreover, there is no
adjustment for other covariates, which may lead to wrong conclusions. On the other

hand, raw mortality rates stratified by districts in Table 2 strongly depend on the



Table 1: Frequency of child mortality by regions in Nigeria.

Region No of deaths No of children Rel. freq.
North East 104 790 0.132
North West 61 669 0.091
South East 63 651 0.097
South West 60 745 0.081
Central 54 697 0.078
Total 342 3552

sample and may be rather unstable. Figure 1 shows the geographical location of
the districts (states) in Nigeria. The geographical distribution of child mortality is
shown in Figure 2, which conveys a similar impression as Table 2. Some kind of

spatial smoothing will be needed to stabilize rates observed in the sample.

Figure 1:Map of Nigeria showing districts 7in numbers”.

(Classical parametric regression models for analyzing child mortality or survival have
severe problems with estimating small area effects and simultaneously adjusting for
other covariates, in particular when some of the covariates are nonlinear or time-

varying. Usually a very high number of parameters will be needed for modelling



Table 2: Geographical distribution of child mortality by districts in Nigeria.

Number | District No of deaths No of children Rel. freq.
1 Akwa-Ibom 29 213 0.136
2 Anambra 5 68 0.074
3 Bauchi 25 153 0.163
4 Edo 13 99 0.131
5 Benue 7 106 0.066
6 Borno 2 68 0.029
7 Cross River 2 56 0.036
8 Adamawa 12 70 0.171
9 Imo 4 65 0.062
10 Kaduna 14 152 0.092
11 Kano 54 318 0.170
12 Katsina 24 213 0.113
13 Kwara 5 72 0.069
14 Lagos 14 132 0.106
15 Niger 12 111 0.108
16 Ogun 6 122 0.049
17 Ondo 5 66 0.076
18 Oyo 7 131 0.053
19 Plateau 7 90 0.078
20 Rivers 5 57 0.088
21 Sokoto 16 96 0.167
22 Abia 5 71 0.070
23 Delta 5 99 0.051
24 Enugu 4 46 0.087
25 Jigawa 7 95 0.074
26 Kebbi 6 85 0.071
27 Kogi 5 104 0.048
28 Osun 4 76 0.053
29 Taraba 3 74 0.041
30 Yobe 10 110 0.091
31 Bayelsa 0 16 0.000
32 Ebonyi 9 59 0.153
33 Ekiti 6 20 0.300
34 Gombe 6 46 0.130
35 Nassarawa 3 43 0.070
36 Zamfara 1 123 0.008
37 FCT-Abuja 0 27 0.000
Total 342 3552
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Figure 2: Coloured map of Nigeria showing the geographical distributions of mortality rates

in proportion. Constructed from Table 2.

purposes, resulting in rather unstable estimates with high variance. Therefore, flex-
ible semiparametric approaches are needed which allow one to incorporate small-area
spatial effects, nonlinear or time-varying effects of covariates and usual linear effects

in a joint model.

In this paper, we apply Bayesian geoadditive survival models which can deal with
these aspects by introducing appropriate smoothness priors for spatial and non-
linear effects. Because survival time of children is measured in months, we rely
on discrete-time survival models, which are reviewed in Fahrmeir and Tutz (2001,
ch.9). Bayesian inference uses recent Markov chain Monte Carlo (MCMC) simu-
lation techniques, described in Fahrmeir and Lang (2001a, b), Lang and Brezger
(2002), and implemented in the open domain software BayesX available from

http://www.stat.uni-muenchen.de/ " lang/BayesX. In a related work, Crook,



Knorr-Held and Hemingway (2002) apply a geoadditive probit model for analyz-
ing time to event data in a medical context. We prefer a geoadditive survival model
with a logit link because of better interpretability and the possibility to compute

posteriors of odds ratios directly, rather than using a plug-in estimate.

Previous studies on child mortality have focused on various socio-economic, demo-
graphic or health factors available in specific data sets, but have mostly neglected
spatial aspects, see for instance Mosley and Chen (1984), Miller et al. (1992), Boerma
and Bicego (1992), Guilkey and Riphahn (1997), and Berger, Fahrmeir and Klasen
(2002).

In Section 2 we discuss the study and data set, while Section 3 describes geoadditive
discrete-time survival models. Section 4 contains the statistical analysis of child
mortality in Nigeria, and the results are discussed in Section 5. Concluding remarks

are given in Section 6.

2 Study and Data

A recent publication by the Commonwealth Secretariat showed that Nigeria, one
of the most populous countries in the world with a population of over 120 million
people, in spite of its abundant mineral resources is one of the poorest countries in
the world with an average GNP per capita income of $260. Less than 10 per cent of
Nigerians are employed by the government and big organizations. Recently United
Nations human right watch reported on BBC that the Niger Delta, consisting of the
districts Delta, Edo, River, Bayelsa, Akwa-Ibom and Cross River (see Figure 1 and

Table 2), where the largest proportion of Nigerian petroleum is being drilled, is less



Table 3: Descriptive information about covariates according to some socio-economic char-

acteristics.
Variable Frequency (%) Coding
Place of Residence
Urban 820 (29.23) 1
Rural 1985 (70.77) -1
Sex
Male 1427 (50.87) 1
Female 1378 (49.13) -1
Tetanus injection during pregnancy?
Tetanus injection received 1549 (55.21) 1
No Tetanus injection received 1256 (44.79) -1
Mother’s educational attainment
At most primary 2042 (72.80) 1
Beyond primary 763 (27.20) -1
Mother assisted at birth or not?
Assisted 2401 (85.61) 1
Not assisted 404 (14.39) -1
Place of delivery
Hospital 1034 (36.88) 1
Others 1771 (63.12) 1
Preceding birth interval
Long birth interval 1968 (70.16) 1
Short birth interval 837 (29.84) -1
At least one antenatal visit?
Antenatal visit 1618 (57.69) 1
No antenatal visit 1187 (43.31) -1
Mother’s age at birth
Less than 22 years 567 (20.21) 1
22-35 years 1861 (66.35) 2
Greater than 35 years 377 (13.44) 3(-1)




developed. There is lack of social amenities and good roads, education facilities are

poor, and the unemployment rate is high.

This paper is based on data available from the 1999 NDHS. It is a nationally rep-
resentative survey of women of reproductive age (15-49 years) and their children
below the age of three years before the survey. Data on childhood mortality are
contained in the birth history section of the Women’s Questionnaire, see National
Population Commission|[Nigeria](2000). Questions include child bearing experience
such as total number of sons and daughters alive or dead. For all children who had
died, the respondent was asked of their age at death which was recorded in months.
Since diarrhea and respiratory illness are common causes of child mortality in Nige-
ria, data were also collected on child’s health such as evidence of diarrhea, cough,

fever and childhood vaccination coverage.

Data were collected on 3552 children from women of reproductive age. A data set
was constructed from children’s individual records of the 1999 NDHS. Each record
represents a child, and consists of survival information as well as a large number of
covariates that may influence child mortality. Crude mortality rates stratified by
districts are displayed in Table 2 and Figure 2. For each child, the data set contains
survival information in the following form: Either a child is still alive at the time
of survey, i.e. it has survived the first 36 months, or, it has died, then its survival
time is given in months. Factors such as mother’s educational attainment, sex of
the child, current working status of mother, assistance at delivery and evidence of
illness two weeks prior to the survey, etc. were included in data analysis at the

preliminary level. However, some of these covariates were not significant and were



removed at a later stage. Also, some of the covariates had missing observations.
We deleted records of children with missing observations from the data, resulting in
2805 children with complete information. Table 3 gives some descriptive statistics

on these covariates.

From previous studies, e.g. Berger et al. (2002), it is known that breastfeeding
is an important factor. To assess this effect we generated a time-varying indicator

variable that takes the value 1 in the months a child is breastfed, and 0 otherwise.

3 Geoadditive Discrete-Time Survival Model

Let T € {1,...,k = 36} denote survival time in month. Then 7" = ¢ denotes failure
time (death) in month ¢. Suppose z;; is a vector of covariates up to month ¢, then

A(t|x;) is the discrete hazard function given by

Mt|zi) = P(T = t|T > t, 24 (3.1)

as the conditional probability of death in month ¢ given that the child has reached

month ¢, and the discrete survivor function for surviving time ¢ is given by

k
Survival information on each child is recorded as (t;,d;),i = 1,---,2805, t; €
{1,---,36} is the observed life time in months, and ¢; is the survival indicator

with 9;=1 if child 7 is dead and 9;=0 if it is still alive. Thus for §;,=1, t; is the age

of the child at death, and for §,=0, t; is the current age of the child at interview.

Discrete-time survival models can be cast into the framework of binary regression



models by defining binary event indicators y;, t = 1,...,T with

Yir =

Then hazard function (3.1) for child i can then be written as a binary response

model
P(yitlzir) = h(ni), (3.3)

where x;; are the covariate processes for child i, h is an appropriate response or link

function, and the predictor n;; is a function of the covariates.

Common choices for discrete survival models of the form (3.3) are the grouped Cox
model and logit or probit model. Practical experience and theoretical arguments
show that results and inferential conclusions are rather similar for these models
when the number of time intervals is moderate or large. Crook et al. (2002) apply a
probit model for computational reasons. In this paper, we prefer a logit form. The

conventional model is then

enit
Py = 1|ng) = 3.4
(yit [7it) 11 eme (3.4)
with partially linear predictor
mie = folt) + 4,7, (3.5)

where fy(t) is the baseline effect and +y are fixed effect parameters. The main reason
for preferring a logit model is interpretability: The models (3.4) and (3.5), can be

equivalently expressed as

P(yit = 1|Iit)

Plys = 0|zs) exp(fo(t)) exp(x3,y), (3.6)

10



i.e. as a multiplicative model for the odds. Another advantage is that we can draw
posterior odds ratio samples directly via the relation (3.6) rather than using a plug-
in estimate for the right hand side of (3.6). Furthermore, the DIC for logit models
are smaller than for the corresponding probit models (though this is not reported
in Table 4). We consider the model (3.4), (3.5) or (3.5), (3.6) as the basic form of
semiparametric survival models. The baseline hazard effect fo(t), t =1,2,... is an
unknown, usually non-linear function of ¢ to be estimated from the data. Treating
the effects fo(t), t = 1,2,... as separate parameters usually gives either very un-
stable estimates or may even lead to divergence of the estimation procedure. In a
purely parametric framework the baseline hazard is therefore often modelled by a
few dummy variables dividing the time-axis ¢ into a number of relatively small seg-
ments or by some low order polynomial. In general it is difficult to correctly specify
such parametric functional forms for the baseline effects in advance. Nonparametric
modelling based on some qualitative smoothness restriction offers a more flexible
solution to explore unknown dynamic patterns in fo(¢). The effects v of covariates

are assumed to be fixed and time-constant.

In many situations, and in particular in our application, the assumption of fixed
covariate effects is too restrictive. First, the effects of some covariates may vary over
time or may be nonlinear. Secondly, as in our study, modelling of spatial effects with
separate fixed effects for all the districts will introduce too many parameters and
correlation between neighboring districts is ignored. Therefore, the semiparametric

predictor (3.5) is generalized to a geoadditive predictor

nie = folt) + Zz/'tf(t) + fopat(si) + U;{Y‘ (3.7)
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Here the effects f(t) of the covariates in z; are time-varying, v; comprises covariates
with an effect 7 that remains constant over time, and fyy(s;) is the nonlinear
effect of district s; € {1,...,S}, where child ¢ lives. Also the time-dependent effect
function f(t) will be modelled non-parametrically. We may further split up spatial
effects fspe into spatially correlated (structured) and uncorrelated (unstructured)

effects as
fspat(si) = fstr(si) + funstr(si)~

A rationale behind this is that a spatial effect is a surrogate of many unobserved
influential factors, some of which may obey a strong spatial structure and others

may only be present locally.

To estimate smooth effect functions and model parameters, we use a fully Bayesian
approach, as developed in Fahrmeir and Lang (2001a, b) and, Lang and Brezger
(2002). For all parameters and functions we have to assign appropriate priors. For
fixed effect parameters v we assume diffuse priors. For the baseline effect fy(¢) and
time-varying effects f(t) we assume Bayesian P-spline priors as in Lang and Brezger
(2002). The basic assumption behind the P-splines approach (Eilers and Marx, 1996)
is that the unknown smooth function f can be approximated by a spline of degree
[ defined on a set of equally spaced knots Z,;m = (o < (G < ... < (o1 < (s = Tomag
within the domain of z. Such a spline can be written in terms of a linear combination

of m = s + [ B-spline basis functions B;, i.e.

f(a) = f;ﬁtw), (3.8)

where 3 = (01, -+, Bn) corresponds to the vector of unknown regression coefficients.
Regression splines depend on the choice of the number of knots and their placement.

12



With too few knots the resulting spline may not be flexible enough to capture the
variability of the data, conversely with too many knots estimated curves may tend
to overfit the data, resulting in too rough functions. The idea of P-splines is to
choose a generous number of knots and to regularize the problem by smoothness
assumptions on the coefficients. Within a Bayesian context, smoothness is achieved

by a first or a second order random walk model

By = Bi—1 +u, B =201 — B2 + (3.9)

for the regression coefficients, with Gaussian errors u; ~ N(0,72). A first order
random walk penalizes abrupt jumps (; — 3;_1 between successive states and a
second order random walk penalizes deviations from the linear trend 205, 1 — (;_».

The amount of smoothness is controlled by the variance 72.

For the structured spatial effects fq..(s), we choose a Gaussian Markov random field

prior, which is common in spatial statistics. It is given as

fotr(8)| forr(t) t # 5,0% ~ N (Z fstr(t)/Ns, UZ/NS) : (3.10)

t€0s

where NV is the number of adjacent sites and ¢ € 0, denotes that site ¢ is a neighbour
of site s. Thus the (conditional) mean of fy,(s) is an average of function evaluations
fstr(t) of neighbouring sites t. Again o2 controls the amount of spatial smoothness.

Unstructured spatial effects are i.i.d. random effects, i.e.

funstr(s) ~ N(O7 qbz)

2 0% and ¢? simultane-

In order to be able to estimate the smoothing parameters 7
ously with all the unknown smooth functions, highly dispersed but proper hyper-

priors are assigned to them. Hence for all variance components, an inverse gamma

13



distribution with hyperparameters a and b is chosen, e.g. 7> ~ IG(a,b). Standard
choices for the hyperparameters are a=1 and b=0.005 or a=b=0.001. The latter
choice is closer to Jeffrey’s noninformative prior, but we have investigated sensitiv-

ity to this choice in our application.

Fully Bayesian inference is based on the posterior distribution of the model pa-
rameters, which is not of a known form. Therefore, MCMC sampling from full
conditionals for nonlinear effects, spatial effects, fixed effects and smoothing pa-
rameters is used for posterior analysis. For nonlinear and spatial effects, we applied
Metropolis-Hastings algorithms based on conditional prior proposals, first suggested
by Knorr-Held (1999) in the context of state space models, and iteratively weighted
least squares (IWLS) proposals, suggested in Brezger and Lang (2002) as an ex-
tension of Gamerman (1997); see also the related work by Knorr-Held and Rue
(2002). Both sampling schemes gave rather coherent results; we rely hereon the

IWLS proposal, implemented in BayesX.

An essential task of the model building process is the comparison of a set of plausible
models, for example to rate the impact of covariates and to assess if their effects
are time-varying or not, or to compare geoadditive models with simpler parametric
alternatives. The comparison of models intends to select the model that takes all
relevant structure into account while remaining parsimonious. A model criterion
should therefore aim at a trade off between goodness of fit and model complex-
ity. We routinely use the recently proposed Deviance Information Criterion DIC

(Spiegelhalter et al., 2002), given as

DIC(M) = D(M) + pD. (3.11)



Here the posterior mean of the deviance D(M), which is a measure for goodness
of fit of model M, is penalized by the effective number of model parameters pD,

measuring the complexity of the model.

4 Data Analysis

Based on previous work in Berger et al. (2002) and on preliminary exploratory

analysis we decided to include the following covariates:

15



bf: breastfeeding indicator, with bf;=1 if a child is breastfed in month
t, 0 otherwise.

magb mother’s age at birth of the child (in years)

5 district in Nigeria

w vector of binary covariates consisting of
place of residence: urban or rural (reference category),
child’s sex: male or female (reference category),
mother received tetanus injection during pregnancy or not: tetanus
or no tetanus (reference category),
mother’s educational attainment: at most primary education or sec-
ondary and above (reference category),
mother received assistance at delivery: assisted or not assisted (ref-
erence category),
place of child delivery: hospital or others (reference category),
preceding birth interval: long birth interval i.e. > 24 months or
short interval i.e. < 24 months (reference category),
at least one antenatal visit during pregnancy?: antenatal or no
antenatal (reference category).

All covariates are effect coded.

The response variable is
1 : if child ¢ dies in month ¢

Yit =
0 : if child 7 survives.

16



We analyzed a series of logit models

enit
1+ enit

p(yie = 1|nie) =

with predictors increasing in complexity. However, we report results only for the

following five selected models:

M1: ny= fot) + MNE + % NW + vSE + 44, SW

M2: = folt) + far(5) + Funstr(s)

M3: ny= fot) + MNE +%NW +SE + 7,SW + v,y

M4 i = folt) + for(5) + funstr(s) +viyy

M5 nie = fo(t) + fur(8) + funstr(s) + fr(0)bf; + fo(t)mar + fa(t)ymag + wiyy.

Here fy(t) is the baseline hazard function and w is the vector of binary covariates
described above. For the fixed effects models M3 and M4 we augmented w to v
including the breastfeeding indicator bf, as well as age categories of the mother
may and mas, where ma;=1 indicates mother’s age at birth less than 22 years and
ma,=-1 if greater than 35 years, and may=1 indicates mother’s age at birth is 22-35
years and mas=-1 if greater than 35 years. Furthermore, fi(t), fao(t) and f3(t) are
time-varying effects of breastfeeding indicator bf;, ma; and masy respectively. As
an alternative to model M5, we have also analyzed a model where mother’s age (in
years) is treated as a metrical covariate and its effect is estimated nonparametrically.
It turned out that model M5 is superior in terms of the DIC. In models M2, M4
and M5, we further split up spatial effects into the two components fy, and f, s to
account for the unobserved heterogeneity that might exist in the data, all of which
cannot be captured by the covariates. It also turned out that structured spatial

17



effects are not statistically significant in the decomposition, while the total spatial
effects (fser + funstr) are significant. Therefore, when interpreting results, we discuss
only total spatial effects.

To estimate fo(t), fi(t), f2(t) and f5(t) we chose Bayesian P-splines priors, and
Markov random field priors (3.10) for fg,(s).

We based Bayesian model selection on the Deviance Information Criterion (DIC)
of Spiegelhalter et al. (2002). Models with the smallest DIC and with adequate
information about the covariates were selected. All analyses were carried out with
BayesX - wversion 0.9 (Brezger, Kneib and Lang, 2002), a software for Bayesian

inference based on Markov Chain Monte Carlo simulation techniques.

We also investigated sensitivity to the choice of different hyperparameter values for
the five selected models. For all the nonlinear effects of fy, fi, fo and f3, changing
the values of a and b has no impact on these effects. However, for district-specific
spatial effects, results are more stable with a = 1, b = 0.005 and a = b = 0.001 than

with other values investigated.

5 Discussion of Results

We start with a discussion of the results for spatial effects. Comments on the baseline
effect fo(t), which is included in all five models and has rather similar patterns, and

on covariate effects follow then.

Models M1 and M3 are of the basic conventional form (3.6) and assume usual fixed
effects for regions and covariates. For model M1 the geographical pattern of the

five regions in Figure 3a reflects the crude mortality rates of Table 1. Inclusion of
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covariates in model M3 improves the model in terms of deviance and DIC consid-
erably. Note that the spatial pattern changes considerably compared to model M1
after adjusting for covariates (Figure 3b). Yet the aggregation of the 37 districts
of Nigeria into 5 regions is too coarse for a thorough discussion of spatial results,
and may even lead to misleading conclusions. This can already be seen from the
district-specific pattern in Figure 3¢ obtained from model M2. It is obvious, that
spatial effects of districts within the same region can vary a lot. This implies that
interpretations for regions drawn from Figure 3b will be strongly biased or wrong
for some of the districts within a region. After adjusting for the same covariates as
in model M3, the corresponding geographical pattern of district-specific effects in
model M4 shown in Figure 3d is still comparable to the one in Figure 3¢, although
the DIC value in Table 4 shows a clear improvement. This means that nonpara-
metric Bayesian modelling of small-area effects is also more robust with respect to
correct adjustment by covariates than the traditional parametric approach. Figures
3e and 3f are significance maps (at 80% level), showing districts with positively
significant (white), negatively significant (black) and nonsignificant effects (grey).
These maps again confirm that there is a change in spatial pattern when moving on

from model M2 to model M3, but it is not dramatic.

Finally model M5 is an extended version of model M4, by allowing for time-varying
effects of breastfeeding and mother’s age at birth similarly as in Berger et al. (2002).
Further improvement is clearly indicated by the DIC in Table 4. We discuss now

the spatial effects shown in Figure 4 in more detail.

Obviously there exists a district-specific geographical variation in the level of child
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mortality in Nigeria based on 1999 NDHS. Figure 4b reveals that significant high
child mortality rates are associated with coming from Akwa-Ibom (1), Ebonyi (32)
(in the South-East), Ekiti (33) (in the South-West), Adamawa (8) (in the Central),
Sokoto (21) (in the North-West) and Bauchi (3) (in the North-East) districts of Nige-
ria. On the other hand, Zamfara (36), Kebbi (20), Jigawa (25), Niger (15), Kaduna
(10) and Borno (6) districts are associated with significantly low child mortality
rates. There are nonsignificant spatial effects in the remaining districts including

the Federal Capital Territory - Abuja (37).

These variations may be attributable to differences in the physical environment
where a child lives, which in turn influence exposure to diseases. For instance, it
is likely that high child mortality rates in the South-Eastern region, unfortunately
where the country generates its major income from petroleum, can be attributed
to incessant oil spillage which has become almost an annual event in that part
of the country. The hazardous effect of pollution, which is an end result of oil
spillage, is a major problem in that area. For example, land pollution has hindered
the affected communities from being involved in farming. Water pollution makes
access to drinkable water, water for household use and hygienic sanitation difficult.
Together with air pollution these often result in outbreak of diseases such as diarrhea,
fever, cough, cholera, respiratory illness, etc. and food insecurity. A notable cause
of high mortality rates in North-Eastern and North-Western regions could either
be due to incessant communal, ethnic and religious clashes (e.g. in Bauchi (3) and
Adamawa (8)) or drought or both, the aftermath of which could result in shortage
of food supply and natural depopulation. The cause of high mortality rates in Ekiti

(33) district is very likely due to the fact that it is located on a lowland. Other
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reasons could be as a result of outbreak of malaria and other natural cause(s) not

included in the data set.

Figure 5 shows from top to bottom, the nonlinear effect fy(¢) of age (baseline ef-
fect) and the time-varying effects fi(t), fo(t) and f3(t) respectively, modelled and
fitted through Bayesian P-splines. Starting from a comparably high level in the first
month, the age effect declines more or less steadily until months 24 to 25 months,
where a bump appears, which is likely caused by heaping of children who died at
this age. A flexible baseline as in our approach helps to control for this heaping.
For comparison, we also applied a piecewise constant model for fy(t) with fixed
effects for the three categories t = 1, t=2 to 25 and t=26 to 36. For model M5
we obtained the follwoing posterior means (and 10%, 90% quantiles) respectively:
4.442 (3.740, 5.231), 0.236 (-0.453, 1.062) and -4.678 (-6.215, -3.394). This clearly
confirms the relatively high mortality risk in the first month. The DIC, however,
was higher than for model M5 with flexible baseline hazard. The second panel from
top displays time-varying effect of breastfeeding. It is evident that breastfeeding
only reduces mortality risk in the early months of life, while its impact beyond 4
months is either negligible or increases the risk of child mortality. This, of course,
is reasonable as breastfeeding at old age will not be sufficient to keep the child
strong, hale and healthy. A remarkable observation here is that exclusive breast-
feeding is only practiced within the first four months of live among Nigerian mothers
though exclusive breastfeeding is recommended for the first four to six months of
life (WHO/UNICEF, 1990). The third panel (from top) of the Figure shows the
time-varying effect of younger mother (< 22 years) while the fourth panel shows the

varying effect of middle-aged mother (22-35 years). Although confidence bounds
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become quite wide at the end of the observation period, it seems that mortality

risks are reduced when the mother is older (22-35 years) and has more experience.

Table 5 displays the posterior estimates of the fixed effect parameters in model M5.
Mother’s educational attainment significantly affects the survival chances of the
child with children from educated mothers (secondary and above) having lower risks
of dying in comparison to their counterparts. Mothers that received assistance at
delivery, child delivered at the hospital and with high preceding birth intervals, have
less risks of child mortality. The interaction effect of receiving assistance at birth
and having visited (at least once) an antenatal clinic during pregnancy, reduces the
risk of child mortality (though antenatal visit on its own is not significant). All these
findings confirm the descriptive results in National Population Commission [Nigerial
(2000). While effects of mother’s educational attainment, received assistance at birth
and delivery of the child taking place at a hospital are only significant at 80% credible
intervals, effects of long birth interval and interaction of assistance and antenatal

visit are both significant at 95% credible intervals.

Table 6 shows ratios of relative risks for the fixed effects of model M5. According
to (3.6), the ratio of relative risks of a binary covariate x € {1, —1} is A = exp(2y).
This parameter can be sampled together with v which is an advantage of the logit
model. The factor A then describes the increase or decrease of the relative risk of
a child with covariate x = 1 compared to a child with x = —1, but with the same

values for the remaining factors.
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6 Concluding Remarks

In many lifetime or mortality studies, the data contain geographical information at
a high spatial resolution. Compared to traditional parametric methods, Bayesian
geoadditive models have distinct advantages for exploring small-area spatial effects.
Of course, these spatial effects have no causal impact but careful interpretation can
help to find latent, unobserved factors which directly influence mortality rates. From
a methodological point of view, we have focused on discrete-time survival model.
Extensions to continuous-time models, such as the Cox proportional hazard model

are desirable and will be a topic of future research.
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Table 4: Summary of the DIC for models M1 to M5.

Model Deviance pD DIC

M1 3725.74  19.06 3744.80
M2 3677.76  34.22 3711.98
M3 2169.45 29.21 2198.66
M4 2119.96 44.16 2164.12
Mb 2074.11 5240 2126.51

Table 5: Posterior estimates of the fized effect parameters for model Mb.

Variable mean std. error | 5% 10%  90%  95%

Urban 0.001 0.094 -0.181 -0.115 0.121 0.187
Male 0.047 0.072 -0.106 -0.043 0.139 0.172
At most primary 0.191 0.096 -0.008 0.068 0.310 0.380
Assisted -0.154 0.102 -0.363 -0.290 -0.024 0.049
Hospital -0.188 0.113 -0.412 -0.349 -0.041 0.019
Long birth interval | -0.426 0.088 -0.623 -0.538 -0.314 -0.258
Assist*antenatal -0.198 0.087 -0.375 -0.304 -0.092 -0.027

Table 6: Posterior estimates of the relative risk ratios for model M5.

Variable mean std. error | 5%  10% 90%  95%
Urban 1.019 0.193 0.739 0.794 1.274 1.342
Male 1.110 0.156 0.866 0.917 1.320 1.373
At most primary 1.493 0.288 1.049 1.145 1.857 2.006
Assisted 0.751 0.155 0.517 0.560 0.953 1.004
Hospital 0.705 0.157 0.469 0.498 0.922 0.972
Long birth interval | 0.433 0.076 0.315 0.341 0.533 0.571
Assist*antenat 0.683 0.120 0.509 0.545 0.833 0.901
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a) Regional fixed effects in model M1

b) Regional fixed effects in model M3
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c) Total spatial effects in model M2 d) Total spatial effects in model M4
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e) 80% Posterior probabilities (total) in model M2 f) 80% Posterior probabilities (total) in model M4
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Figure 3: Coloured maps of Nigeria showing posterior means of regional fixed effects in
models M1 (top left) and M3 (top right), nonlinear (total) spatial effects in models M2
(middle left) and M4 (middle right), and maps of 80% posterior probabilities for models

M2 (bottom left) and M4 (bottom right) respectively.
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a) Total spatial effects in model M5 b) 80% Posterior probabilities (total) in model M5

|
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Figure 4: a) Coloured map of total spatial effects and b) the corresponding map of 80%

posterior probabilities in models M5.
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Figure 5: Graphs of nonlinear effects from top to bottom: baseline effect, varying effect of
breastfeeding, varying effect of mother’s age < 22 years and varying effect of mother’s age

22-35 years respectively for model Mb.
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