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Abstract

Various supervised learning and gene selection methods have been used for

cancer diagnosis. Most of these methods do not consider interactions between

genes, although this might be interesting biologically and improve classification

accuracy. Here we introduce a new CART-based method to discover emerging

patterns. Emerging patterns are structures of the form �� � � ��� � ��� � ���

that have differing frequencies in the considered classes. Interaction structures of

this kind are of great interest in cancer research. Moreover, they can be used to

define new variables for classification. Using simulated data sets, we show that

our method allows the identification of emerging patterns with high efficiency.

We also perform classification using two publicly available data sets (leukemia

and colon cancer). For each data set, the method allows efficient classification as

well as the identification of interesting patterns.
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1 Introduction

In recent years, microarrays have become a very popular technique to measure the

expression levels of thousands of genes simultaneously. In cancer medicine, microar-

rays are a potentially efficient tool to perform reliable diagnosis, since many genes

are differentially expressed according to the tumor type. This involves sophisticated

supervised learning methods in the ’small � large �’ framework, where � is the num-

ber of patients (observations) and � the number of genes (variables). Microarrays are

believed to allow finer and more reliable identification of tumor types than the usual

clinical methods. This is of crucial importance, because a very fine diagnosis is neces-

sary for the efficient treatment of patients. Thus, a large amount of literature deals with

supervised learning methods with application to microarray gene expression data.

Emerging patterns (denoted as EPs in the whole paper) are particular interaction

structures. They were first introduced in the computer science and data mining frame-

work by (Dong and Li, 1999) and then applied to microarray data by (Li and Wong,

2001, 2002). Here, we are interested in the statistical background of emerging pat-

terns and redefine emerging patterns for this purpose. Subsequently, we propose a new

simple CART-based method to discover relevant emerging patterns as well as a classifi-

cation scheme to use these emerging patterns for supervised learning. In the following,

we will consider only data sets with two classes denoted as class 1 and class 2.

For the illustration of the concept of EPs, let us imagine that most patients with low

(or high) expression levels of gene � and gene � belong to class � (� � �� �) and that

this is the case for most patients from class �, as is depicted in Figure 1. This would be

a valuable piece of information, both for statisticians who want to classify the samples

and for biologists who try to determine the function of genes and the mechanisms

of cancer. But this kind of pattern is quite difficult to detect. In particular, standard

methods for gene selection (such as �-test) and classification miss genes involved in

such interactions. Emerging patterns are patterns of this type.

EPs were introduced by (Dong and Li, 1999) who define them as ’itemsets whose

supports increase signinficantly from one data set �� to another, ��. Examples of

emerging patterns are

�	
�
� � ������ � �	
�
� � ���	
�,
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�	
�
� � ������ � �	
�
� � ��
���.

with the relative frequencies in �� and ��

EPs �� ��

�	
�
� � ������ � �	
�
� � ���	
� 0% 100%

�	
�
� � ������ � �	
�
� � ��
��� 85.7% 6.25%

EPs of the kind �	
�
� � ������ � �	
�
� � ��
���, for which the frequency

in class 1 is larger than in class 2, will be denoted as EPs of type 1. EPs of type

�	
�
� � ������� �	
�
� � ���	
�, for which the frequency is larger in class 2 than

in class 1, will be denoted as EPs of type 2. In general let �� � ����, �� � ���� denote

the sample sizes of data sets �� and ��. For a specific pattern � the counts ���� and

���� within data sets �� and �� yield the simple structure

�� ��

� ���� ����

The growth rate from �� to �� is defined as


�����
�� � �

�������
�������

�

by using the convention ��� � � and ��� � � for � �� �. A large value of


�����
�� � indicates an EP of type 2. The growth rate from �� to ��


�����
�� � �

�������
�������

is simply the inverse of 
�����
. A large value of 
�����

�� � indicates an EP of

type 1.

For � � �, Dong and Li (1999) call � a �-emerging pattern from �� to �� if


�����
�� � � ��

and a �-emerging pattern from �� to �� if


�����
�� � � �

In the original paper (Dong and Li, 1999), EPs are defined as itemsets (containing

possibly more than 2 items) with high growth rate from �� to �� or from �� and
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��. In (Li and Wong, 2001, 2002), the same authors only look for EPs with infinite

growthrate. Thus, an EP contains patients from only one of the two classes. Subse-

quently, the EPs are ordered according to the number of patients they contain. The

discovering method of (Li and Wong, 2002) includes two steps: a pre-screening step

leaving only 35 genes and a discovering step using a enumeration-based algorithm

described in (Dong and Li, 1999).

The rest of the paper is organized as follows. In Section 2, we give our own defini-

tion of emerging patterns and present our discovering method as well as the associated

classification method. In Section 3, we validate our method with simulated data sets

and test it on two publicly available ’benchmark’ microarray data sets. In Section 4, we

compare our classification results to the results of other supervised learning methods

and our emerging patterns to those of Li and Wong (2002).

2 Methods

2.1 An alternative definition of emerging patterns

In our view, the definition adopted by (Li and Wong, 2002) is inconvenient for two

major reasons. First, it is very restrictive to require infinite growth rate, because mi-

croarray data are noisy. Second, it would be advantageous to replace the two-step eval-

uating method (considering successively the growth rate and the size of the pattern) by

a single statistical criterion. We suggest an alternative definition of an EP as a pattern

of the form

� � �	
�
�� � ��� � � � � � �	
�
�� � ���

(where � stands for � or �), for which the hypothesis ��� ���� � ��� ���� can be

rejected to a certain confidence level. This definition is associated to a test statistic that

has to be chosen. Note that for a pattern containing few samples, this hypothesis can

not be rejected even if the pattern contains only patients of the same class. Thus, this

criterion effectively replaces the two-steps evaluating method of (Li and Wong, 2002).

The number of genes � is denoted as the order of the EP (� � �).
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2.2 Pre-Screening with empirical distribution function

Our method for discovering EPs with trees is computationally intensive if applied to

all genes simultaneously. Thus, a pre-screening or gene selection step is necessary. As

is seen from Figure 1, an emerging pattern involves genes which do not necessarily

discriminate well when used alone. Thus, usual selection methods which score the

genes separately may be too restrictive. These usual methods do not select all the

interesting genes. On the other hand, in order to be part of an emerging pattern a

variable must have some discriminatory power. Therefore, we propose a new univariate

gene selection method which is as non-restrictive as possible and particularly well

suited to the framework of emerging patterns. Our selection criterion for a gene is

whether there exists a point where the empirical distribution function is less than � for

one class and more than � for the other class or more than ��� for one class and less

than �� � for the other class, where � is a ’small parameter’ (typically between 0 and

0.1) and � is a ’large parameter’ (typically between 0.5 and 0.7). This gene selection

procedure is very fast and selects most interesting genes, provided � is large enough

and � is small enough. However, to be sure to get most interesting genes, one has to

select uninteresting genes as well, which makes the discovering phase considerably

slower. In order to reduce the number of parameters, we will always set � to 0.1.

Algorithm 1 : Pre-screening algorithm

For each gene:

1. Determine �� resp. ��, the empirical distribution function of the observations

from �� resp. ��.

2. If either 	� 
 ������� � ��������� � �� or 	� 
 ������� � � �

�� ������� � �� �� is non-empty for � � � or � � �, then select the gene.

As an example, let us choose � � ��� and � � ���. As is seen from Figure 4

the gene 456 from the leukemia data set would be selected because there exists an

interval where the empirical distribution function for class 1 is smaller than � and the

empirical distribution function for class 2 is larger than �. One of the points contained

in this interval is marked in the panel.
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2.3 Discovering emerging patterns with trees

2.3.1 Tree methodology

Classification trees are an efficient exploratory tool to detect structures in data

(Breiman, 1984). These are based on recursive partitioning whereby the measurement

space �	 is successively split into subsets. Let �
 � ���� � � � � �	� 
 �
	 denote the

gene expression levels of genes �� � � � � �. If � is a subset of �	 (corresponding to the

partitioning of �	 into � and � � �
� � �), the split of � based on the variable ��

divides � into

����� �� � 	� 
 ���� � ���

����� �� � 	� 
 ���� � ���

Thus the subset � is split by use of one variable, �� , with the split simply depending on

a threshold � from the range of �� . By starting with� � �
	 and performing successive

splittings one obtains a tree. The result of � splittings are subsets of �	 of the form

	����� � ��� � 	����� � ��� � � � � � 	����� � ����

Thus a succession of splits yields a pattern. In general let a pattern � of order � be

defined as a subset of �	 which is identified by the sequence 	��
�

�� � � � � � � � ��

where �
 
 	�� � � � � �� identifies the variable and 

 specifies the interval which in

the simple case of binary splits has the form 

 � ���� �

 or 

 � ��
����. The

relationship between decision trees and EP is simple: a pattern is equivalent to a leaf.

For recursive partitioning, a splitting criterion has to be chosen. Possible criterions

are for instance the deviance, the Gini-index, the entropy, etc (Tutz,2000). Since our

goal is to find patterns for which the null-hypothesis ��� ���� � ��� ���� can be

rejected, we choose the deviance. The deviance, which is one of the most widely used

splitting criterions for trees is very well suited because it corresponds to the fit of the

model ��� ���� � ��� ����. The deviance of a pattern � is defined as

��� � � ��

��
���

����� ���
����
��

� ���� ���
����
��

��

Given a pattern � of order �, an additional split in variable � at � yields a �����-

dimensional pattern. This new split is chosen to minimize the conditional deviance
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which is given by

����	���� � ��� ��	���� � �� � ����	���� � ��������	���� � ������� ��

2.3.2 The discovering method

A tree is grown using a standard algorithm for classification trees (for instance the

algorithm implemented in the package tree in R). If there are one or two ’good’

leaf(ves) (’good’ means that the within leaf deviance is low), the genes and the cut

points defining this leaf are stored. Another tree is grown with all genes except the

gene involved in the first splitting. An alternative is to eliminate all the genes involved

in the definition of the leaf. The same is done for the second tree, and so on, until only

one variable remains. Here, we limit the order of the patterns to 2, because we found

out that almost all the patterns of greater order were not significant statistically due to

the small number of observations. However, our method can easily be generalized for

patterns of greater order, provided the number of observations is large enough to allow

those patterns to be statistically significant. In this case, the gain of time produced

by our method compared to the (computationally very intensive!) consideration of all

possible patterns is even greater.

Algorithm 2 : Discovering algorithm

1. Initialize � as the set of all pre-screened genes.

While S is not empty:

2. Grow a classification tree with the variables from � with maximal depth 2.

3. Select the biggest leaf with predicted class 1 (i.e. the leaf with the most observa-

tions in class 1) and the biggest leaf with predicted class 2 (i.e. the leaf with the

most observations in class 2). These leaves are now called patterns.

4. For each selected pattern � of order 2:

(a) Let � � denote the node which was splitted into � and � . Thus we have

� � � � � � ���
�.
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(b) Test the two-sided null-hypothesis that the second splitting is unrelevant to

the confidence level �� by using Fisher’s exact test.

(c) If the hypothesis can be rejected, then keep � in the set of the selected

patterns. Else, replace � by the node �� in the set of the selected patterns.

5. For each selected pattern, test from the global contingency table if it is signifi-

cant, by using Fisher’s exact test to the confidence level ��.

6. Store the significant pattern(s) (and their dominant class).

7. Eliminate the gene involved in the first splitting of the tree from the set of vari-

ables �.

8. With the reduced � go to step 2.

Alternatively, in step 7 one can eliminate all the genes involved in the discovered

emerging patterns. It makes the algorithm faster, but interesting emerging patterns

are potentially missed. The idea behind step 4 is that an EP of lower order is bet-

ter than an EP of larger order for which consecutive splittings are unrelevant. For

example, the pattern ��� � �	
�
� � �� � �	
�
� � �� depicted in Figure

3 has two relevant splittings, where as the splitting �	
�
� � �� in the pattern

��� � �	
�
� � �� � �	
�
� � �� is unrelevant.

Note that we use the deviance as splitting criterion for the tree algorithm and

Fisher’s exact test as evaluating criterion after the tree is grown. Although these two

statistics correspond to the same null-hypothesis, they are different. We used the de-

viance criterion as splitting criterion when growing the tree, because this is the ’stan-

dard’ criterion used by most tree users and it is known that it works well. However, it

is better to evaluate the resulting pattern by carrying out Fisher’s exact test, because

the deviance test is an asymptotic test which might give biased results when applied

to small leaves. In further work, one could try to implement a tree algorithm using

Fisher’s exact test as splitting criterion.

Finally, one obtains a list of emerging patterns of different types (1 and 2) and dif-

ferent orders. These can be used for classification, as described in the next paragraph.
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2.4 Classification method

The idea is to define binary covariates based on EPs and apply a classical supervised

learning method namely linear discriminant analysis on these new covariates. Suppose

that we have a learning set � and a test set � . Let �� denote the number of observations

in � and �
 denote the number of observations in � .

Algorithm 3 : Classification algorithm

1. Apply the pre-screening algorithm to � with parameters � and �.

2. Detect the emerging patterns in � following the discovering algorithm. Let  

denote the number of found emerging patterns.

3. Define new data matrices �� of dimensions ��� �  � and � � of dimensions

��
 � � as follows:

����� �� �

���
��

� � if the �-th training observation is in the �-th EP

� � otherwise

� ���� �� �

���
��

� � if the �-th test observation is in the �-th EP

� � otherwise

4. Perform linear discriminant analysis (details are given in the next paragraph)

to predict the class of observations from � using the matrix �� as training data

set and � � as test data set.

For discriminant analysis, we make the following distributional assumptions for

�

 � �!�� � � � �!��, where the !� � � � �� � � � � stand for the new variables:

� �" � � � ������ #�� where ��is the mean of � in class 1

� �" � � � ������ #�� where ��is the mean of � in class 2

where � is the identity matrix of dimension � �  � and # is a constant. It means

that the variables are considered to be independent and to have the same variance #.

This simplified discriminant analysis method is also referred as nearest centroid. The

assumptions are very strong, but the performance is better than by estimating many

parameters on the basis of few observations.
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3 Results

3.1 Simulated data

Generation of the data matrix

We generate a simulated data matrix containing ���
 observations and a total of ��

genes. Let �� � �� � ���
�� denote the numbers of observations in each class. Let

���� resp. ���� denote the numbers of EPs of type 1 resp. 2. Thus, 2���� genes are

involved in a EP of type 1, 2���� are involved in a EP of type 2, and the remaining

�� � � � ����� � ����� are not involved in any EP. To simplify, the expression levels

are all in ��� �
. Genes which are not involved in EPs are randomly generated according

to the uniform distribution between 0 and 1. Only EPs of order 2 are generated.

To generate a pair of genes forming an EP of type 1, the following algorithm is

run. EPs of type 2 are generated in the same way: one just has to exchange 1 and 2 in

the algorithm.

Algorithm 4 : Algorithm for EP generation

1. The threshold values for both involved genes are randomly generated according

to the uniform distribution between 0.25 and 0.75. The senses (’�’ or ’�’) are

also randomly chosen.

2. The two-dimensional expression level is generated according to the uniform dis-

tribution for each observation:

� in the EP with probability $ for observations from class 1 and � � $ for

observations from class 2.

� outside the EP with probability � � $ for observations from class 1 and $

for observations from class 2.

where $ is parameter reflecting the theoretical goodness of the EP.

The method for prescreening genes and discovering EPs was tested with several com-

binations of parameters (�,�,��,��). We decided to fix � to 0.1.
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Results of the discovering method on simulated data

The total number of possible gene pairs is ���� ����, where � is the number of genes.

For each gene pair, let us define two binary variables: 
, which equals 0 if the pair does

not form an EP and 1 if the pair forms an EP, and �, which equals 0 if the pair is not

detected as an EP by our method and 1 if it is detected as an EP. For each parameter

combination, we simulate 100 data matrices and apply our discovering method (in-

cluding the pre-screening step) to these 100 matrices successively. For each simulated

data matrix, we define

���: number of detected EPs

���: number of non-EP gene pairs which were detected as EPs

���: number of EPs which have not been detected

���: number of non-EP gene pairs which were not detected as EPs

If an EP of type 1 resp. 2 is diagnosed as EP of type 2 resp. 1, the EP is not

considered as detected: it will be counted in ���. For each parameter combination, we

are interested in the contingency table

� � �


  
�������  
������� ���


  
�������  
������� ���� ���� � ���

where 
� is the median over the 100 random data matrices. We define the hit rate as

the median proportion of detected EPs among the ��� real EPs

 
�������

���

Similarly, the false alarm rate is defined as the median proportion of pairs which were

discovered as EPs among the non-EP pairs

 
�������

���� ���� � ���

The hit rate and the false alarm rate are given in Table 4 for different �, �� and

��. The boxplots of ������� and ������� are represented in Figure 4 and 5. They
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reveal some interesting features. First, � does not seem to have much influence on both

rates, which indicated that a high � can select most important genes. Second, both the

false alarm rate and the hit rate seem to decrease when �� is increases. Third, a high

�� parameter seems to decrease the false alarm rate sensibly but not the hit rate. Thus,

the main conclusion of these simulations is that �� should be quite high, but that the

other parameters do not have any great influence on the accuracy of the discovering

method. However, the influence of � is expected to be greater in real data sets, where

the distinction between ’good’ and ’bad’ genes is not that clear.

3.2 Results of the classification method on real data sets

Study design

We tested our classification method by dividing randomly the data set into a learning

set � and a test set � , following the procedure described in (Dudoit et al., 2002). Since

our method is very sensitive to the size of the training set, we chose to use test sets con-

taining only 10 observations. The entire procedure including pre-screening is repeated

50 times. For each parameter combination, we used the same partitions, so as to elim-

inate possible causes of variations. For each data set, we give the mean classification

error rate over the 50 runs in a table. If the value is marked with a star, it indicates that

for at least one partition, no EP was found, thus making the discrimination impossible.

In this case, the mean is calculated using only the partitions that yielded at least one

EP.

In our study, we set � � ��� (first pre-screening parameter) and �� � ���� (confi-

dence level for the testing of the second splitting). � (second pre-screening parameter)

and �� (confidence level for the global testing of the leaves) can vary.

Colon data set

The colon data set (Alon, 1999) is an Affymetrix data set containing 2000 genes for

22 normal and 40 cancer samples. The 2000 genes are already selected genes (the

authors do not explain how). We carried out a base 10 logarithmic transformation and

normalized the samples to mean 0 and variance 1. Furthermore, 3 genes appear 4
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times in the data set, with exactly the same expression levels for all 62 samples. We

eliminated these lines in the data matrix.

Table 2 contains the mean error rate over the 50 partitions for different values of

�� and �. As expected, the number of found EPs depends highly on both parameters �

and ��. It seems that the classification accuracy increases when both � decreases and

�� increases. The fact that a low � increases the accuracy is not surprising, since more

potential good genes are then selected. The fact that low �� decreases the accuracy is

more difficult to explain, since a stronger selection criterion for the EPs should prevent

the selection of unrelevant EPs. A possible explanation is the robustness of classifiers

based on more EPs. Indeed, the boxplots representing the number of found EPs (Figure

6) shows that for high �� this number is very low and very variable.

Leukemia data set

The leukemia data set (Golub, 1999) is an Affymetrix data set containing the expres-

sion levels of 7129 genes for 72 leukemia patients. We put the training set (38 samples:

27 ALL and 11 AML) together with the test set (34 samples: 20 ALL and 14 AML). We

applied the usual pre-processing method as described in (Dudoit et al.,2002): thresh-

olding at 100 and 16000, filtering (thus obtaining 3571 genes left), base 10 logarithmic

transformation, standardization of each sample to mean 0 and variance 1.

Table 4 contains the mean error rate over the 50 partitions for different values of

�� and �. As for the colon data set, the classification accuracy increases with ��. But

low values for � do not seem to yield much better accuracy. The number of found EPs

is less dependent on the parameter � than for the colon data set, as can be seen in

Figure 7.

Comparison with other supervised learning methods

Using the same study design, we tested 3 of the most usual classification methods:

diagonal linear discriminant analysis as described in (Dudoit et al.,2002), nearest-

neighbors with � � � and Support Vector Machine (SVM). We chose these 3 methods

because DLDA and �NN gave very good when applied to several microarray data
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sets (Dudoit et al.,2002), and SVM is also believed to give very good results (Furey

et al.,2000). For the �-nearest-neighbor method, we used the R programm knn from

the library class and chose the euclidian distance as distance metric. For support

vector machines, we used the R programm svm from the library e1071. Since these

methods work much better with few genes, we performed a preliminary gene selection

using the robust Wilcoxon-statistic, because it gave better results that the other simple

selection methods we tried (�-statistic, Pearson’s correlation and Ben-Dor’s %&'(

score). The results are in Table 3 for the colon data and in Table 5 for the leukemia

data. (leukemia). For the colon data set, the results are a bit better than the results with

our method. For the leukemia data set, our results are better. Thus, our classification

results are similar to those of the best usual methods. In addition, our method allows

to discover interesting structures at the same time, which is actually a great advantage

over the usual approaches which do nothing more than filtering highly differentially

expressed genes and classifying the samples.

3.3 Analysis of the EPs found in the colon data set

Here the discovering algorithm is run on the whole data set. We set � to 0.3 and give

in table 6 only the EPs with a �-value lower than �����, which are the most signifi-

cant. The numbers of EPs of type 1 and 2 are approximately equal, which is quite a

good thing for classification purpose. Another interesting point is that not all the genes

involved in these EPs are good individually (data not shown), especially the genes in-

volved in the second splitting. Thus, we conclude that it is restrictive to select genes

on the basis of some individual score like the �-statistic or the Wilcoxon-statistic and

consider all the other genes as uninteresting.

Our EPs for the colon data set are very different from Li and Wong’s. Several rea-

sons can be put forward. First, Li and Wong looked only for what could be referred

as ’perfect EPs’, i.e. EPs with infinite growth rate. From the statistical point of view,

it makes sense to consider non-perfect EPs as well, especially when having to do with

noisy data like microarray data. Second, the EPs they found are quite long and possibly

containing highly correlated genes. For instance, in an EP containing 7 genes, some of

the genes probably do not bring much, just eliminating one or two observations. There

is no reason why this should also be the case with an independent data set. Thus,
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our EPs are shorter, because we prefer to focus on the statistical relevance and repro-

ducibility. Last, Li and Wong performed a pre-screening leaving only 35 genes, which

is quite restrictive. In particular, the pre-screening eliminates genes which do not per-

form well individually. Since EPs are made of several genes interacting together, it is

questionable whether such a dramatic pre-screening is suited. Indeed, in our emerging

patterns, we noticed that the gene involved in the second splitting is not always a gene

which performs good individually.

4 Concluding remarks

In summary, emerging patterns are a valuable tool for supervised learning as well as for

exploring interactions between genes. Our quite intuitive and fast CART-based method

allows to discover a large proportion of them, with focus on statistical aspects which

had been overseen so far. Additionally, we demonstrated that it is not necessary to

perform a strong pre-screening before classification and that some genes performing

poorly individually may be useful in association with other genes. It would be of great

interest to run our discovering algorithm on data sets with more observations, thus

allowing EPs of greater order. A related issue is the study of the statistical relevance

in the multiple testing framework. Another important topic is the generalization to the

multi-class case which often occurs in practice.
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Table 1: Hit rate and false alarm rate for various parameter combinations
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Table 2: Mean error rate over the 50 runs for the colon data with our method
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LDA �� NN �)(
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50 genes ����� ����� �����
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200 genes ����	 ����� �����

Table 3: Mean error rate over the 50 runs for the colon data with usual classification

methods
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Table 4: Mean error rate over the 50 random partitions for the leukemia data with our

method
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Table 5: Mean error rate over the 50 random partitions for the leukemia data with usual

classification methods
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Table 6: Emerging Patterns for the colon data set
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Figure 1: Examples for possible configurations for two genes with ’2’ denoting cancer

tissue and ’1’ normal
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Figure 2: Empirical distribution of gene 456 (from the leukemia data set) in class 1 and

class 2
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22



ps=1e−4 ps=1e−8

0.
2

0.
8

pg=1e−20, beta=0.3

ps=1e−4 ps=1e−8
0.

2
0.

8

pg=1e−20, beta=0.4

ps=1e−4 ps=1e−8

0.
2

0.
8

pg=1e−18,beta=0.3

ps=1e−4 ps=1e−8

0.
2

0.
8

pg=1e−18,beta=0.4

ps=1e−4 ps=1e−8

0.
2

0.
8

pg=1e−16,beta=0.3

ps=1e−4 ps=1e−8

0.
2

0.
8

pg=1e−16,beta=0.4

Figure 4: Boxplots of the discovery rate over the 100 random data matrices for different

parameter combinations
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Figure 5: Boxplots of the false alarm rate over the 100 random data matrices for dif-

ferent parameter combinations
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Figure 6: Boxplots of the number of found EPs over the 50 runs for the colon data set
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Figure 7: Boxplots of the number of found EPs over the 50 runs for the leukemia data

set
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