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Abstract

The violation of the proportional hazards assumption in Cox model occurs
quite often in studies concerning solid tumours or leukaemia. Then the time
varying coefficients model is its most popular extension used. The function
¢(t) that measures the time variation of a covariate, can be assessed through
several smoothing techniques, such as cubic splines. However, for practical
propose, it is more convenient to assess ¢(¢) by a step function. The main
drawback of this approach is the lack of stability since there is no standard

method of defining the cutpoints of the underlined step function.

The variation in the effect of a predictor can be assumed to be mono-
tonic during the observational period. In these cases, we propose a method
to estimate ¢(f) based on the isotonic regression framework. Applying the
idea of Grambsch and Therneau, where smoothing the Schoenfeld residuals
plotted against time reveal the shape of the underlined ¢(¢) function, we use
the Pooled Adjacent Violators Algorithm as smoother. As a result a set of
cutpoints is returned without any a priori information about their location.
Subsequently, the corresponding step function is introduced in the model and
the standard likelihood-based method is applied to estimate it while adjust-
ing for other covariates. This approach presents the advantage that additional
decisions that can effect the result, as the number of knots in cubic splines,
do not need to be taken. The performance of the provided PH test and the

stability of the method are explored in a simulation study.



1 Introduction and background

The Cox model is by far the most popular procedure for analyzing survival data.
Consider the case where P predictors X : Xy, Xy, ..., Xp, have been identified to
affect significantly the survival probability. The Cox model specifies the hazard for
an individual ¢ as

AEIX) = Ao(t)e™X. (1)

A key assumption of this model is that the ratio of two hazards is independent on
time (proportional hazards model or PH model), i.e. the impact of each predictor
included in the model does not change during the observation period and there-
fore the relative risk RR regarding two levels z;, z; of an explanatory variable is
exp(f(x; — x;)) at any time. However this assumption may not hold for some vari-
ables included in the model. In that case the coefficient 3; and therefore the RR are
functions of time 8 = f(t) and RR = exp(B(t)(x; — x;)).

The application of the Cox model requires validation of the proportional hazards
assumption. In this direction, several tests have been proposed so far to check the
predictors for time-dependency. In case of evidence, the usual PH model needs

transformation, in order to include the dynamic structures.

Many graphical approaches have been proposed in order to check for proportional-
ity. Although the judgment is rather subjective, they can be used as a first guide.
Consider again a predictor in categories, a first intuitive way is to check the Kaplan-
Meier curves for parallelism. If that is true, proportionality is rather likely to be
fullfield. The equivalent multivariate approach would be to fit a Cox model strati-
fied for the factor of interest and plot the survival curves for the mean value of the
other predictors. The resulting curves should be parallel but also in agreement with
the survival curves estimated non-parametrically (for example the Altschuler-Nelson

estimates).

Another more sophisticate graphical estimation of PH assumption can be performed

by plotting the log minus log survival functions against time for each level of the



predictor . If the proportionality assumption holds, the two curves should be par-
allel. To assess the survival function in each level of the predictor one has to fit
again a stratified Cox model. Alternatively one can use the cumulative Schoenfeld
residuals. Under the proportional hazard assumtion each curve should be a random
walk starting and ending at 0 (Brownian bridge). All graphical approaches described
above present difficulties of visualizing the actual pattern of time-dependency and

to reveal the consequences of the underlying violation of proportional hazards.

Alternatively, one can split the data in subgroups that correspond to pre-selected
time intervals. In each data set a Cox model is fitted and the coefficients obtained
are compared to the confidence interval of the overall coefficient. Moreover, in case
of violation, the pattern of interval-coefficients can roughly indicate the form of the
time dependency. The time-intervals are usually selected to include enough events,

but no further cut-off criteria can be established.

The most accurate approach is to apply time-varying coefficients model [3] where
the coefficient 3 is allowed to be a function of time B(t) It provides a test for
proportional hazards and a modeling alternative in case of violation. As special
part of this approach, the Grambsch and Therneau test is defined which is based
on scaled Schoenfeld residuals. Regarding this approach, a new proposal will be
presented in this paper: the incorporation of isotonic regression [6] in the Grambsch

and Therneau test to improve power.

The principal motivation for using isotonic regression in modeling time variation
in Cox model, is that it provides a changepoint model regarding time. Therefore,
optimal cutpoints can be assessed to split time in intervals within which the effect of
the variable of interest remains constant. That is an important task in many clinical
studies. Isotonic regression provides unbiased estimators for changepoints without

any additional requirements.

This paper focuses on combining the benefits from isotonic regression and the flex-

ibility of the varying-coefficients approach. The first part deals with an isotonic

'That is because: S(t) = So(t)eﬂx — Si(t) = Sp() — In(Si(t)) = RRIn(Sk(t)) —
In(—In(S;(¥))) = In(RR) + In(—In(Sk(1)))



version of the Grambsch and Therneau test [2, 9]. Further, we will present how
one can use the isotonic smoother to model the function B(t) in a time-varying
Cox model. The gain of introducing isotonic regression in testing and modeling
PH departures will be outlined and a simulation study will be performed to assess
the properties of the approach. Finally we will present an application in data set

containing children with acute lymphoblastic leukemia.

Notation:
As D is denoted the total number of events and ¢ the random variable for the survival
time. As ¢;, 5 =1, ..., J are denoted the unique failure times with d; > 0 individuals

failing at ¢; and R; the observations having ¢ > ¢;.

2 The time-varying coeflicients Cox Model

As pointed out in the introduction section one easily expressed alternative to pro-
portional hazards is provided by applying models with a time-dependent coefficient.
That is simply an extension of the Cox model where the time consistency assump-

tion on 3 = (Byyp = 1,..., P) is relaxed and is allowed to be a function of time

Bp(t) = Pop + P1,pf,(t). Model (1) takes the following form:

A1) = Ao(t)e?OX (2)

where B(t) is the vector (81(1), B2(t), ..., Bp(t)). If the predictor is a binary variable,
Bp(t) measures the difference in log(relative risk) between the two groups as a func-
tion of time. The advantage of this approach is twofold: On one hand it offers a
straightforward way to investigate time-dependent structures, by testing for 5y; = 0.
On the other hand, in case of PH rejection, it provides automatically an alternative

model that fits adequately the data.

In case that all coefficients in 3 vary (B = B(t) = (B1(1), P2(t), ..., Bp(t))") the usual
partial likelihood of the model takes the form:



ﬁ exp(Lit, Xip(t))

L(Br(1), Ba(t), ., Bp(t) S [Caen, exp(XB(1))]%

where X is the covariate vector corresponding to [th failure at time j.

For one predictor p a function f, is used so that Bp(t) = Bo+ B, f,(1). The adequacy
of this approach depends clearly on the choice of function f,. There are several
proposals about how to estimate the appropriate function f,. The two main meth-
ods that can be used - smoothing splines and fractional polynomials - are shortly
presented in section 3.1 together with a new method using isotonic regression. For

isotonic estimation, fitting algorithms and tests, see [6].

3 Detecting PH departures under order restric-

tion

Assume that if there is any PH violation, it follows a monotonic pattern. Starting
from a time-varying Cox model (equation 2), the Schoenfeld residuals provide a
useful tool in detecting time-variation for the predictors of interest. That can be

accomplished either graphically, or by applying a specific test as outlined below.

3.1 Smoothing Schoenfeld residuals scatterplot

The Schoenfeld residuals are defined at each unique failure times. In absence of ties
they are equal to the difference between the observed covariate vector for an event
at time t;,7 = 1,...,J and its expected value.

5 5 . 2leR, XjeP

ri=X; — E(Xj|R;) — 7 ZXJ—W- (4)

In the presence of P covariates, the Schoenfeld residuals 7 can be presented as a

J x P matrix.



Assume that for each variable p we have one estimated coefficient for each event
time i.e. 3,;. Grambsch and Therneau [2] showed that if 3, is the coefficient from
an ordinary PH Cox model, then

E(r5;) + B = Bpi(t) (5)

where r* = VB_IT are the scaled Schoenfeld residuals and Vj is the variance matrix
for the estimated coefficients 3. This suggests to plot 7. + 3, versus time, to reveal
the functional form of time variation. In case that the PH assumption holds, the
residuals should form approximately a horizontal line at the constant coeflicient 3,

from model (1). One can used any kind of smoother for this purpose.

A popular choice are the natural cubic splines. The principal idea is to split the time-
axis by selecting an appropriate number of nodes and to fit piecewise polynomials.
The choice of number of nodes (which determines the degrees of freedom) can affect
the result, and no specific functional form is given. Fractional polynomials [7, 8]
provide an interesting alternative, and result in a functional estimation of the time
variation, but again one has to choose a set of exponents and maximal number of

components.

The isotonic smoother provides an alternative to standard used smoothers. It re-
quires monotonic trend, which is true for many prognostic factors. For example,
consider a long-time therapy in which younger people respond better, but its prog-
nostic value decreases with age. Additional considerations as for example the number
of nodes need not be taken. The main advantage is that it detects jumps in risk
the for the time axis. Without any a priori information, the procedure returns some
cutpoints, and segments the observational time in homogenous groups. The risk

within each group is considered to be constant.

3.2 Grambsch and Therneau test and its isotonic version

Next to this graphical approach, Grambsch and Therneau introduced a version of

the score test based on the weighted Schoenfeld residuals. Assume that all P pre-



dictor variables are time-dependent. The coefficient for the p variable has the time-
depended form S3,(t) = Bo, + B1,(f,(t) — f,) where f, is the mean of f,(¢) over time.
Then, the PH hypothesis implies that Hy : 5y, = 0.

Using matrix notation the test statistic takes the following form

(= 1]

Tlestpy = —
GTtestpn dzag(VB)D S(t; —1)?

(6)

where Vj is the variance-covariance matrix for the estimated coefficients 3. Each
one of the resulting values corresponds to a variable and tests for time-dependency.
This test is approximately y? distributed with one degree of freedom for each tested

coeflicient.

This test can be thought of as a generalization of the least-square statistic for esti-
mating £(t) given equation (5). Under the assumption of monotonic trend, one can
substituted function f(¢) by the isotonic function is(t): if 1s(3,(t)) is a consistent
estimator of 3,(¢) then

is(r;j) + Bp & By (7)

where 75(r7;) is the residual matrix divided in blocks that correspond to time inter-
vals. Substituting r* by the isotonic estimation is(r*) in equation 6 results to an

isotonic version of the G'T test.

Note that the idea to use piecewise constant and non overlapping time intervals to
estimate f(t) was first proposed by O’Quigley and Pessione [5]. However, as noted in
their paper, the investigator has to choose the partition of the time axis. Although
the authors introduce some useful guidelines, the choice of the cutpoints remains
rather subjective. Applying isotonic regression this disadvantage is bypassed. In
section 5 the performance of isotonic transformation in the residuals is assessed and

compared to the standard Grambsch and Therneau test.



4 Fitting the generalized additive model using iso-

tonic smoothing techniques

Fitting smoothing splines in estimating S(¢) within the Cox model requires maxi-
mization of the penalized likelihood function. The result is a natural cubic spline,
having nodes at each failure time point. The oscillation of the fitted spline increases
as the penalty parameter decreases. This parameter need to be pre-specified and
defines the degrees of freedom. With fractional polynomials, one has to fit a strat-
ified Cox model where the unique failure time points ¢;,7 = 1,..., k determine the
strata. At each such strata the corresponding covariate values are attributed and
the new observational time is set to ¢;1; —?;. Using then X and f(t)X as predictors,

the stratified Cox model applied in the new data set will provide B(t)

With step functions modeling time-varying effects is easier. Once the time-intervals
are estimated the varying coefficients model (2) shall be estimated. Assuming that
PAVA returns m time cutpoints regarding the effect of a variable, the time-varying

coeflicient for this variable takes the form:

B(t) = Po+aily, (t) + azly, (1) + ... + a1y, (1) (8)
0 ift <= t]‘
bt = { 1ttt

The functional form of () has to be introduced in the model in order to estimate
& = (a1, Qg, ..., ). Standard Likelihood based methods are applied for this pur-
pose. Thereafter the usual Score test or the Likelihood Ratio test with m degrees of
freedom can be applied to compare the PH model to the dynamic model, by testing

all time-specific coefficients to be zero:

Hy:04=...=a, = 0. (9)
The parameter «; measures the increase (or decrease) in the risk from time ¢,_; to
time ¢; on a logit scale.

It is very often the case that the time axis seems oversegmented. Some of the

observed cutpoints do not correspond in an important increase (or decrease) in risk.

8



One has to proceed to a backward elimination of the level sets. First the time groups
containing few events (less than 10% of the total number of events) are deleted. Once
those groups are eliminated, the likelihood ratio test can be applied to test one by
one the coefficients a; = 0 in order to define the neighboring level sets that do
not differ significantly. The deletion of a coefficient a; and its time-interval Iy, is
equivalent to its union to the previous interval. The elimination proceeds by such
time-interval unions, re-fits the Cox model and stops when all a; are found to be

significant. The (1 — a)% confidence band for a time varying predictor is expressed

by

Cli_o =B+ \/Xjﬂl_a/Qdiag(ZVBZ’) (10)

where Vj is the large sample variance-covariance matrix for 3 = (Bo, a1y 2y ey Qi)

When more than one covariate is time-varying, the backfitting strategy is applied
to fit the model. The general idea is to fit the time-varying coefficients allowing

variation at one variable at time while the rest covariates remain time-independent

BN = (B 4 (0, B e B

where f(t) is a step function. The likelihood ratio test will assess the gain in the
fit i.e will test a;=! = 0. In case of evidence f(t) is retained. In the next step all

coefficients are reestimated, allowing now variation for the first two variables

6#:2(1’[) = (6(?22 + d?zzfl (t)v 6(?22 + &Zfzzf?(t)v ceey 3’;5:2)

where only fi(t) is estimated from the previews step and held constant in step 2.
The procedure goes on like that updating in each iteration only the coefficients.

Such loops are repeated until a small change in the likelihood is achieved.

5 Simulation study

A simulation study was conducted to explore the properties of the new proposal
for testing proportional hazards applying the isotonic version of Grambsch and Th-

erneau test (equation 6). This section focuses on revealing the advantages of the



isotonic GT test against the conventional test. When forming assumptions about
the functional form of the regression, we tried to be as consistent as possible with
situations frequently observed in clinical studies. The simulations are designed to

avoid ties.

Only the case of a simple binary predictor is considered. One proportional and three
non proportional hazard models are analyzed. In the baseline group the covariate

—4
has been set X = 0 and the hazard —%——. The treatment group has X = 1 and

1+e
€_4+B(t) . .
hazard a0 Each group contains 100 observations.
1+e
FP FP
GT GT
I sotonic I sotonic
0 20 40 60 80 100 0 20 40 60 80 100
Power (linear shape) Power (flat quadratic shape)
FP FP
GT GT
I sotonic I sotonic
0 20 40 60 80 100 0 10 20 30 40 50
Power (Step function) Type | error (constant)

Figure 1: Simulations study for survival data. Compare in terms of power (first
three figures) and type I error (last figure) the Grambsch and Therneau test (GT

test), the fractional polynomials test and the isotonic version of GT test.

To generate the data sets, we proceed separately in each group (treatment or base-

line) as follows: starting from time=1 the number of failures is calculated using

10



the hazard function. For the observations remaining at risk, the number censored
observations is calculated, as a random binary process. The procedure is repeated
for time=2 and stops when no more observations remain at risk. The censoring
probability used here was 0.5%. To model dynamic structures that decrease with

time the following scenarios are made:
Linear: a decreasing linear time-dependency where (1) = —0.02¢ + 1.

Quadratic: where 3(t) = —0.04¢ — 0.004¢2 — 1 representing a decreasing umbrella
shape

1.5 <24

Step function: having shift at t=24 and B(¢) = :
0 t>24

Constant: (¢) = 1 for estimating the properties in case where the PH assumption

is not violated.

Simulations under the first three functions will give information about the power
of the compared tests, whereas with the constant function the type I error will be
assessed. Three test are compared: a) a test based on fractional polynomials model
described in [1] b) the GT test (6) assuming linear transformation for time and c)

the isotonic version of GT test (5). The results are presented in figure 1.

The isotonic test presents the best power for all non-constant functions, whereas
the conventional GT test gives the lowest power. For every shape the power from
fractional polynomial is lower that this from isotonic regression. One would expect
that this advantage of the isotonic test is eliminated in case of a non-monotonic
function. The more flexible approach as the fractional polynomials should present
a better performance in case of the flat quadratic function. This is not the case, as
outlined in figure 1: isotonic regression gives higher power for this shape as it gives
for a step function. However, the price one has to pay for the increasing power in

the isotonic test is a higher type I error.

11



6 Case Study in time-varying Cox model

The data set used to illustrate the above approaches contains 141 observations from
children having acute leukemia (ALL). The endpoint was overall survival time. The
probability to die within a period of 7 days to about 10 years follow up, has been
found to be dependent upon the following binary variables:

- Remission after the first induction (REMI, 1: yes )

- ALL relapse after the first Chemotherapy (RELP, 1: yes )

- The size of massive spleen below the rib (MSPS, 1: > 1 c¢cm )

- White blood cell count (WBC, 1: > 60.6 10?/L )

The survival time is measured in YEARS. The main of the study was to estimate if
there is a time variation in the effect of MSPS, and in case of evidence to describe
this variation. The sample is characterized by a high event rate (122/141), and the

value of deviance in absence of any predictor is estimated to be 1037.59.

The Cox PH model with forward LR selection has been applied and table 1 shows
the estimated coefficients. Time variation in the predictive value of MSPS has been
tested applying Grambsch and Therneau test, Kaplan-Meier curves (figure 6) and
smoothing the Schoenfeld residuals using splines, fractional polynomials and isotonic

regression (figure 3).

Table 1: Acute lymphoblastic leukemia study: The PH Cox model. The deviance is
957.08 with 5 degrees fo freedom.

Variables Coefficients SE p-value

RELP 0.507 0.219  0.021
REMI -0.991 0.387  0.010
MSPS 0.549 0.203  0.007
WBC 0.785 0.232  0.000
CONTS -0.974 0.362  0.007

These different methods are more or less in agreement: there is a dynamic effect

for MSPS. The Grambsch and Therneau test results in a test value 3.930 and the

12



Cumulative survival

Survival time (years)

Figure 2: Kaplan-Meier cumulative survival curves for MSPS.

corresponding p-value is 0.047. Fitting the varying coefficients model using splines,
the constant predictor lies out of the confidence bands for more than 10% of the total
number of events (figure not shown). There is a decreasing positive prognostic value
for MSPS. Children that do not have massive spleen have better prognosis that
decreases progressively, and after about four years the direction of the prognosis
changes. This conclusion is quite strange and against any biological plausibility.
However a possible explanation could be the following: perhaps many children get
a very intensive chemotherapy that is effective against the tumor but is also too
burdensome. So, it may cause a preliminary death to many children. But once a
child overcomes that crucial period and does not relapse, it has the best chances to

survive.

By isotonizing the Schoenfeld residuals (figure 3) the appropriate time-cutpoints are
revealed. The confidence intervals correspond to fractional polynomials. However
some of the resulting steps contain very few events and therefore do not offer a lot
of information while increasing the degrees of freedom. Each group is restricted

to contain at least 10% of the total number of events. After elimination of those

13
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Figure 3: Smoothing the scaled Schoenfeld residuals for MSPS.

groups, model 8 can be written for the resulting time-cutpoints:

B(t) = Bo+ ay - L1es(t) + as - Iss(t). (11)

The time-stratified Cox model can now be fitted again to estimate whether some of
the [;(t) variables are non significant predictors and to delete them. Recall that any
coefficient « that is found to be non significant corresponds in a union of the above
defined time-level sets (table 2). Note that p-value correction has to be considered
because of the multiple comparisons i.e. @ = 1 —+/0.95, ¢ the number of time-

segments.

Both time-interval variables [ g, [352 are significant. The fitted function with the
corresponding confidence bands are presented in figure 4. The dynamic form 3(t)
for MSPS is:

Busps(t) = 157 — 118 - [1.98(1) — 2.85 - I359(1). (12)

14



Table 2: Elimination of the time level sets for MSPS dynamic coefficient.

Coefficient Deviance p-value

Bo 957.08 0.0000
o 928.59 0.0000
o2 915.64 0.0013

The final achieved deviance have been estimated 915.64, that yields an overall LR
test for PH of 41.44 (p < 0.001). Finally the model containing all the significant

predictors and their time dependent effects is:

h(t) = ho(t)e’t®)
where
p(t,x)=0.490 - RELP —1.105 - REMI+
+[1.568 — 1.184 - [1 98(t) — 2.851 - I359(t)] - MSPS + 0.235 - WBC — 0.604 - CONTS

7 Extensions

One can image implementations of isotonic regression in several approaches regard-
ing survival settings. John O’Quigley [5] for example introduced a test for pro-
portional hazards based on the model: A(t) = )\O(t)exp[(g + \Ilé)’X] The matrix
U = diag(;/?l,;/;% ...,J)p) is a score matrix determined by the user. Obviously if
0 = 0 the proportional hazards model is recovered. The model is fitted using the
stratified Likelihood, where arbitrary time cutpoints define the strata, and a sort of
score test is applied to test for § = 0. Isotonic regression can be easily introduced

into this context and improve the performance of this approach.

Another assumption undertaken by the Cox model is that each variable enters the
model linearly, assumption that may also be violated. This case entails that both
coefficient and RR depend on the variable (8 = (X)), RR = exp(p(x;) — p(x;))).
The adequacy of the linear form of a predictor in the Cox model can be visualized by

smoothing the martingale residuals plotted against the predictor. If the shape seems

15
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Figure 4: Isotonic fit for time-dependent coefficient for MSPS.

not linear, the predictor has to be transformed. An approach similar to this used

for modeling time variation can be applied to model properly non linear predictors.

An alternative approach that uses step functions in modeling dynamic structures is
accomplished with CART [10].
cutpoints are not prespecified, but the pruning parameter has to be calculated

through cross validation. The PAVA algorithm can modify the splitting criteria,

The main advantage provided is that the time-

to include monotonicity restrains if so required.
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