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Abstract. Reactive rules are used for programming rule-based, reactive
systems, which have the ability to detect events and respond to them au-
tomatically in a timely manner. Such systems are needed on the Web for
bridging the gap between the existing, passive Web, where data sources
can only be accessed to obtain information, and the dynamic Web, where
data sources are enriched with reactive behavior. This paper presents two
possible approaches to programming rule-based, reactive systems. They
are based on different kinds of reactive rules, namely Event-Condition-
Action rules and production rules. Concrete reactive languages of both
kinds are used to exemplify these programming paradigms. Finally the
similarities and differences between these two paradigms are studied.

1 Introduction

Reactivity on the Web, the ability to detect events and respond to them automat-
ically in a timely manner, is needed for bridging the gap between the existing,
passive Web, where data sources can only be accessed to obtain information,
and the dynamic Web, where data sources are enriched with reactive behavior.
Reactivity is a broad notion that spans Web applications such as e-commerce
platforms that react to user input (e.g., putting an item into the shopping bas-
ket), Web Services that react to notifications or service requests (e.g., SOAP
messages), and distributed Web information systems that react to updates in
other systems elsewhere on the Web (e.g., update propagation among biological
Web databases).

The issue of enriching (relational or object-oriented) database systems with
reactive features has been largely discussed in the literature and software so-
lutions (called active database systems) have been employed for some years by
now. Differences between (generally centralized) active databases and the Web,
where a central clock, a central management are missing and new data formats
(such as XML and RDF) are used, give reasons for developing new approaches.
Moreover, approaches that cope with existing and upcoming Semantic Web tech-
nologies (by gradually evolving together with these technologies) are more likely



to leverage the Semantic Web endeavor. Along this line, of crucial importance
for the Web is the usability of (Semantic) Web technologies that should be ap-
proachable also by users with little programming experience.

The rule-based approach to realizing reactivity on the Web is discussed in
this lecture as an example of an easy to use (Semantic) Web technology. Com-
pared with general purpose programming languages and frameworks, rule-based
programming brings in declarativity, fine-grain modularity, and higher abstrac-
tion. Moreover, modern rule-based frameworks add natural-language-like syntax
and support for the life cycle of rules. All these features make it easier to write,
understand, and maintain rule-based applications, including for non-technical
users.

The Event-Condition-Action (ECA) rules and production rules fall into the
category of reactive rules, which are used for programming rule-based, reactive
systems. In addition to the inherent benefits of rule-based programming men-
tioned above, the interest of reactive rules and rule-based technology for the
Web is underlined by the current activity within W3C working groups on these
subjects.3

Due to the emphasis they put on events, ECA rules have traditionally been
used in reactive systems such as telecommunication network management. As
such, they are well-suited for the reactive, event-based aspect of (distributed)
Web applications. Production rules originate from non-monotonous expert sys-
tems, where they were used to encode the behavior of a system based on domain-
specific knowledge. This makes them relevant to address the stateful, expertise-
based aspect of (higher-end) Web applications.

ECA rules have the structure ON Event IF Condition DO Action and specify
to execute the Action automatically when the Event happens, provided the
Condition holds. Production rules are of the form WHEN Condition DO Action
and specify to execute the Action if an update to the (local) data base makes
the Condition true. This shows that the similarities in the structure of these two
kinds of rules come with similarities, but also some differences, in the semantics
of the two rule paradigms.

Since most Web applications have both an event-based and an expertise-
based aspect, and because the two paradigms are semantically close to each
other, Web applications can choose one paradigm or the other, depending on
where they put the emphasis. They can also leverage the advantages of both, by
choosing to implement a part of their logic using ECA rules, and another part
using production rules.

This paper provides an introduction to programming Web systems with reac-
tive rules, by discussing concrete reactive languages of both kinds, thus trying to
reveal differences and similarities between the two paradigms. To illustrate the
two approaches to realizing reactive behavior, the ECA rules language XChange
and the ILOG Rule Language (IRL) have been chosen. XChange is an ongoing

3 The W3C Rule Interchange Format Working Group is chartered to develop a format
for rules that should enable rules to be translated between different rule systems,
http://www.w3.org/2005/rules/wg.html



research project at the University of Munich and part of the work in the Network
of Excellence REWERSE4 (Reasoning on the Web with Rules and Semantics),
which is a research project mainly funded by the European Commission. IRL is
a production rule language marketed by ILOG5 as part of their production rules
system ILOG JRules.

2 Reactive Behavior on the Web: Application Examples

The Web has traditionally been perceived as a distributed repository of hy-
permedia documents and data sources with clients (in general browsers) that
retrieve documents and data, and servers that store them. Although reflecting a
widespread use of the Web, this perception is not accurate.

With the emergence of Web applications, Web Services, and Web 2.0, the Web
has become much more dynamic. Such Web nodes (applications, sites, services,
agents, etc.) constantly react to events bringing new information or making exist-
ing information outdated and change the content of data sources. Programming
such reactive behavior entails (1) detecting situations that require a reaction
and (2) responding with an appropriate state-changing action [BE06b].

We present in this section several application example of such reactive be-
havior on the Web.

2.1 Distributed Information Portal

Many data sources on the Web are evolving in the sense that they change their
content over time in reaction to events bringing new information or making
existing information outdated. Often, such changes must be mirrored in data on
other Web nodes – updates need to be propagated. For Web applications, such
as distributed information portals, where data is distributed over the Web and
part of it is replicated, update propagation is a prerequisite for keeping data
consistent.

As a concrete application example, consider the setting of several distributed
Web sites of a fictitious scientific community of historians called the Eighteenth
Century Studies Society (ECSS). ECSS is subdivided into participating univer-
sities, thematic working groups, and project management. Universities, working
groups, and project management have each their own Web site, which is main-
tained and administered locally. The different Web sites are autonomous, but
cooperate to evolve together and mirror relevant changes from other Web sites.

The ECSS Web sites maintain (XML or RDF) data about members, publica-
tions, meetings, library books, and newsletters. Data is often shared, for example
a member’s personal data is present at his home university, at the management
node, and in the working groups he participates in. Such shared data needs to be
kept consistent among different nodes. This can be realized by communicating

4 http://rewerse.net
5 http://ilog.com



changes as events between the different nodes using reactive rules. Events that
occur in this community include changes in the personal data of members, keep-
ing track of the inventory of the community-owned library, or simply announcing
information from email newsletters to interested working groups. These events
require reactions such as updates, deletion, alteration, or propagation of data,
which can also be implemented using reactive rules.

Full member management of the ECSS community, a community-owned and
distributed virtual library (e.g., lending books, monitions, reservations), meeting
organization (e.g., scheduling panel moderators), and newsletter distribution are
desirable features of such a Web-based information portal. And all these can be
elegantly implemented by means of reactive rules.

2.2 E-Shopping Web Site

Shopping cart example This example shows how a simple reactive rule set
calculates the shopping discount of a customer. The business rules describing
the discount allocation policy are listed hereafter:

1. If the total amount of the customer’s shopping is higher than 100, then
perform a discount of 10%.

2. If it is the first shopping of the customer, then perform a discount of 5%.
3. If the client has a gold status and buys more than 5 discounted items, then

perform an additional discount of 2%.
4. Rule 1 and 2 must not be applied for the same customer, the first rule has

the priority against the second. The third rule is applied only if rule 1 or
rule 2 have been applied.

Those policies might be taken into account by a reactive rule service (Web
service, procedural application, etc.). This service receives the customer and his
shopping cart information as input. The discount calculation is then processed
following the previous rules and returns the discount value to the service caller.

Credit analysis example This second example shows how a simple reactive
ruleset defines a loan acceptance service. It determines whether a loan is ac-
cepted, depending on the client’s history and the loan request duration. A client’s
score is calculated according to the following business policy. If the client’s score
is high enough, the loan is accepted and its rate is calculated.

1. If the loan duration is lower than five years then set the loan rate to 4.0%
and add 5 to the score, else set it to 6.0%.

2. If the client has filed a bankruptcy, subtract 5 to the score.
3. If the client’s salary is between 20000 and 40000, add 10 to the score.
4. If the client’s salary is greater than 40000, add 15 to the score.
5. If the score is upper than 15, then the loan is accepted.

Those policies are usually implemented by a rule service (Web service, appli-
cation). This service receives the loan request as input information, applies the
rule on them in order to check the acceptance, and finally returns to the caller
the loan characteristics.



3 Event-Condition-Action Rules

3.1 General Ideas

Many Web-based systems need to have the capability to update data found at
(local or remote) Web resources, to exchange information about events (such as
executed updates), and to detect and react not only to simple events but also
to situations represented by a temporal combinations of events. The issue of
updating data plays an important role, for example, in e-commerce applications
receiving and processing buying or reservation orders. The issues of notifying,
detecting, and reacting upon events of interest begin to play an increasingly
important role within business strategy on the Web and event-driven applications
are being more widely deployed.

Different approaches can be followed for implementing Web applications hav-
ing the capabilities touched on above. Section 1 has discussed the advantages of a
rule-based approach for realizing reactive applications compared to general pur-
pose programming languages and frameworks. Event-Condition-Action rules are
high-level, elegant means to implement reactive Web applications whose archi-
tecture imply more than one Web components/nodes and their communication
is based on exchanging events.

For communicating events on the Web two strategies are possible: the push
strategy, i.e. a Web node informs (possibly) interested Web nodes about events,
and the pull strategy, i.e. interested Web nodes query periodically (poll) per-
sistent data found at other Web nodes in order to determine changes. Both
strategies are useful. A push strategy has several advantages over a strategy of
periodical polling: it allows faster reaction, avoids unnecessary network traffic,
and saves local resources.

3.2 ECA-Language Design Issues

Rules In the introduction, it has already been mentioned that ECA rules have
the general form ON Event IF Condition DO Action. Before going into depth
on events, conditions, and actions, we examine the notion of an ECA rule as a
whole.

Rule execution semantics The general idea for interpreting a single ECA rule
is to execute the Action automatically when the Event happens, provided the
Condition holds. However, things become more complex when we consider not
just a single rule but a set of rules (also called a rule base).

Consider the following example of two (informally specified) rules:

ON item out of stock
DO set item’s status to ‘‘not available’’

ON item out of stock
IF item is in stock at one of the shop’s suppliers
DO reorder item and set status to ‘‘reordered’’



These two rules are in a conflict when we try to execute both in response
to an out of stock event for an item that is in stock at one of its suppliers. A
language’s rule execution semantics, determine what happens in such a situation.
Possible rule execution semantics include (see also [Pat98,WC96]):

– Selecting one single rule (or rather rule instance) from the so-called con-
flict set, the set of executable rules, for execution. This requires a selection
principle in the language such as numeric priorities which are assigned to
rules, a priority relation between rules, the textual order of rules in their
definition, or the temporal order in which rules have been added to the rule
base. (The last two are also often used as a “tie-breaker” when two rules
have the same priority.) Some languages are simply non-deterministic, i.e.,
select a rule randomly or by an unspecified principle. The principle by which
rules are chosen is often called the conflict resolution strategy.

– Executing all rules (or rule instances) from the conflict set sequentially in
some order, which is determined similar to the selection above. When during
the execution another event is generated by a rule, one can either suspend the
execution of the other rules in the current conflict set to (recursively) execute
any rules triggered by that event or first execute the complete conflict set
and then (iteratively) turn to any rules triggered by any events generated in
the meantime.

– Simply rejecting the execution of any rule (instance), possibly reporting an
exception.

Usually, it is possible to avoid such conflicts by writing the rules differently. In
the above example, the first rule could be modified to include a condition “item
is not in stock at supplier.” Unfortunately, when rule sets grow larger, this can
lead to quite lengthy conjunctions of conditions. If, in the above example, we
also want to consider the case that an item is in stock at a different branch, we
might have to add the negation of this condition to all other rules.

This short discussion has only scratched the surface of execution semantics for
ECA rules. While they have been studied quite extensively in the area of Active
Database Management Systems [Pat98,WC96], i.e., in the context of typically
closed and centralized systems, rule execution semantics have not been explored
very much for the Web as an open and distributed system.

Flow on information in a rule ECA Rules exhibit a flow of information between
their three parts. In the earlier example, the “out of stock” event part has to
provide some identifier for the item. The condition part of the second rule makes
use of this identifier in determining whether there is a supplier for the item,
possibly providing the supplier’s name to the action part.

A common way to provide for such a flow of information in an ECA lan-
guage is to use variables, which are bound and exchanged between the different
parts. This requires that the “sub-languages” in which the different parts are
written share the same notion of a variable binding or at least that there is some
conversion mechanism if different notions are used.



Variants of ECA rules In some cases, especially when reasonably complex deci-
sions are involved, the same piece of knowledge must be distributed over several
rules. We’ve already seen an example of this with the two rules processing out of
stock events. To support a better modeling of such cases, some languages offer ex-
tended forms of ECA rules such as so-called ECAA rules [KEP00]. ECAA rules
have the form ON Event IF Condition DO Action ELSE Alternative-Action,
specifying to execute Alternative-Action when the Event happens but the Con-
dition does not hold. The example rules can be thus merged into one:

ON item out of stock
IF item is in stock at one of the shop’s suppliers
DO reorder item and set status to ‘‘reordered’’
ELSE set item’s status to ‘‘not available’’

Note that any ECAA rule can generally be rewritten as two ECA rules, one
with the original condition and one with the negated condition. A further variant
are ECnAn rules, which specify a number of condition-action pairs; typically only
the first action whose condition holds is executed.

Rule base modifications Some ECA rule-based systems allow to modify the rule
base at run-time without restarting the system. The modifications are adding
rules, by either registering a completely new rule or enabling a previously de-
activated rule, removing rules, by either unregistering or disabling an existing
rule, as well as replacing a rule. Often it is necessary to apply a number of
modifications in an atomic fashion, i.e., all changes come into effect at the same
time.

Events Event drive the execution of ECA rule programs, which makes the
event part an important determinant for expressivity and ease-of-use of an ECA
language or system.

The notion of an event It is hard to give a clear definition of what is an event.
Often, an event is defined as an observable and relevant state change in a sys-
tem; however with this definition, what is observable depends on the boundary
and abstraction level of the system (which is particularly hard to grasp in an
open system such as the Web), and what is relevant depends on the considered
application. For processing purposes, an event is usually given a representation
as an object or a message, and for the purpose of ECA languages this gives a
practical definition of what is an event.

Examples of events one might want to react to include:

– Updates of local or remote data.
– Messages (or notifications) coming from some external source such as a hu-

man user (e.g., by filling out a Web form), another program (e.g., a request
or reply from a Web service), or sensors (e.g., RFIDs).

– System events such as reports of the system status (e.g., CPU load) or of
exceptions and errors (e.g., broken network connections, hardware failures).



– Timer events such as an alarm at a particular date and time or a periodic
alarm (e.g., every day at 7am). A particular form of timer events are dynamic
events (a term coined in [Ron97]), where the time is specified not directly in
the event part of a rule, but given by some entry in a database.

– Composite events, that is a combinations of events occurring over time. In
contrast to so-called atomic or primitive events, which include the previous
examples, composite events are usually not represented by a single object or
message in the stream of events. Rather, they are just a collection of atomic
events that satisfy some pre-defined pattern. The pattern is often called a
composite event query, and accordingly composite events can be seen as
answers to such composite event queries. Composite events will be discussed
in more detail later.

Events, or rather their representations, usually contain information detailing
the circumstances of the event such as:

– Who has generated the event (generator, sender)?
– When has the event happened (occurrence time, sending time) and when

was it detected (detection time, receiving time)? Note that these times are
often not the same due to delays in transmission and often given according
to different clocks that are not (and cannot be) perfectly synchronized.

– Which kind of event has happened (event type, class)? Event types are ul-
timately application-dependent and of varying abstraction levels; examples
could be an insertion of an element into an XML document (quite low-level
in the data layer) or a customer putting an item into the shopping cart
(higher-level in the application layer). Event-driven systems often employ a
type system for events (e.g., a class hierarchy), but the example of XChange
shows that this is not a necessity. (Note though that XChange does not
preclude typing event messages with XML schema or a similar mechanism.)

– What data has been affected by the event (event data)? In the above example
of an insertion, the event could include information about where the insertion
has taken place (document URI, position in the document) and what (XML
fragment) has been inserted. In the example of putting an item into the
shopping cart, the event could include information about that item (product
name, quantity) and the customer (name or another identifier).

– Why has the event happened, i.e., which previous events are responsible for
making the current event happen (causality information)?

The event part of a rule The event part of an ECA rule has a two-fold purpose: it
determines when to react, i.e., specifies a class (or set) of events that trigger the
rule, and extracts data from the event (usually in the form of variable bindings)
that can then be used in the condition and action part. Accordingly, the event
part of a rule is in essence a query against (the stream of) incoming events. In
contrast to answers to traditional database queries, however, answers to event
queries are associated with an occurrence time, mirroring the temporal nature
of events.



Composite events and composite event queries Often, a situation that requires a
reaction cannot be detected from a single atomic event. Such situations are called
composite events (as opposed to single atomic events), and they are especially
important on the Web: in a carefully developed application, atomic events might
suffice as designers have the freedom to choose events according to their goal.
On the Web, however, many different applications are integrated and have to
cooperate. Situations which have not been considered in an application’s design
must then be inferred from several atomic events.

There are at least the following four complementary dimensions that need to
be considered for an event query language:

– Data extraction: As mentioned above, event carry data that is relevant to
whether and how to react. The data must be provided (typically as bindings
for variables) to the condition and action part of an ECA rule.

– Event composition: To support composite events, event queries must support
composition constructs such as the conjunction, disjunction, and negation
of events (or more precisely of event queries).

– Temporal conditions: Time plays an important role in many reactive Web
applications. Event queries must be able to express temporal conditions such
as “events A and B happen within 1 hour and A happens before B.”

– Event accumulation: Event queries must be able to accumulate events of
the same type to aggregate data or detect repetitions. For example, a stock
market application might require notification if “the average over the last 5
reported stock prices raises by 5%,” or a service level agreement might require
a reaction when “3 server outages have been reported within 1 hour.”

The most prevalent style for event query languages uses composition op-
erators such as conjunction and sequence to combine primitive event queries
into composite event queries. We will see an example of this in Section 3.3 on
XChange. This approach is not without problems, though: for the sequence oper-
ator alone, four different interpretations are conceivable as suggested in [ZS01].
We will therefore also look at an alternative approach called XChangeEQ in
Section 3.3.

Conditions The condition part of an ECA rule expresses usually a query to
persistent data sources. As with event queries, condition queries have the two-
fold purpose of determining whether the rule fires (i.e., the action is executed)
and extracting data in the form of variable bindings that is then used in the
reaction. Querying XML, RDF, and other Web data is well-studied and a multi-
tude of query languages have been devised [BBFS05]. Criteria to be considered
for the Web query language used to express the condition part include:

– What is the query language’s notion of answers (variable bindings, newly
constructed data)?

– How are answers delivered, can they be used to “parameterize” further
queries or the action? Can, for example, a variable bound in an event query



be a parameter in a condition query, i.e., the value delivered by the event
query be accessed and used in the condition query?

– What evaluation methods for queries are possible (backward chaining, for-
ward chaining)?

– Which data models are supported (XML, RDF, OWL)? Is it possible to
access data in different data models within one query?

– How does the query language deal with object identity?
– Which reasoning or deductive capabilities does the query language provide

(views, deductive rules, etc.)?

The choice of a query language has significant influence on the design of a
reactive language and should thus be made carefully. While the primary purpose
of the query language is to query persistent data (in the condition part), event
messages often come in the same formats as persistent data. Accordingly, the
query language is often also be used to query data in atomic events in the event
part of ECA rules.

Actions While the event and condition part of an ECA rule only detect that a
system has (entered) a certain state without affecting it, the action part intends
to modify the current state and yield a new state. Typical actions are:

– Updating persistent data on the Web. For example, the event that a customer
puts an item into her shopping basket requires recomputing the total price.

– Raising new events to communicate with other agents on the Web (Web sites,
Web services, etc.). Usually the new event message is sent as a notification
in an asynchronous manner and execution of the current rule or other rules
proceeds immediately without waiting for an answer. For example, upon a
checkout event, a new event containing a list with the bought items and the
customer’s address is sent to the warehouse to initiate delivery.

– Procedure calls to some host environment or a Web service. In contrast to
raising new events, a procedure call is usually synchronous and the rule has
to wait for the call to complete before execution is continued.

– Modifications to the rule base. This includes the possibility to enable and
disable rules6 or to register (add) new rules and unregister (delete) existing
rules. Such modifications of the rule base are not without problems, however,
as self-modifying programs are generally conceived to be hard to analyze and
understand.

Updates Updates modify the contents of Web resources by inserting, deleting, or
replacing data items. Depending on the data format of the Web resources such
data items are XML fragments, RDF triples, or OWL facts.

6 Note, however, that alternatively to a specific enable/disable action, this can also be
modeled by adding a condition on some object (a boolean value or similar), which
signals whether the rule is “enabled” or “disabled,” to rules and modifying this
object through and update



Updates can be specified conveniently in some update language. There is
a strong connection between update languages and query languages, and most
existing update languages are based on a query language. The query language
can be used to locate items or positions in the resource where an update should
be performed as well as to construct new data that will be inserted or used to
replace old data.

Combinations of actions Being able to execute only one primitive action such as
a single update or raising one new event is usually far too limiting. Actions that
have to be taken can be quite complex and require several primitive actions to
be performed. The most common way to put together several primitive actions
into a compound action is to perform them in a sequence. However other ways
to form compound actions such as a specification of alternatives (if one action
can fail) or a conditional execution are useful, too.

Usually we expect a compound action to be executed in a transactional man-
ner, i.e., either the whole compound action takes effect or it has no effect at all.
In a distributed setting such as the Web this requires that all participants in-
volved in a compound action agree on a commit protocol such as the two-phase
commit (2PC; see, e.g., [CDK01]).

Solutions to realize compound actions based on specifying a compensating
action for each action have not been investigated deeply in the framework of ECA
rules on the Web. Such issues have been investigated for databases, e.g., Sagas
[GMS87] (and a myriad of follow-up work on advanced transaction models),
as well as in Web Services, e.g., with the notion of a “Business Activity” in
WS-Transaction [C+04]. However it should be noted that the primary aim of
these proposals is increasing parallelism for long running transactions. They still
require two-phase commits (in particular at the end of the transaction) to give
transactional guarantees in a distributed setting.

3.3 XChange as an Example of ECA Rules Language

This section presents XChange, a high-level, ECA rules-based language for re-
alizing reactivity on the Web. We first introduce the paradigms upon which the
language XChange relies and then present and exemplify the core constructs of
the language.

Paradigms Clear paradigms that a programming language follows provide a
better language understanding and ease programming. Hence, explicitly stated
paradigms are essential for Web languages, since these languages should be easy
to understand and use also by practitioners with little programming experience.

Event vs. Event Query. As discussed in Section 3.2, one can conceive every
kind of changes on the Web as events. For processing them, XChange repre-
sents each event as one XML document. Event queries are queries against the
XML data representing events. Event query specifications differ considerably
from event representations, e.g. event queries may contain variables for event



data items. Most proposals dealing with reactivity do not significantly differen-
tiate between event and event query. Overloading the notion of event precludes
a clear language semantics and thus, makes the implementation of the language
and its usage much more difficult. Event queries in XChange serve a double
purpose: detecting events of interest and temporal combinations of them, and
selecting data items from events’ representation.

Volatile vs. Persistent Data. The development of the XChange language – its
design and its implementation – reflects the view over the Web data that differ-
entiates between volatile data (event data communicated on the Web between
XChange programs) and persistent data (data of Web resources such as XML or
HTML documents). Volatile data cannot be updated but persistent data can.
To inform about, correct, complete, or invalidate former volatile data, new mes-
sages containing information about events that have occurred are communicated
between Web nodes.

Pattern-Based Approach. XChange is a pattern-based language: Event queries
describe patterns for events requiring a reaction. Web queries describe patterns
for persistent Web data. Action specifications build also upon pattern specifi-
cations, as we will see later. Patterns are templates that closely resemble the
structure of the data to be queried, constructed, or modified, thus being very
intuitive and also straight forward to visualize [BBB+04].

Strategy for Event Communication. Possible communication strategies (i.e.
pull and push) have been touched on in Section 3.1. The pull strategy is sup-
ported by languages for Web queries (e.g. XQuery [B+05] or Xcerpt [SB04]).
XChange uses the push strategy for communicating events.

Processing of Events. Event queries are evaluated locally at each Web node.
Each such Web node has its own local event manager for processing incoming
events and evaluating event queries against the incoming event stream (volatile
data). For efficiency reasons, an incremental evaluation is used for detecting
composite events.

Bounded Event Lifespan. Event queries are such that no data on any event has
to be kept forever in memory, i.e. the event lifespan should be bounded. Hence,
design enforces that volatile data remains volatile. If for some applications it is
necessary to make part of volatile data persistent, then the applications should
turn events into persistent Web data by explicitly saving events.

Rules An XChange program is located at one Web node and consists of one
or more ECA rules of the form Event query – Web query – Action. Events are
communicated between XChange programs by ECA rules that raise and send
them as event messages. Every incoming event (i.e., event message) is queried
using the event query (introduced by keyword ON). If an answer is found and the
Web query (introduced by keyword FROM) has also an answer, then the specified
action (introduced by keyword DO) is executed.

Rule parts communicate through variable substitutions. Substitutions ob-
tained by evaluating the event query can be used in the Web query and the



action part, those obtained by evaluating the Web query can be used in the
action part.

The following example rule shows the structure and the information passing
mechanism of an XChange ECA rule. Concrete examples of event queries, Web
queries, and actions are given in the next sections.

ON <new discounts for books of type T applied by supplier S>
FROM <stock of books of type T low>
DO <send new order of books of type T to S >

The next sections introduce the Web query, event query, and action part of
an XChange ECA rule. We start with the Web queries since XChange event
queries and updates build upon and extend the Web queries.

Web Queries XChange embeds the Web query language Xcerpt [BS02a,Sch04]
for expressing the Web query part of ECA rules and for specifying deductive
rules in XChange programs. Using Xcerpt one can query and reason with tree-
or graph-structured data such as XML or RDF documents. A deductive rule has
the following form in Xcerpt7:

CONSTRUCT construct-term
FROM query-term
END

Such deductive rules allow for constructing views over (possibly heteroge-
neous) Web resources that can be further queried in the Web query part of
XChange ECA rules.

Xcerpt is a pattern-based language: it uses query patterns, called query terms,
for querying Web data and construction patterns, called construct terms, for re-
assembling data selected by queries into new data items. For conciseness, Xcerpt
represents data, query terms, and construct terms in a term-like syntax; the
same approach is also taken in XChange. For example, for representing XML
documents as terms, element names become term labels and child elements are
represented as subterms surrounded by curly braces or square brackets (in case
of ordered child elements).

Both partial (i.e. incomplete) or total (i.e. complete) query patterns can be
specified. A query term t using a partial specification denoted by double brackets
or braces) for its subterms matches with all such terms that (1) contain matching
subterms for all subterms of t and that (2) might contain further subterms
without corresponding subterms in t. In contrast, a query term t using a total
specification (denoted by single square brackets [ ] or curly braces { }) does
7 XChange integrates the Web query language Xcerpt – XChange constructs are based

on and extend Xcerpt constructs and the prototypical implementation of XChange
uses a prototypical implementation of Xcerpt. The keyword FROM has been used
instead of IF for introducing the condition part of XChange ECA rules for achieving
language uniformity without changing Xcerpt’s language design and implementation.



not match with terms that contain additional subterms without corresponding
subterms in t.

Query terms contain variables for selecting subterms of data items that are
bound to variables. In Xcerpt and XChange, variables are placeholders for data,
very much like logic programming variables are. Variables are preceded by the
keyword var. Variable restrictions can be also specified, by using the construct
-> (read as), which restricts the bindings of the variables to those terms that are
matched by the restriction pattern (given on the right hand side of ->). The fol-
lowing Xcerpt query term queries the list of suppliers at http://suppliers.com to
determine the names and URIs of companies supplying books. This information
is used e.g. when some books are out of stock and need to be reordered.

in { resource {"http://suppliers.com/list.xml", XML},
desc supplier {{
items {{ desc type { "Book" } }},
contact {{
name { var N },
URI { var U }

}}
}}

}

Xcerpt query terms may be augmented by additional constructs like sub-
term negation (keyword without), optional subterm specification (keyword
optional), and descendant (keyword desc) [SB04]. Query terms are “matched”
with data or construct terms by a non-standard unification method called simu-
lation unification dealing with partial and unordered query specifications. More
detailed discussions on simulation unification can be found in [BS02b,Sch04]. In
the above given example, the variable substitutions N 7→ "Springer" and U 7→
"www.springer.de" could be obtained as result of simulation unifying the query
term with the given XML document.

Event Queries Event messages denote XChange event representations and
communicate events between (same or different) Web nodes. An XChange event
message is an XML document with a root element labelled event and the five
parameters (represented as child elements as they may contain complex con-
tent): raising-time (i.e. the time of the event manager of the Web node rais-
ing the event), reception-time (i.e. the time at which a node receives the
event), sender (i.e. the URI of the Web node where the event has been raised),
recipient (i.e. the URI of the Web node where the event has been received),
and id (i.e. a unique identifier given at the recipient Web node).

Each XChange-aware Web node monitors such incoming event messages to
check if they match an event query of one of its XChange ECA rules. Differences
between volatile and persistent data make Web query languages not sufficient
as candidates for querying event data: Many situations need for their detection
not just one event to occur, but more than one event to occur. The temporal



order of these (component) events and the specified temporal restrictions on
their occurrence time need also to be taken into account in detecting situations.
Mirroring these practical requirements, XChange offers not only atomic event
queries but also composite event queries.

Atomic Event Queries Atomic event queries detect occurrences of single, atomic
events. They are query patterns for the XML representation of events and may
be accompanied by an absolute time restriction, which are used to restrict the
events that are considered relevant for an event query to those that have occurred
in a specified (finite) time interval. Such a time interval may be given by fixed
start and end time points (keyword in) or just by an end time point (keyword
before), in which case the interval starts with the time point of event query
definition.

The following XChange atomic event query detects announcements of dis-
counts applied by a supplier. The information about the supplier (sender URI)
and the discount for a type of items are to be bound to the variables S, D, and
T, respectively.

xchange:event {{
xchange:sender { var S },
discount {{
items {{
type { var T },
discount { var D }

}}
}}

}}

Composite Event Queries using Composition Operators The need for detecting
not only atomic events but also composite events has been motivated in Sec-
tion 3.2. XChange offers composite event queries for specifying and detecting
composite events of interest.

A composite event query consists of (1) a connection of (atomic or composite)
event queries with event composition operators and (2) an optional temporal
range limiting the time interval in which events are relevant to the composite
event query. Composition operators are denoted with keywords such as and (both
events have to happen), andthen (the events have to happen in sequence), or
(either event can happen), without (non-occurrence of the event in a given time
frame). Limiting temporal ranges can be specified with keywords such as before
(all events have to happen before a certain time point), in (all events have to
happen in an absolute time interval), within (all events have to happen within
a given length of time). For a more in-depth discussion of XChange composite
event queries see [Eck05,P0̆5,BEP06a].

Composite events (detected using composite event queries) do not have time
stamps, as atomic events do. Instead, a composite event inherits from its compo-
nents a start time (i.e. the reception time of the first received constituent event



that is part of the composite event) and an end time (i.e. the reception time of
the last received constituent event that is part of the composite event). That is,
in XChange composite events have a duration (a length of time).

The following composite event query evaluates successfully if no acknowl-
edgment for the order s-rw2007-0023 is received between the 1st and 15th of
October 2007:

without {
xchange:event {{
acknowledgement {{
order {{ id { "s-rw2007-0023" } }}

}}
}}

} during [ 2007-10-01T10:00:00 .. 2007-10-15T14:00:00 ]

Composite Event Queries using XChangeEQ Querying composite events based
on composition operators (as presented above) has been well-investigated in
active databases systems and works well with small queries. However, queries
involving a larger number of events can sometimes become difficult to express
and to understand.

Consider and example where we want for events a, b, c and d to happen
and have the constraints that a happens before b, a also happens before c,
and c before d. Note that the query cannot be expressed as and{ andthen[a,
b], andthen[a, c], andthen[c, d]}, since this query would allow different
instances of a and c events to be used. A correct way to express the query would
be: andthen[a, and{b, andthen[c, d]}]. If we now only add an additional
constraint that b happens before d, the new query bears only little resemblance to
the old: andthen[a, and{b, c}, d]. In fact, even though we added a constraint
in our specification, the query has one operator less.

Composition operators mix the event querying dimensions explained in Sec-
tion 3.2 (in the case of andthen event composition and temporal relationships
are mixed). It can be argued that this leads to the exemplified difficulties in
expressing and understanding queries and also to a certain incompleteness in
the expressivity of such event query languages.

An alternative to using composition operators in XChange is investigated
with the high-level event query language XChangeEQ. In XChangeEQ, the four
orthogonal event querying dimensions are treated separately. The above example
can be expressed as: and{event i: a, event j: b, event k: c, event l:
d} where {i before j, i before k, k before l, j before l} . (Keep in
mind that a, b, c, d are generally multi-line atomic event queries, so that the
increase in length compared to the composition-based approach is insignificant
and outweighed by better readability.)

XChangeEQ also adds support for deductive rules on events, relative tempo-
ral event (e.g., “five days longer than event i, ” written extend[i, 5 days]),
and enforces a clear separation between time specifications that are used as
events (and waited for) or only as restrictions (conditions in the where-part).



The following example rule detects an overdue event when an order that has
been received before October 15 has not been acknowledged within 5 days.

DETECT
overdue { var I }

ON
and {
event i: order {{ id { var I } }},
event j: extend[i, 5 days],
while j: not acknowledgment{{ id{ var I } }}

} where { i before datetime("2007-10-15:14:00") }
END

More detail on XChangeEQ can be found in [BE06a,BE07].

Actions XChange rules support the following primitive actions: executing sim-
ple updates to persistent Web data (such as the insertion of an XML element)
and raising new events (i.e., sending a new event message to a remote Web
node or oneself). To specify more complex actions, compound actions can be
constructed as from the primitive actions.

Updating Web Data An XChange update term is a (possibly incomplete) pattern
for the data to be updated, augmented with the desired update operations (i.e.,
an update term is an Xcerpt query term enriched with update specifications).
An update term may contain different types of update operations: An insertion
operation specifies an Xcerpt construct term that is to be inserted, a deletion
operation specifies an Xcerpt query term for deleting all data terms matching it,
and a replace operation specifies an Xcerpt query term to determine data terms
to be modified and an Xcerpt construct term as their new value. The following
XChange update term updates the offer.xml document upon arrival of new
books:

in { resource {"http://myshop.de/offer.xml", XML},
offer {{
books {{
items {{
type { var T },
insert new-arrival { var B }

}}
}}

}}
}

Raising New Events Events to be raised are specified as (complete) patterns
for the event messages, called event terms. An event term is simply an Xcerpt



construct term restricted to having a root labelled event and at least one sub-
term recipient specifying the URI of the recipient. The following XChange
event term is used to order 50 Reasoning Web 2007 books at Springer:

xchange:event {
xchange:recipient {"http://www.springer.de"},
order {
id { "s-rw2007-0023" },
book { "Reasoning Web -- Third International Summer School 2007,

Tutorial Lectures" },
count { "50" }

},
delivery-info {
company { ... }, address{ ... }

}
}

Specifying Compound Actions The primitive actions described by update terms
and event terms can become powerful by combining them. XChange hence al-
lows specifying complex actions as combinations of (primitive and compound)
actions. Actions can be combined with disjunctions and conjunctions. Disjunc-
tions specify alternatives, only one of the specified actions is to be performed
successfully. (Note that actions such as updates can be unsuccessful, i.e., fail.)
Conjunctions in turn specify that all actions need to be performed. The com-
binations are indicated by the keywords or and and, followed by a list of the
actions enclosed in braces or brackets. The list of the actions can be ordered
(indicated by square brackets, []) or unordered (indicated by curly braces, {}).
If the actions are ordered, their execution order is specified to be relevant. If
the actions are unordered, their execution order is specified as irrelevant, thus
giving more freedom for parallelization.

Declarative and Operational Semantics XChange combines an event lan-
guage, a query language, and an update language into ECA-rules. Accordingly,
the declarative and operational semantics are given separately for each rule part.
The semantics of an XChange ECA-rule follows immediately from the seman-
tics of its parts; the “glue” between the parts is given by the substitutions
for the variables. The semantics of event queries is the most interesting aspect
of XChange semantics and is discussed in [Eck05,P0̆5,BEP06b]. Semantics of
XChangeEQ are provided as a model theory and fixpoint theory and discussed
in [BE07]. The underlying ideas for the semantics of Web queries and updates
can be found in [BEP06b] and their detailed description is given in [Sch04] and
[P0̆5], respectively.

Current Status XChange is an ongoing research project. The design, the core
language constructs, and the semantics of XChange are completed. For reveal-
ing the strengths and limits of the language, a couple of use cases have been



developed: Travel organization as an application of Web-based reactive travel
planning and support and e-Book store as a simple Semantic Web scenario are
presented in [P0̆5]. XChange has also been used for determining the suitability
of the ECA rules approach for business process modeling and in paticular for
implementing the EU-Rent case study [Rom06,BEPR06].

A proof-of-concept implementation8 exists, which follows a modular approach
that mirrors the operational semantics. The XChange prototype has been imple-
mented in Haskell, a functional programming language; chosing Haskell has been
strongly motivated by an existing Xcerpt prototype implementation, which has
been extended for implementing XChange. The XChange prototype has been
employed for implementing the application scenario Distribuited Information
Portal described in Section 2; the developed demonstration of XChange is pre-
sented in [Gra06,BEGP06]. Issues of efficiency of the implementation, esp. for
event detection and update execution, have not been a priority in developing the
prototype and are subject to future work.

There are a couple of further research issues that deserve attention within
the XChange project, such as the automatic generation of XChange rules (e.g.
based on the dependencies between Web resources’ data) or the development of
a visual counterpart of the textual language (along this line, the visual rendering
of Xcerpt programs – visXcerpt [BBSW03] – is to be extended).

3.4 Implementation of ECA Systems

Implementation and architecture of ECA rules systems have been studied exten-
sively in the area of Active Database Management Systems (see [WC96] for an
overview). Unlike the Web, which is open, distributed, and decentralized, active
databases are rather closed and centralized systems. It is therefore not clear how
well their architectures would transfer to a Web context and there has not been
much research on this issue. We therefore concentrate in this section mainly on
the algorithms used in implementations of the event, condition, and action part,
respectively, rather than overall architectural issues.

Event Part – Atomic Events The evaluation of atomic event queries has
two main issues, mainly with regard to efficiency: the detection of updates in
documents and databases (mainly XML, but also other Web data formats) that
satisfy given (update) event queries and the evaluation of a potentially large
number of event queries against events that are received from other Web nodes
as messages.

Detection of relevant updates has been studied extensively in relational data-
bases [WC96,HCH+99], often under the term “trigger processing.” The only
work we are aware of where this issue has been studied from an XML perspective
is Active XQuery [BBCC02], which will be described in Section 3.5.

8 XChange Prototype, http://reactiveweb.org/xchange/prototype.html



The other issue is that when an event message (an XML document) is
received, a potentially large number of atomic event queries (e.g., XPath ex-
pressions or Xcerpt/XChange query terms) have to be evaluated against this
message. From an optimization perspective, this is the inverse of the classical
database query optimization: instead of evaluating a single query against a rela-
tively large amount of data, we have to evaluate a large amount of queries against
relatively small data. Therefore, atomic event query evaluation requires multi-
query optimization where queries (rather than data) are indexed and similarities
between queries exploited. A number of approaches for multi-query optimization
of XPath expressions have been devised, which are based on finite state machines
[DAF+03,GMOS03]. However, the issue has been treated only in isolation and
not as part of a full ECA rule engine.

Event Part – Composite Events For the evaluation of composite event
queries, a data-driven approach is best-suited. Since it can work incremen-
tally, it is preferable for efficiency reasons: work done in one evaluation step
of an event query should not be redone in future evaluation steps. For exam-
ple, the composite event query “events A and B happen” requires to check
every incoming event if it is A or B and thus multiple evaluation steps. When
event A is detected, we want to remember this for later when B is detected
to signal the composite event. In contrast, a non-incremental, query-driven
(backward-chaining-like) evaluation would have to check the entire history of
events for an A when a B is detected. Popular data-driven approaches used
in the past include finite automata [GJS92,SSSM05,BC06] and event trees (or
graphs) [CKAK94,MS97,ME01,AE04,AC05,BEP06a].

In the finite automata approach, states signify the “progress” made in de-
tecting a composite event and state transitions are caused by incoming atomic
events. This simple intuition is complicated though by the need to backtrack
or reset the automata after the first event has been detected in order to detect
further events. Further, when data is correlated between events, automata have
to be extended to accommodate this, too.

The event tree approach is similar to the Rete algorithm, which will be de-
scribed in detail in Section 4.4 in the context of production rules. The basic idea
is to represent an event query as an operator tree where leaf nodes correspond to
atomic event queries and inner nodes to composition operators such as conjunc-
tion or sequence. New events (or event data) flow bottom up in this tree and
inner nodes have a storage to memorize previously detected events. When an
inner node detects a composite event from the new and the memorized events,
it “forwards” this composite event to its parent node. When event queries share
subexpressions, this can be exploited by using a directed acyclic graph instead of
a tree. So far, this is also the basic idea of Rete; however, certain operators such
the sequence allow to disable evaluation of subtrees depending on the stored
events: for example, to evaluate the sequence of events E1 followed by E2, the
subtree for E2 must only be evaluated after an E1 instance has been detected.



Another approach discussed in the literature are (special types of) Petri nets
[GD93]. However this can be seen as a variant of the event tree approach, since
for each possible operator a separate Petri net is given and for a given event
query the Petri nets for all its operators are then connected in essentially the
same manner as the inner nodes in the event tree.

Condition Part – Query Evaluation For the evaluation of Web queries in
the condition part, ECA rules systems usually rely on existing query evalua-
tion engines. Accordingly, query processing takes only place whenever a rule is
triggered by an event. This means that even though the condition part of an
ECA rule can be considered a standing query (whose result could be precom-
puted whenever the underlying data changes), it is not treated this way but only
posed as a spontaneous query whenever necessary. This kind of evaluation of a
(single) Web query is a well-researched issue, see, e.g., [BEE+07].

We will see in Section 4.4 that evaluating the condition part only when an
event triggers an ECA rule is in contrast to the continual evaluation of the
condition part in production rule systems.9 An advantage of treating conditions
as spontaneous queries is that no restrictions are being posed on the accessed
data sources, they can be any resources anywhere on the Web and event queries
that “crawl” from Web resource to Web resource are conceivable. In contrast,
precomputing query answers would usually be restricted to a local and closed
set of resources.

Action Part – Update Execution For specifying the updates in the Action
part of ECA rules, a update language is employed. Due to the absence of a
standard update language for XML or RDF data, each ECA rule language uses
its own update language and the supported updates are usually implemented in
an ad-hoc fashion.

At least for the path-based update languages for XML, good chances exist to
change this situation as the W3C works towards standardizing a update exten-
sion to XQuery. The W3C XQuery Update Facility10 Working Draft, released in
July 2006, presents the syntax and semantics of such an XQuery extension. The
draft defines update primitives such as insertion or deletion of a node, modifica-
tion of a node while preserving its identity, or creation of a updated node with a
new identity. Variants of these primitives are also proposed, e.g. insert after or
insert as last. The notion of pending update list is defined as an unordered col-
lection of update primitives, which is the base for update execution. Guidelines
for constructing the pending update list are also given.

The issue of snapshot semantics is currently discussed in the W3C XML
Query Working Group for processing the specified updates. The following snap-
shot semantics is used for the UpdateX [SHS04] language, an XQuery-based
9 It would of course be conceivable to use the condition query evaluation techniques

of production rules for the evaluation of conditions of ECA rules. However we are
not aware of any systems doing this.

10 XQuery Update Facility, http://www.w3.org/TR/xqupdate/



update language for XML: A first processing step determines the scope of the
updates (i.e. for a FLWUpdate expression, the variables declared in the FOR
and LET XQuery clauses are bound) and evaluate (not apply) each update prim-
itive; the list of update primitives is thus formed. A checking step follows, where
different kinds of constraints (e.g. given by a DTD) are performed. If their ex-
ecution would not give invalid results, the updates in the constructed list are
applied sequentially. Following these steps, the UpdateX has been implemented
within the Galax11 project.

An interesting implementation approach is followed in the Active XQuery
language [BBCC02], which uses the update extensions to XQuery proposed in
[TIHW01]. The main notions of SQL [KK00] triggers are used here but the ex-
ecution model of SQL-3 is revised so as to cope with the hierarchical nature of
XML data. Active XQuery update specifications may involve insertion or dele-
tion of (whole) fragments of XML documents. These statements are called bulk
update statements in this work. Problems may occur when executing such bulk
updates directly: Consider the example of inserting a whole subtree S into an
XML tree T . An ECA rule whose Event part waits for insertions of portions of
S into T to fire would not detect the insertion without a mechanism supporting
this. Thus, bulk update statements in Active XQuery are transformed (i.e. ex-
panded) into equivalent collections of simple update operations. An algorithm
for update expansion is outlined in [BBCC02]. The output of the algorithm is a
list of simple update operations together with evaluation directives, which guide
the language processor in firing all triggered ECA rules.

Alternative techniques for implementing the update operations are presented
in [TIHW01] for the case when XML data is stored in a relational database (i.e.
XML update statements are translated into SQL statements). This is the only
work on updates for the Web that reports on implementation performance. Using
three sets of test data (i.e. synthesized data with fixed structure, synthesized data
with random structure, and real life data from the DBLP [dbl] bibliography
database) experimental results were done in order to compare the techniques
proposed for the core update operations (here, insert and delete).

3.5 An Overview of Existing ECA Languages and Systems

There are not great many ECA languages developed so far or under development
at moment and most of them are results of research efforts done in the academia
in the last couple of years.

The General Semantic Web ECA Framework [BFMS06a,MSvL06,BFMS06b]
is a research endeavor that proposes a general framework12 for reactive behavior
on the Semantic Web. The generality here is given by the heterogeneity of the
ECA rule components, which can be specified by using different event, condition,
and action languages. Just the information flow between the rule components in

11 Galax, http://www.cise.ufl.edu/research/mobility/
12 General Semantic Web ECA Framework, http://www.dbis.informatik.uni-

goettingen.de/eca/



form of variable substitutions constrains the languages of choice. The language
used in writing an ECA component is given by means of the ECA-ML markup
language for ECA rules offered by the framework; e.g. the URI of the languages
is given as an attribute:

<eca:rule xmlns:eca="http://.../eca/2006/eca-ml">
...

</eca:rule>

ECA rule components are processed at Web nodes where a processor for the
given language exists. For determining whom to forward the processing task, a
Language and Service Registry is queried. A reference implementation for de-
termining an appropriate Web processing node together with an event detection
module based on a SNOOP-like event specifications have been completed. An
action component given by a process algebra, the Calculus of Communicating
Systems (CCS) [Mil83], has been proposed and its implementation is underway.
Also, an ontology of behavior is under development with the aim of using it as
basis for reasoning and for easing the editing of ECA rules. As basis for it, the
OWL-DL ontology13 of the Resourceful Reactive Rules14 (r3) project is consid-
ered. The goal of the r3 project is to develop a prototypical implementation of a
Semantic Web reactive rule engine based on the ideas of the General Semantic
Web ECA Framework.

Prova15 is a combination of Java with Prolog-style rules. It employs ECA
rules as means for distributed and agent programming. ECA rules react to incom-
ing messages or pro-actively poll for state changes. By using Prova, composite
events can be detected and different kinds of actions can be executed. Complex
work-flows can be specified in the action part as all BPEL constructs are directly
available in the language. Prova has been used in a number of academic projects
and also as basis for a commercial product for information integration.

The ruleCore16 system provides an engine for executing ECA rules and also
a couple of GUI tools such as the ruleCore Monitor, which gives run-time status
information on the engine. The ruleCore engine detects situations specified by
means of composite events. One can detect for example sequences, conjunctions,
disjunctions, and negation of events. The engine supports also the detection of
events that happen within a given time interval. Several event sources and of
different kinds can be connected to the ruleCore engine, which processes events
represented as XML documents. The action part of ECA rules can contain a
number of action items, which specify that scripts are to be executed or events
are to be generated. ruleCore has been developed by Analog Software. It can be
used in research projects and can also be licensed for commercial use.

13 r3 Ontology, http://rewerse.net/I5/r3/DOC/2005/index.html
14 Resourceful Reactive Rules,http://rewerse.net/I5/r3/
15 Prova, http://www.prova.ws
16 ruleCore, http://www.rulecore.com/index.html



The Reaction RuleML17 effort of the RuleML Initiative18 aims at a general
language that should enable inter-operation between industrial products and
academic research results following different approaches to reactivity. The work
on the ECA Logic Programming language (ECA-LP) and the ECA Rule Markup
language (ECA-RuleML) as its XML serialization syntax has started during
2006. These languages are general enough to support ECA rules and their variant
ECAP rules, but also production rules. They allow the specification of composite
events to be detected and of different kinds of actions (notifications, updates and
sequences of updates, etc.) to be executed.

An ECA rule language for XML data is proposed in [BPW02] and adapted
for RDF data as the RDF Triggering Language (RDF-TL) [PPW03]. These
languages have the capability to react only to single events and do not provide
constructs for querying for complex combinations of events. As actions, simple
insertions or deletions to XML or RDF data and sequences thereof are supported.
At moment of writing these two research projects are not developed further.

ECA rules are discussed in the context of XSL [xsl01] and Lorel [AQM+97]
as means to realize active document management systems, i.e. XML repositories
with reactive capabilities [BCP00]. An ECA rule consists here of an event part
and a condition-action part, which mixes the condition and the action specifica-
tions. Events considered here are just simple modifications of XML documents
and there is no support for composite events. Conditions are (XSL or Lorel)
queries to XML documents, and actions consist of constructing new documents
and/or modifying existing documents in the document base, and then placing
them into folders, publishing them on the Web, or sending them by e-mail.

Active XQuery [BBCC02] extends the Web query language XQuery by ECA
rules, which are adapted from SQL-3 and thus called triggers in this work. The
event part of such a trigger specifies an affected XML fragment by means of an
XPath expression and the update operation (insert, delete, replace, or rename)
on this fragment. The condition part is given by an XQuery WHERE clause.
The actions available are the previously mentioned, simple update operations
and external operations such as sending of messages.

Before and after triggers can be specified in Active XQuery: Before triggers
consider the condition and action parts before the given event actually occurs.
For after triggers the occurrence of the event is a prerequisite of evaluating
the condition and action parts. The trigger components communicate through
transition variables – two system-defined variables referring to the old and new
nodes and additional variables defined by means of an XQuery LET clause. One
can also associate priorities to Active XQuery triggers and specify a triggering
granularity for the triggers – statement-level triggers fire once for each set of
nodes affected by the change and node-level triggers fire for each node in such a
set.

A research work supporting a path-based specification and the detection of
composite events for XML documents [BKK04] has been also proposed. How

17 Reaction RuleML, http://ibis.in.tum.de/research/ReactionRuleML/
18 RuleML Initiative, http://www.ruleml.org



this approach does (or even would) scale to the Web is unclear; for example,
one cannot relate (primitive or composite) events that have occurred in XML
documents distributed on the Web, as the communication of event data is not
supported. It does not represent a full reactive language for the Web, but it
could be extended and integrated into a reactive language.

4 Production Rules

4.1 General Ideas

What Is a Production Rule? A production rule is a piece of knowledge organized
along an WHEN condition DO action structure. The intent of a rule is to evolve
the state of the system by executing the action. To guide this evolution, the
action will only be applied from a state where the condition is true. The state that
results from the execution of the action of a production rule can be incompatible
with the state in which the rule was applied. This is common in production rule
programs, and can be seen as a noticeable difference with other, monotonic rule
programming paradigms such as logic rules.

Production Rules Based Software Applications Production rules are used in soft-
ware applications to encode their logic, or parts of it. As a result, an industrial
application may rely on thousands of rules, each rule representing a piece of the
knowledge of the company policy. Since industrial applications have a rich life
cycle, spanning over several years and involving dozens of persons with various
roles, production rule systems have to provide the support for managing this
huge amount of information in the long term. This is the purpose of a Business
Rule Management System such as ILOG JRules, as illustrated in Section 4.3.

Production Rules Based Web Applications Business (production) rules is not
the only paradigm on which real-world applications rely. Examples of other
paradigms are a multi-tier architecture, and the Web. Web applications will
typically use production rules to encode their policy-intensive aspects, that is,
the part of their logic that requires the complex handling of the system state,
based on the business knowledge of the company. The use of production rules will
thus ease the implementation of Web applications with several agents playing
different roles.

Production rules versus integrity rules Integrity rules are introduced in a rela-
tional data base to enforce its correctness and its consistency. In order to main-
tain referential integrity between primary and foreign keys as data is inserted
or deleted from the database, certain insert and delete rules must be defined.
Like production rules, integrity rules have a condition part determining in which
context they are executed. In fact, integrity rules might be implemented by a
production rules system adapted to RDBMS environment. However, specialized
integrity system are likely to be more efficient to process huge amount of data
characterizing actual databases. On the other hand, the purpose of PR systems is
not limited to DB referential integrity and could be applied on various domains.



4.2 Description of a Production Rules System

The Working Memory and the Underlying Data Model As programs
handle data, a programming language defines (more or less implicitly) a data
model. Being in essence reactive, rule-based programming languages must en-
sure, either in the definition of the data model or through specific constructs of
the rule language itself, that a rule-based program is able to react to changes in
the data. While ECA rule languages introduce the concept of event in the data
model and the rule language to this end, production rule languages introduce
the concept of working memory in the data model, and an update statement in
the rule language.

The working memory is the finite set of data items (facts, objects... names
vary) against which the rules are executed. Data items are explicitly added
to, and removed from, this set by the program through dedicated statements
(usually assert and retract). Since changes in data are explicitly notified to the
rule engine through the update statement, the data can follow basically any
data model. Some production rule languages, such as OPS5, include a custom
data metamodel in their definitions. Most modern production rule languages are
designed to operate on foreign data models, such as those of other programming
languages (e.g. Java or .NET’s CLR) or XML dialects. Their data model then
heavily relies on the introspection mechanisms provided by the foreign data
models, such as reflection in programming languages, or the XML schemata.

Relation with RDF concepts In the same manner than a production rule language
can be adapted to an XML dialect or to a programmation language model, it
can process RDF models and data. However, some specificities of RDF induce
new constraints on the rule language and on the rule engine. For example, RDF
resources are type-mutable, and new type labels may be added to a resource
during the execution of the rules. Moreover, the model itself could change at
runtime through the addition of new properties or types. Another example can
be found in RDF with subproperties, or in OWL with transitive, commutative, or
inverse relations. To support these additional modeling features, the rule engine
must elaborate its handling of the type system, and extend its pattern matching
function to take the specific capabilities of properties into account. Depending
on the production rule system considered, all or only part of these features will
be supported, by additional constructs in the rule language and abilities of the
rule engine. This will represent an element of choice for the users, depending on
their actual need of RDF specific features.

Structure and Semantics of a Production Rule As mentioned before, the
overall structure of a production rule is WHEN condition DO action. The con-
dition part expresses in which situation the rule should be elected for execution;
the action part describes what should be performed as part of executing the rule.

The condition part of a rule contains patterns describing the data that will
trigger the rule. When evaluating a rule condition, the production rule engine
will search the working memory for data that match all the patterns of the rule



condition. The nature of the constraints expressed by these patterns depends
on the data model; typical examples are constraints on the class of objects,
constraints on the value of attributes of objects, or constraints on elements of an
XML document. Constraints that involve a single data item from the working
memory are called discrimination tests; constraints that involve several data
items from the working memory are called join tests. The data items involved in
the condition part can be bound to variable names, for reference in the action
part.

Each collection of data items from the working memory that match all the
patterns of a rule condition gives birth to a rule instance. Executing a rule
instance consists in interpreting the statements in the rule action on these data
items. The statements that can be found in the action part of a production rule
usually are those that can be found in any procedural language: assignments,
conditionals, loops.

If the production rule language relies on a foreign data model borrowed from a
programming language, it may naturally also borrow its statements: for instance
a production rule language using the Java object model is likely to express
the action parts of its rules in Java, or a Java-like scripting language. If the
production rule language matches XML documents, specific statements have to
be introduced to express the action parts of rules. Here again, programming
or scripting languages can be reused, provided that a mapping is established
between the XML data model and the underlying data model of the language
used. In all cases, specific statements must be added to handle the working
memory: assert, retract, and update. Note that production rule languages that
use a custom data model can save the update statement if their interpretation
of assignment integrates the notification to the rule engine.19

rule highValuePurchaseByYoungCustomer {
when {
c: Customer(age < 21);

s: ShoppingCart(owner == c; value > 1000.0);

} then {
s.manualCheck = true;

update s;

}
}

Fig. 1. Example of a production rule (using the IRL language).

The example in Fig. 1 demonstrates the basic elements of a production rule,
here formulated in the ILOG Rule Language (IRL), which is detailed in Sec-

19 This is true also with foreign programming languages that provide a mechanism for
extending the access to their data model with notifications, such as the daemons in
some dialects of Lisp.



tion 4.3. In this example, the rule matches two objects in its condition part: an
instance of the Customer class and an instance of the ShoppingCart class. The
condition of the rule will be satisfied iff: the value of the age attribute of the
customer is less than 21, the value of the value attribute of the shopping cart is
greater than 1,000 (these are discrimination tests), and the value of the owner
attribute of the shopping cart is a reference to the customer (this is a join test).
Note that Customer and ShoppingCart can be classes of any language such as
Java or C#; they can as well be element types from an XML schema.

For each pair of a customer and a shopping cart from the working memory
that match all the discrimination and join tests, an instance of the rule is created.
In any such instance, the c and s variables are bound to the customer and
shopping cart of the instance. When the action part is executed for one rule
instance, the manualCheck attribute of the shopping cart is set to true, and the
rule engine is notified that the shopping cart has been modified, with an update
statement.

It must be noted that, although the condition part of the rule is still satisfied
by the customer and shopping cart after the rule is executed, the rule will not
be executed again. This fundamental principle of production rules, called the
refraction principle, states that once a rule instance has been executed, the
condition of the rule must become false on the data items of the instance
before the rule can be considered again for execution on these data items. The
implementation of this principle is discussed in Section 4.4. As one can imagine,
this principle is key in avoiding trivial loops.

Two additional constructs of interest can be used in the condition part of a
production rule, namely not and collect . These construct leverage the finiteness
of the working memory to allow the rule author to express conditions on either
the absence of objects matching a given pattern, or the collection of all objects
matching a pattern. Rule tooManyCarts of Fig. 2 detects a situation where a
customer is the owner of two shopping carts or more, while rule noCart detects
when a customer has no associated cart in working memory.

Stateless and Stateful Semantics of a Production Rule Engine We
have described above the semantics of the basic operations on a rule, namely:
evaluating the condition part of a rule against a working memory, creating a
rule instance on a matching tuple of data items, and executing a rule instance.
Similarly the assert, retract, and update respectively add or remove an item
to/from the working memory, and notify the rule engine that a data item has
changed in the working memory. Defining how these operations on rules and on
the working memory interact, defines the semantics of the rule engine, and thus
of the execution of a rule program. And there are several possible combinations.
We present here the two most useful ones, which are related to a stateless and
a stateful usage of a rule engine.

The stateful case corresponds to applications that correlate data items, or
that infer information from the existing data items. A typical example is network
or plant supervision, where data from various sources is correlated to synthesize



rule tooManyCarts {
when {
c: Customer();

carts: collect ShoppingCart(owner == c) where (size() > 1);

} then {
out.println("Customer " + c.name + " has too many (" +

carts.size() + ") carts.");

}
}

rule noCart {
when {
c: Customer();

not ShoppingCart(owner == c);

} then {
out.println("Customer " + c.name + " has no cart.");

}
}

Fig. 2. Example of the collect and not constructs.

a global picture. In these applications, and in contrast with the stateless case
described below, the action of one rule may heavily influence the eligibility of
other rules, by modifying the values of attributes involved in the condition parts.
As a consequence, the rule engine must carefully take update notifications into
account in order to ensure that the truth value of the rule conditions, and thus
the list of eligible rules, is known at any time. How to efficiently implement
this is the cornerstone of the many variants of the Rete algorithm, described in
Section 4.4.

The principle of the rule execution algorithm in the stateful case is to main-
tain at all times which rules are eligible for execution, based on the state of the
working memory. The set of these candidate rule instances is called the conflict
set. As described in Fig. 3, the rule engine picks a rule instance from this set
and executes its actions. This may affect the working memory, either by adding
data items to it, or by removing items from it, or by updating items that are
in working memory. In reaction to this the rule engine updates the conflict set,
that is, it creates rule instances for the rules whose condition parts become true,
and removes the rule instances whose condition parts become false. The engine
operates in this way until the conflict set is empty.

The stateless case corresponds to what is called filtering applications, where
the rules are used to scan a flow of objects on a one-by-one, or tuple-by-tuple,
basis. Examples include data validation, call dispatching, or even some simple
form of scoring. In these applications, all the rules typically have the same sig-
nature, that is, they match the same number of objects of the same classes.
More important, the attributes involved in the patterns of the condition parts
of the rules are never modified by the action parts of the rules. This property



Algorithm StatefulPREngine

1. compute conflict set CS from working memory WM
2. while CS is not empty do
3. pick a rule instance (r, t) from CS
4. execute the actions of r on the tuple t of data items
5. update CS from the updated WM
6. end

Fig. 3. Production rule execution algorithm in a stateful context

of the rules entails that the eligibility of the rules on a given tuple of data items
will not vary during the execution of the rules. In other words, given a tuple
of data items, the engine can evaluate each rule condition in turn, and imme-
diately execute the rule actions if the condition is satisfied. This will yield the
same results as the conflict set approach, where all the rule conditions would
first be evaluated on the tuple, and then instances of the matching rules would
be executed. Furthermore in the stateless case working memory updates can be
ignored, or at least delayed until the processing of all the rules on the tuple. This
approach is followed by the Sequential algorithm exposed in Section 4.4. Under
the conditions stated above on the rules, the stateless semantics can be viewed
as an optimization of the stateful one.

The rule execution algorithm in the stateless case, described in Fig. 4, thus
relies on an inner loop working on a given tuple of data items, where the rule
engine evaluates the condition part of each rule against the tuple, and if satisfied
executes the action part of the rule. In an outer loop the tuples of data items
are formed, and fed to the inner loop. How these tuples are formed may vary:
they may come from the content of the working memory, in which case the rule
engine will have to take care in the outer loop of the assert, retract, and update
operations; or they may be handled outside of the rule program, in particular
in the rather common case where the rule actions do not add nor remove data
items to/from the working memory.

Algorithm StatelessPREngine

1. for each tuple t of data items do
2. for each rule r do
3. if t satisfies the condition part of r then
4. execute the actions of r on t
5. end
6. end

Fig. 4. Production rule execution algorithm in a stateless context



4.3 ILOG JRules as an Example of a Production Rules System

ILOG JRules20 is a complete Business Rules Management System (BRMS),
that is, a collection of development tools and runtime libraries that help both
IT and business people in writing business rules, maintaining them over time
and across the enterprise, and deploying them for execution. This section details
the concepts leading to the introduction of business rules, and then presents
the tools and languages in ILOG JRules that provide support in addressing the
challenges arising in the life cycle of a business rules application.

Business Policies and Business Rules Business policies gather the knowl-
edge of a company, an organization, etc. describing how operations are to be
conducted. They are a priori not meant to be processed by a computer, but
rather by humans (or business people). As such, they are typically worded in
natural language, and stored on paper.

When automation of business policies is considered, a more software-centric
embodiment is introduced as business rules, and an unambiguous and executable
form of rules is looked for, for instance production rules. Yet, the desire to pre-
serve the interesting property of business policies to be usable by non-technical
people has led to the design of Business Rule Management Systems, where do-
main experts can author rules in a business-friendly format, which is then auto-
matically translated into a format suitable for execution, namely a programming
language.

The Life Cycle of a Business Rules Application The development and the
maintenance of a real production system is a complex activity involving several
actors throughout the life cycle of the application, and of the rules themselves.
The life cycle of the rules can be summarized as follows, and as illustrated in
Fig. 5.

The first protagonist is usually an Architect who analyzes the application
and builds the data model on which the rules will be expressed. This model will
typically derive from the application’s underlying data model, such as a Java
object model or a collection of XML schemas. The rules themselves are then
authored based on a description of the company policy, for instance a paper
documentation. The authoring is either performed by a Policy Manager, or the
rules are drafted by a Business Analyst and validated by a Policy Manager. Once
the rules are ready they are deployed by an Administrator to the production
machine where they will be executed. The authoring-validation-deployment cycle
can be repeated as the policies change. Rules may eventually be retired and
archived away from the system.

As illustrated in Fig. 5, this rich life cycle has to be supported by a collection
of tools. These tools are designed to be used by the various actors in the life
cycle, that is, both technical and business people. This also leads to the design

20 ILOG, http://www.ilog.com/



Fig. 5. The life cycle of a production rules based software application.



of various levels of rule languages, all with a sound semantics, but some more
adapted to being handled by non-technical rule authors such as Policy Managers,
while others are more suited for execution by a rule engine.

Tools for Business Rules Management The ILOG JRules Business Rules
Management System provides a collection of components to support the complex
life cycle of a business rules application. Each of these components is targetted
toward some specific actors in the cycle.

ILOG Rule Studio is made of a set of plugins to the Eclipse development
platform. It is meant to be used by the Architect and the Business Analyst to
build the data model on which the rules will be expressed and to define the
overall architecture of the rule application. It also allows them to author rules,
as well as to create templates for the Policy Manager to fill.

ILOG Rule Team Server is a Web application with a Web-based interface.
It serves as a workspace where non-technical users such as Policy Managers
can work collaboratively to author, edit, validate, organize, and search for the
business rules. This is key in evolved applications that can contain thousands
of rules and may involve dozens of participants. The projects and the elements
they contain are stored in a rule repository, that is, a database connected to
ILOG Rule Team Server. Authentification and privilege procedures ensure that
actors have rights to perform modification or deployment on the rule repository.

ILOG Rule Execution Server is targetted at System Administrators that need
to push rule sets to J2EE applications. It allows them to monitor the deployment
of rules and to define versions of rule sets.

ILOG Rule Scenario Manager is a component accessible both from ILOG
Rule Execution Server and ILOG Rule Team Server, and designed to help users
test their rules against real data.

From Business Policies to Executable Rules If for example a company has
the policy “When a customer under 21 buys for more than $ 1,000 the transaction
must be manually checked”, this policy could be expressed by the business rule
in Fig. 6. This rule would typically be authored using ILOG Rule Team Server.
In order to be executed, it would first be translated into the IRL rule given in
Fig. 1, then pushed to an application embedding a rule engine.

Business Rule Languages ILOG JRules defines several formats for business rules:
the Business Action Language (BAL), the Decision Tables, and the Decision
Trees. The Business Action Language, illustrated in Fig. 6, provides a great
level of expresiveness, while allowing non-technical users to author rules with a
minimal learning curve.

Decision tables and trees provide a concise view of a set of business rules
as a spreadsheet or tree. Spreadsheets and trees help the rule author navigate
and manage large sets of business rules. Decision tables are rules composed of
rows and columns and are used to lay out in tabular form all possible situations
which a business decision may encounter, and to specify which action to take



definitions

set c to a customer;

set s to a shopping cart;

if all of the following conditions are true:

- the age of c is less than 21

- the value of s is greater than 1,000

- c is the owner of s

then

make it true that s must be manually checked;

Fig. 6. Example of a business rule (using the BAL language).

in each of these situations. Decision tables allow the user to view and manage
large sets of business rules with homogeneous conditions. Decision trees provide
the same functionality, but are composed of branches that have decision nodes
as their inner nodes, and action nodes as their leaves. Decision trees allow the
user to manage a large set of rules with some conditions in common but not all.

ILOG JRules even provides a framework for defining new, specialized business
rule languages; this Business Rule Language Definition Framework (BRLDF) will
be used by software engineers to taylor a dedicated rule language for business
experts to author rules in a specific domain or application.

Ruleflow ILOG JRules introduces an additional concept, which is only remotely
connected to production rules, but which acknowledges the fact that any program
of a reasonable size has both declarative and procedural aspects. This concept
is named ruleflow, and is used to describe the flow of execution of a program. A
ruleflow can be edited using a graphical editor, and is eventually translated into
an IRL representation. A ruleflow is composed of tasks, which can be of three
kinds:

– A rule task is made of a selection from the set of all rules. It also has a
number of parameters, among which the choice of the stateless or stateful
semantics (see Section 4.2). When a rule task is executed, the corresponding
algorithm is activated on the rules composing the task.

– A function task executes a function, that is, in essence a series of actions as
could be found in the action part of a rule.

– A flow task orchestrates a collection of other task (rule, function, and flow
tasks) using standard statements such as sequence, conditionals, loops, fork-
join, etc.

In addition to the tasks, a ruleflow contains global variables (known as “rule-
set variables”) that can be used to vehiculate data between rules and tasks, and
marks one of the tasks (usually a flow task) as the main task. Organizing rules
into a ruleflow allows the user to handle larger rule-based programs, and to bet-
ter master their operational semantics. As a result, executing a ILOG JRules
program amounts to populating the working memory and then launching the
main task of the ruleflow.



Executable Rules ILOG JRules defines one language for executable rules, named
ILOG Rule Language (IRL). All kinds of business rules are eventually translated
in IRL for execution. However rules can be directly authored in IRL using ILOG
Rule Studio (but not using ILOG Rule Team Server, which is aimed at non-
technical users). They are then referred to as technical rules. As illustrated by
the examples in Fig. 1 and 2, the ILOG Rule Language ressembles classical
programming languages. It allows to use more advanced constructs, such as
loops in the action part of the rules.

Integration in an Application The rules encode usually only part of the
logic of an application. And beyond the logic there is also the logistics, that
is, the user interface, the connection to other software such as databases, etc.
The interaction and co-operation of various parts of an application, including
the part that is implemented using rules, has to be addressed by any rule-based
system.

ILOG JRules is a system written in Java, and as such is designed to be
interfaced with Java applications, or as a consequence with any programming
language that a Java program can be interfaced with. As far as Java is concerned,
the main two cases are standard J2SE applications, and J2EE-based systems. In
both cases, the principle is that the application embedding the rule engine is the
master of the control flow. It is responsible for providing the rules and ruleflow to
the engine, of populating the working memory, and of triggerring the execution of
the rules. The engine then performs the rule execution and returns the control to
the application. Since the working memory has been populated with references
(as opposed to copies) to the Java objects of the host application, the execution of
the rules directly implements the application logic on the actual objects handled
by the application.

In the J2SE case, this co-operation scheme between the application and the
rule engine is implemented using simple Java calls to an Application Program-
ming Interface (API) defined in the ILOG JRules documentation.

J2EE Deployment For the integration of rules into a J2EE-based application, the
ILOG Rule Execution Server (RES) provides, for the main application servers,
ready-to-use J2EE rule execution services that implements this behavior. In
addition, the Web-based console of the RES allows system administrators to
manage rule-based applications by deploying new versions of rule sets to rule
execution services, by enabling or disabling them, and through basic monitoring
and statistical analysis tools.

The console provides remote management and monitoring through the JMX
technology. The model persists all changes made to a ruleset. The version log
maintained by ILOG JRules records the details of the different versions of the
ruleset including information on the user who modified data, time of modifica-
tion, and any comments that have been made.

Generating Web Services From Rules An additional feature of ILOG JRules is
the ability for the user to generate a Web Service implementation from a rule



set. Deploying production rule sets as Web Services allows users to define and
change the behavior of Web servers during their execution. As Web Services are
commonly used over the Web to process information in a stateless or a stateful
context, this deployment helps bringing production rules into Web applications.

The deployment itself consists in generating a specific Web Service operation
for the rule set. The signature of the operation is based upon the signature of the
rule set, described in ILOG JRules with formal variables called ruleset param-
eters. As Web Services operates only on XML data, the types in the signature
should be compliant with the XML-XSD type system. A binding between XML
types and and their related object types (Java, C++, C# ) may help to adapt
the rules to XML information. The execution of the operation is composed of
the following steps: providing the input parameter values to the engine, execut-
ing the rules, and returning the output parameter values to the Web Service
caller as XML documents. In order to cope with scalability in terms of number
of operation calls, ILOG JRules provides the way for pools of rule engines to be
managed inside the application server embedding the Web Service.

Processing Web Data With ILOG JRules ILOG JRules provides two way to
process Web data inside rules by the mean of two automatic bindings: the XML
Binding and the Web Service Binding.

Most Web data is defined through XML documents, modeled by XML Sche-
mata. The XML Binding feature transforms a schema into a runtime object
model, in such a way that an XML document can be deserialized into a memory
object. ILOG JRules enables to execute production rules against such memory
objects. Hence, most of XML documents coming from the Web can be processed.

The Web Service Binding feature enables a programmer to invoke external
Web Service operations from a production rule as if they were usual Java meth-
ods. The WSDL model of the Web Service is first translated into an object model.
The port types and their operations are mapped onto classes and methods. As
soon as this mapping is achieved, ILOG JRules is able to send or retrieve data
automatically represented as objects, to or from the Web Services. This feature
is important as Web Services are identified as a usual source of information and
processing over the Web.

Validating and Testing Rules The ILOG Rule Studio and ILOG Rule Team
Server components provide a number of rule validation services based on static
analysis techniques. In addition, the ILOG Rule Scenario Manager (RSM) com-
ponent is an execution test tool to dynamically verify deployable rules. The RSM
console is intended for policy managers to manage the rule testing environment,
to run rulesets on predefined sets of input data, or to monitor sets of performance
tests. Using the RSM console, the users define and manage scenarios, organize
them into scenario suites, and set up simulations that compare scenario suites.

Each scenario specifies deployed rulesets to execute and input data to execute
the rules on. A set of tests can be applied to track the performance of the
execution of the rules. Testing against a baseline report allows for non-regression



testing of the rules as they evolve. In scenario suites and simulations, the user
can specify key performance indicators to follow the performance evolution of
scenarios over modifications to the rules.

4.4 Implementation of a Production Rule Engine

Overview of the Rete Algorithm Forward-chaining inference algorithms,
including Rete ([For82]), use a match-select-execute cycle. During the match
stage, the engine creates rule instances by evaluating the rule conditions against
the data in the working memory. The select stage consists in choosing one of the
above-created rule instances. In the execute stage, the actions of the selected rule
instance are executed, which may modify the working memory and trigger a new
match stage. This cycle follows the stateful semantics described in Section 4.2
by Fig. 3.

A characteristics of the Rete algorithm is to perform the match stage each
time the working memory is modified. As a result, the set of potentially exe-
cutable rule instances is always up-to-date relative to the working memory. A
naive implementation of this stage may be time-consuming, due to the huge
number of combinations between the data items to be considered. To address
this risk, Rete compiles the rule conditions into a network so as to minimize
the number of patterns that need to be evaluated. The two underlying mech-
anisms are the sharing of patterns that are common to sereval rules, and the
incrementality of change propagation.

Rete also defines a selection strategy for choosing a rule instance in the
conflict set that results from the evaluation of the rule conditions. The conflict
set is implemented as an agenda of rule instances which are sorted according to
this strategy. The engine cycle ends only when the agenda is empty.

The Rete Network Structure and Behavior The Rete network is a compact
representation of all the patterns expressed in the conditions of the rules. It is a
directed acyclic graph structured in four layers, namely:

– The discrimination tree, where the nodes represent the discrimination tests
found in the rule conditions;

– The alpha nodes, which form the data item tuples from the individual items;
– The join network, in which the nodes represent the join tests found in the

rule conditions; and
– The rule nodes, which form the rule instances.

The input of the graph is the working memory; the output is the agenda. Each
node in the network is equiped with a local memory, in which are stored all the
data items or tuples that satisfy the pattern associated with the node, as well
as the ones associated with the ancestor nodes in the network.

The network reacts to three kinds of events coming from the working memory:
insertion of a data item into the working memory, modification of a data item in
the working memory, and removal of a data item from the working memory. The



events are propagated throughout the network by tokens; the first two kinds of
events use positive tokens, while the last kind uses negative tokens. The tokens
also carry the data item concerned by the event.

When a node in the Rete network receives a positive token for a data item,
the rule engine evaluates on the data item the pattern represented by the node.
If the data item satisfies the pattern, and21 the data item is not already present
in the local memory of the node, it is stored and the positive token is forwarded
down the network. If the data item was already stored in the node memory and
does not satisfy the pattern (any longer), it is removed from the local memory
of the node and a negative token is sent to the children nodes.

When a node receives a negative token for a data item, and21 the data item
is present in the local memory of the node, it removes the data item from its
local memory and propagates down the negative token.

The layers of a Rete network are depicted in Fig. 7 and detailed below.

The Discrimination Tree The discrimination tree in the Rete network performs
the evaluation of the discrimination tests of the rule conditions.22 The first level
of nodes in the discrimination tree operates a classification of the objects. Below
these classification of nodes are discrimination nodes, which test the patterns
expressed on the properties of the data items.

Like all nodes in the Rete network, the nodes in the discrimination tree
maintain a local memory of data items satisfying the pattern that they test, and
propagate positive and negative tokens according to the principles mentioned
above.

The Alpha Nodes The alpha nodes gather the tokens that successfully passed
the discrimination tests, and prepare them as tuples for the join network. There
is thus no pattern evaluation performed by alpha nodes. The local memory of
each node stores one or several tokens (or equivalently the data items carried by
the tokens), which are represented by round-cornered rectangles in Fig. 7. There
are three alpha nodes in the figure: one alpha node contains two items of class
B, while the other two alpha nodes contain only one data item each: one of class
A and one of class C, respectively.

The Join Network This layer is in charge of performing the Cartesian product
between the alpha nodes by applying join tests. It is composed of two alternating
kinds of nodes: join nodes and beta nodes.

The role of a join node is to evaluate a join test on a tuple of data items.
To this end, a join node makes the cross-product of two different tuple memory
21 This implements the refraction principle which, as mentioned on page 28, states that

when a rule is executed on a tuple of data items, its condition part must become
false on this very tuple, and then of course true again, for the rule to be eligible for
execution on the tuple.

22 Let us remind (from the discussion on page 26) that discrimination tests are patterns
that express a constraint involving a single data item from the working memory, while
patterns involving several data items are called join tests.



Fig. 7. An example of a Rete network.



nodes (alpha or beta nodes). Note that the standard Rete involves binary join
nodes with a left upper branch linked to an alpha node, and a right upper branch
linked to either an alpha or a beta node. On the resulting tuples, the rule engine
evaluates the join test represented by the join node. Each satisfying tuple is
stored in the local memory and propagated to the descendant beta nodes.

The role of a beta node is to memorize all tuples satisfying a join predicate.
Special variants of the beta nodes are also used to implement the not and collect
constructs. The output of a beta node is either a subsequent join node, or a rule
node which will form a rule instance on the tuple of data items, and insert it
into the agenda.

The Rete Agenda The agenda stores rule instances that are entitled to be
fired. A rule instance is the association between a rule and a tuple of data items
that passes through the whole Rete network, and thus satisfies all the patterns
in the condition of the rule. Rule instances placed in the agenda are said to be
eligible.

Unless the agenda is empty, in which case the execution cycle of the engine
is stopped, it often happens that there are several eligible rules. Consequently,
the rule engine has to have some way of deciding which particular rule in the
agenda should be fired. A conflict resolution strategy is then applied. In the
agenda, rule instances are ordered according to several criteria that determine
which rule should be fired first. Additional execution control can be offered for
the implementation of more complex features.

– Priority: The first criterion that is taken into account to decide at which
position a rule instance should be placed in the agenda is the rule priority, a
numerical quantity associated with the rule. The rule priority may depend
on values of properties of the data items matched by the rule: the priority is
then actually dependent on the rule instance, and is said to be dynamic.

– Recency: If two rule instances have the same priority, the rule that matches
the most recent object (that is, the most recently inserted or modified object)
will be fired first. This principle is often named LIFO, as the last rule instance
in agenda is executed the first, given the same priority.

– Specificity: This criterion states that the most specialized rules must be
executed before more general rules. How it is implemented varies with the
rule engine.

Priority, recency, and specificity are used to resolve conflicts when several rule
instances are candidate for firing at the same time. If, after using this conflict
resolution method, several rule instances remain candidates, then the engine
should use internal metarules to ensure that the same sequence of rule firing will
always be followed, given the same conditions.

The Sequential Algorithm The previous sections explained Rete as a pow-
erful and complex algorithm, able to perform efficiently incremental inference



chaining. However, the inference chaining feature is costly in time and memory.
An important part of industrial production rules applications only operate a
simple matching on inputs without any modification nor inference chaining on
the working memory. These filtering applications are the target of the stateless
semantics of a production rule engine (see Section 4.2), which is implemented
by the Sequential algorithm.

In the Sequential algorithm, tuples of data items are submitted to rules.
The structure of the tuples (in terms of object classes) is computed from the
structure of the rule conditions which, as explained in Section 4.2, all match the
same number of objects of the same classes. The data items in the tuples are
fetched from the working memory.

The conditions of the rules are then evaluated on each tuple, in an order fol-
lowing the rule priorities.23 The satisfied rules are immediately executed. There
is no agenda that collects the rule instances before executing them.

This simplification of the engine cycle permits to enhance the sharing of tests
between rules. The evaluation is very similar to a decision tree applied on a single
tuple. The algorithm is quicker than Rete on filtering problems.

LEAPS algorithm As mentioned above, Rete-like algorithms materialize the
whole set of tuples satisfying a rule set. The computation occurring during the
matching part of the engine cycle results in synchronizing the internal engine
state of the Rete network and the real object state of the working memory. Nev-
ertheless, the Rete propagation by saturation is memory and time consuming. In
fact, on some rule sets the incremental inference may lead to huge modifications
of the Rete network. Some matching evaluations done at one time are never used
later.

The main contribution of LEAPS is to introduce a lazy evaluation of the
satisfying tuples. They are calculated only when needed.

Instead of being memorized in local memories of the network nodes, the tuples
are stored in containers that are iterated by means of complex cursors. Every
data item addition to, or removal from, a container is assigned a timestamp. The
iteration on containers performed by cursors is based on the timestamps. The
system maintains an internal stack of insertion/retraction events ordered by their
timestamps. During a rule execution cycle, the top level of the stack is selected
and used to constitute a seed of tuples for a rule. If the seeded tuple satisfies
the rule, then it is executed. Otherwise, the next rule is examined against the
current top element of the stack. After a rule is fired, the next top element takes
place. When the stack is empty, the execution stops.

An important distinction between LEAPS and Rete concerns the conflict set
determination. While Rete proceeds by saturation and determines the conflict
set completely at each modification of the working memory, LEAPS only selects
the first rule instance to be executed, without constituting the complete conflict
set. This lazy evaluation explains deeply the difference in performance of the
two algorithms.
23 As a consequence, the Sequential algorithm does not support dynamic priorities.



4.5 Production rule samples

Shopping cart example This section proposed a simple implementation of the
shopping cart sample (described in Section 2.2). The discount policies specifying
how to calculate the discount of a customer are listed hereafter:

1. if the total amount of the customer’s shopping is higher than 100, then
perform a discount of 10

2. if it is the first shopping of the customer, then perform a discount of 5
3. if the client has a gold status and buys more than 5 discounted items, then

perform an additional discount of 2
4. the rule 1 and 2 could not be applied for the same customer, the first rule

having the priority against the second. The third rule is applied only if rule
1 or rule 2 have been applied.

We propose to show some elements of implementation of such policies based
upon ILOG JRules language.

Firstly, the object model must be defined and might be composed of the
following classes:

– the Customer class defines the customer’s characteristics (status, first shop-
ping...),

– the ShoppingCart class memorizes the current shopping of a customer as a
list of items and their global amount.

– the Item class represents an article order and its price.
– the Discount contains the final discount of the shopping.

Secondly, we propose a production rule implementation of the policies us-
ing the previous object model. Observe that the discounting policies should be
evaluated in a specific order. This order will be ensured by the priority of the
rules. In ILOG JRules, a rule priority is an integer expression: the greater the
more important. Note that there is not always an isomorphic mapping between
the policies and their production rule implementation. For example, the fourth
policy has no production rule implementation, but is shared among the others.

The first step is to determine if the first policy is satisfied, Fig. 8. The HIGH
priority ensures that the rule be the first to be evaluated.

At this point, Fig. 9, the second rule is activated if there is no discount, that
is to say if the first rule has not been executed.

Finally, Fig. 10, the third rule is potentially applied. It requires that a dis-
count instance exists in the working memory, infering that one of the previous
rule has been executed. The LOW priority ensures that this rule be executed at
last.

At the ruleset level, a Customer and a ShoppingCart instances must be in-
serted in the working memory to activate the discount rules. Those instances
might be seen as the inputs of a rule service that executes the shopping cart
ruleset and performs the discounting policies. The result of the service execu-
tion is the output discount instance, if exists. We have then identified a service,
computeDiscount relying on the following signature:



rule giveGlobalAmountDiscount {

priority = HIGH;

when {

cart: ShoppingCart ( getTotalAmount()>100 );

not Discount ();

}

then {

insert Discount ( ) {

value = .1;

}

}

}

Fig. 8. giveGlobalAmountDiscount rule



rule giveFirstShoppingDiscount {

priority = MEDIUM;

when {

Customer ( isFirstShopping() );

cart: ShoppingCart ( );

not Discount ();

}

then {

insert Discount ( ); {

discount = .05;

}

}

}

Fig. 9. giveFirstShoppingDiscount rule



rule giveGoldDiscount {

priority = LOW;

when {

Customer ( isGold() );

cart: ShoppingCart ( );

collect Item ( isDiscounted() ) where ( size()>=5 ) in cart.getItems();

discount: Discount();

}

then {

modify discount {

value += .02;

}

}

}

Fig. 10. giveFiveOverFiveItemsGoldDiscount rule



computeDiscount : Customer × ShoppingCart → Discount

As soon as the input and output parameters of the ruleset are identified,
ILOG JRules helps to generate a Web service embedding the ruleset execution.
This Web service is then declared and managed by an application server. By this
way, production rulesets are easily deployed in Web environments.

Credit analysis example Here is a simple implementation based on ILOG
JRules of the credit analysis sample (described in Section 2.2). A loan acceptance
is determined depending on the client’s history and his demand. The acceptance
process follows the listed policies:

1. if the loan duration is lower than five years then set the loan rate to 4.0%
and add 5 to the score, else set it to 6.0%,

2. if the client has filed a bankrupcy, substract 5 to the score,
3. if the client’s salary is between 20000 and 40000, add 10 to the score,
4. if the client’s salary is greater than 40000, add 15 to the score,
5. if the score is upper than 15, then the loan is accepted.

Firstly, the object model, used later by the production rules, must be defined:

1. the Borrower class provides the client’s characteristics (salary, bankrupcy),
2. the Loan class is composed of the loan parameters (duration, rate, client’s

score).

An instance of a borrower and a loan instance, the inputs of the service,
must be inserted in the working memory before the rules are executed. Those
insertions might be performed by other production rules not presented in this
section. The result of the execution, the output, is provided by the loan instance
(acceptance, rate, score).

The first rule, Fig. 11, corresponding to the first policy, declares two rule
bodies: a then and an else body. The last evaluate condition determines which
body is executed when the upper conditions are satisfied.

The second rule, Fig. 12, calculates the bankrupcy score, if necessary.
The third rule, Fig. 13, calculates the score depending on the borrower’s

salary. Observe that this rule implements both the third and the fourth policy.
The fourth rule, Fig. 14, determines if the loan is accepted. The execution

order of the previous rules does not impact the final result. However, this last rule
must be executed after the others as soon as the score computation is completed.
It is ensured by its LOWER priority.

The loan acceptance service might be deployed as a Web service operation
presenting the following informal signature:

computeLoanAcceptance : Borrower × Loan → Loan



rule computeLoanRate {

when {

loan: Loan ( );

evaluate ( loan.duration < 5 );

}

then {

modify loan {

score += 5;

rate = .04;

}

}

else {

modify loan {

rate = .06;

}

}

}

Fig. 11. computeLoanRate rule



rule computeBankrupcyScore {

when {

Borrower ( hasBankrupcy() );

loan: Loan ( );

}

then {

modify loan {

score -= 5;

}

}

}

Fig. 12. computeBankrupcyScore rule



rule computeSalaryScore {

when {

borrower: Borrower ( s: getSalary(); s>20000);

loan: Loan ( );

evaluate ( s<40000);

}

then {

modify loan {

score += 10;

}

else {

modify loan {

score += 15;

}

}

}

Fig. 13. computeSalaryScore rule



rule computeLoanAcceptance {

priority = LOWER;

when {

loan: Loan ( );

}

then {

modify loan {

acceptance = (score>15);

}

}

Fig. 14. computeLoanAcceptance rule

4.6 Overview of Existing Production Rules Languages and Systems

OPS5 The OPS (Official Production System) language family has been designed
in the 70th by Charles Forgy. OPS5 was the first production rule language to be
used in an expert system.

OPS5 uses a forward-chaining inference engine; programs execute by scan-
ning “working memory elements”. OPS5 stores data in working memory, and
if-then rules in production memory. If the data in working memory matches the
conditions of a rule in production memory, the rule actions take place.

The engine architecture, based on the Rete algorithm, is especially efficient
to scale up to large problems involving hundreds or thousands of rules.

(p orderItemWhenOutOfStock

(item ^id <itemId>)

- (stock ^itemId <itemId>)

(supplierStock ^supplierId <supplierId> ^itemId <itemId>)

-->

(make order ^itemId <itemId> ^supplierId <supplierId>)

)

Fig. 15. Example of an OPS5 rule.



The OPS5 rule named rule1 shown in Fig. 15 is composed of three conditions
and one action. The last two conditions match locations that are not connected
to any place of the same name. The action part inserts a new place instance in
the working memory.

JBoss Rules Previously named Drools, JBoss Rules24 is a Java open source
business engine (Apache Software Foundation open source license). It has im-
plementations for the Rete and for the LEAPS pattern matching algorithms.
The conflict resolution of the agenda is based on the priority and the LIFO
principles. The rule structure takes benefit of the underlying Java object model.
Fig. 16 gives an example of a JBoss Rules rule.

rule "order item when out of stock"

when

item: Item ( )

not Stock ( this.item == item );

supplier: Supplier ( hasItemInStock ( item ) );

then

assert( new Order(item,supplier) );

end

Fig. 16. Example of a JBoss Rules rule.

In addition the JBoss rules environment provides a way to declare rules as
a decision table spreadsheet (Excel). A dedicated compiler analyses the spread-
sheet and translates it into rules.

Blaze Advisor Blaze Advisor, developped by FairIsaac25, includes a visual
development environment for writing, editing, and testing business rule services
that are executed using a sophisticated rule server.

The rule repository enables developers to work in a coordinated manner as
teams and leverage each others work by sharing and reusing rules, rule sets, rule
flows and object models. It can be stored as an XML file, database or LDAP
directory.

It offers a simple English-like Structured Rule Language (SRL) for writing
rules.

At the same time sophisticated ruleset metaphors (decision tables, decision
trees and scorecards) provide a way for nonprogrammers to author rules as well.

24 JBoss rule, http://www.jboss.com/products/rules
25 FairIsaac, http://www.fairisaac.com



rule discount is

if shoppingCart.items.count is between 2 and 4

then

shoppingCart.discount = 10;

Fig. 17. Example of a Blaze advisor rule.

PegaRules PegaRules, developed by PegaSystems26, introduces different types
of rules: declarative rules (computing values or enforcing constraints), Deci-
sion Tree rules, Integration Rules (interfacing different system and application),
transformation rules (data) and process rules (Managing the receiving, assign-
ment, routing, and tracking of work).

It provides convenient HTML rule forms to build, manage and configure
rules.

An execution environment provides both forward chaining (procedural logic)
and backward chaining (goal-based logic) to determine known and unknown
dependent facts.

Jess Jess27, a rule engine for the Java platform, is a superset of CLIPS program-
ming language, developed by Ernest Friedman-Hill of Sandia National Labs. It
was first written in late 1995.

It provides backward and forward chaining on facts executed by a Rete al-
gorithm.

(defrule orderItemWhenOutOfStock

(item ?itemId)

(not (stock ?itemId) )

(supplierStock ?supplierId ?itemId)

=>

(assert ( order ?itemId ?supplierId ) )

)

Fig. 18. Example of a Jess rule.

A last type of rules with no body, the defquery construct, are used to search
the fact knowledge base under direct program control. This query returns the
list of all fact tuples of the working memory matching the rule condition.

26 PegaSystems, http://www.pegasystems.com/
27 Jess, http://www.jessrules.com/



5 ECA and Production Rules: Similarities and
Differences

The introduction of this paper highlighted that ECA rules and production rules
address two complementary but different parts of software applications. ECA
rules naturally apply in distributed applications, while production rules natu-
rally apply in logically rich applications. As a result, beyond a minimal level of
complexity both approaches are beneficial to Web applications.

This different positioning of ECA and production rules can probably be per-
ceived in Sections 3.2 and 4.2, in that the ECA rules are naturally presented to
address the distributed nature of Web applications, whereas the presentation of
production rules naturally tends to focus on the management of the state system
for one node in a distributed Web application.

This section addresses the similarities and differences between the ECA rules
and production rules approaches. The positioning of both approaches is studied
on the support they provide for distribution, for managing the state of the sys-
tem, for managing the control flow of the program, for detecting and handling
events, and with respect to the current market.

5.1 Distributed Applications

In a distributed system, the architecture requires a dedicated description that
is not addressed by rules. Because of the absence of features dedicated to dis-
tributed applications in production rules, implementing distributed algorithms
using only production rules requires to resort to classical distributed algorithms.
On the other hand, the fact that ECA rules are well adapted for distributed appli-
cations comes with an associated price: ECA rules have to tackle the challenges
of all distributed applications, in particular they are sensitive to the performance
of the communication network and protocol they rely on.

5.2 Managing State

Three levels of a state can be distinguished in a rule-based Web application:

1. The state defined by the objects (and events) matched by a rule. This “rule-
local state” has a life time spanning from the beginning of the evaluation of
the rule conditions, to the end of the execution of the rule actions.

2. The state of the rule engine. This state will be thought of as local to the rule
engine when the engine is seen as one of the node in the Web application;
it will be thought of as global to the rule engine from the viewpoint of the
individual rules managed by the engine. This “engine state” is where ECA
and production rule systems differ.

3. The state of the whole Web application. As in all distributed applications,
the definition of such a global state is a problem in itself, and neither ECA
nor production rules do reify this state in their implementations.



The engine state includes the rule-local states of all the rules being currently
under evaluation or execution. In production rule systems, it will additionally in-
clude the working memory, and optionally global registers.28 The working mem-
ory and the optional global registers provide the capability of exchanging data
between rules, thus augmenting the expression power.

ECA rules usually do not have an engine-level state that is specific and inter-
nal to the current process instance. ECA rules have to explicitly maintain this
state in events and databases. Consider the example of handling a book order: a
process instance is created each time a book order from a customer is received.
Such an incoming order could contain information such as the customer’s ad-
dress. This information is not needed immediately, but only late in the process
for sending rejection back or acknowledging and delivering the requested books.
The customer’s data has to be either saved in a database or passed along through
all rules as part of event data.

This difference with respect to state management between the ECA and
production rule approaches is quite characteristic and has reflections in a number
of other differences detailed below.

5.3 Control Flow of Rule Programs

Event-Driven vs. State-Driven Execution Probably the most salient dif-
ference between ECA and production rules is what drives their execution. ECA
rules are executed due to an explicit event. In contrast, production rules are
executed due to some condition on the state becoming true; while this is usually
caused by some event, the event is implicit and not available in the production
rule.

To give an example, a production rule might have a condition expressing
that a customer is of legal age (18 years or older). When the condition becomes
true, it can in general not distinguish whether the customer has had a birthday
or whether there has been a manual correction in the data. For an ECA rule
this would be different and distinguishable events (and its reaction can include
sending a birthday card in the former case).

This also illustrates a more subtle difference between production rules and
ECA rules. It might seem at first that the production rule WHEN age ≥ 18 DO
notify customer service and the ECA rule ON change of age IF age ≥ 18 DO
notify customer service specify the same behavior. In fact however, they do not:
the production rule will send only one notification when the customer becomes
18; the ECA rule will send a notification on every birthday once the customer
is over 18.29 Encoding the behavior of the production rule with ECA rules is
not necessarily simple. (A possible solution is to encode as part of the data an
assertion whether the customer service has already been notified or not, and to
query this in the condition part.)

28 Such global registers are known as “ruleset variables” in ILOG JRules.
29 In both cases, the behavior might be changed by applying different rule execution

semantics, though.



To summarize, ECA rules often allow a more fine-grained control of behavior
because they are driven by events not states, but this more fine-grained control
comes at a price requiring more complicated programs than production rules in
some cases (in particular the cases where the state is more relevant than events).

The Current State of the Computation The declarative aspect of rules
is an advantage for implementing algorithms that rely on case-based reasoning.
However it can rapidly occur that some algorithms, or parts of them, introduce
a sequential aspect, for which the declarativity is of little help. In these cases
the programmer will need to define and maintain a “current state of the com-
putation”, which will indicate the parts of the rules that should be considered
for implementing each step of the algorithm. There are several ways for a rule
language to support this requirement.

Global Objects The control of the flow of execution can be achieved by adding to
each rule a condition on a context object denoting the current state of the com-
putation. However such an object would be a global object (from the viewpoint
of the rules): production rule systems provide at least the working memory for
storing this global object. However it can be argued that such an implementation
is rather an applicative one, as opposed to a support from the language.

This solution is even harder to consider in ECA rule systems due to the lack
of an “engine-global state”. As a result, there is no clear notion in ECA rule-
based specifications of which events are expected next. ECA rules are triggered
by every incoming event matching the event query, regardless of whether this
event is expected or not. This might entail unexpected behavior, especially if
events are generated “out-of-order” by faulty or malicious behavior of systems.

Activation and Deactivation of Rules Both ECA and production rule systems
may provide constructs in the rule languages to activate rules, that is, to make
them potential candidates for execution, or to deactivate them, that is, to in-
struct the engine no longer to consider them for potential execution. This (de)act-
ivation of rules being provided by language constructs, they can be invoked by
the rule actions and thus will occur at runtime.

Dynamic enabling and disabling of rules provides a solution on a meta-level
for controlling the flow of execution. However this method of implementing the
control flow is clearly fragile in terms of understanding the program behavior,
and as such will cause maintainance issues as soon as the number of rules exceeds
a few dozens.

XChange doesn’t provide constructs for dynamically (de)activate rules from
rule programs. ILOG JRules used to provide an API that could be invoked from
rule programs, for that purpose. It has been replaced by the introduction “of
rule-flows”, described hereafter.

Error and Exception Handling The ability to specify exceptional condi-
tions and their consequences, including recovery measures, are as important for



realizing complex applications as the ability to define “normal behavior.” An ex-
ceptional situation in the online shop example used throughout this paper could,
for example, occur if the credit card of a customer has expired. Possible means
for recovery include asking the customer for updated information or canceling
the whole order request.

Since exceptions can be conveniently expressed as (special) events, ECA rules
are a convenient mechanism for handling exceptions. They allow to treat excep-
tions like any other event. This approach has quite successfully been employed
for exception handling e.g. in [BCCT05].

Production rules typically rely on the sub-language used for the rule actions.
For instance, ILOG JRules includes a try-catch construct. However, in practice
handling an exception requires knowledge about the context in which it occurred,
and often involves taking some action to modify the flow of execution. In other
words, the notion of a engine-global state may prove missing.

5.4 Detection of Events and of Composite Events

Many ECA rule languages have a strong support for temporal notions through
their composite event querying facilities. Application examples where there is
a strong need for this include dealing with sensor data (e.g., compute sliding
averages), monitoring applications (e.g., correlation of different alarm signals
within some time frame), work-flow applications (e.g., waiting for a number of
parallel events to finish), and applications involving “time-outs” (e.g., detection
of overdue orders).

In their original form, production rules do not allow references to time and
events as are necessary in these applications examples. However, efforts have
been made to extend production rules in this direction. In particular, ILOG
JRules has been augmented with event management capabilities, that is, the
recognition of chronicles [Gha96,DM07].

A chronicle is a pattern describing a sequence of events, with time constraints
on these events. It is thus expressive enough to support the detection of compos-
ite events. In addition, the integration of chronicle recognition with production
rules allows to relate the payload of events with state information maintained
by regular facts. However, integrating chronicle recognition to the Rete algo-
rithm [Ber02] requires to precisely define the semantics of the pattern matching
engine in presence of both timed events and regular facts.

5.5 Maturity of Existing Implementations

As already mentioned in Section 3.5, most of the existing ECA rule languages for
the Web are outcomes of research projects. Their implementations are usually
just proof-of-concept ones, where efficiency was not considered a priority. How-
ever, stable implementations are offered for the Prova language and the ruleCore
engine. The Prova language has an open source implementation as Prova 2.0 Beta
3 at moment. Prova has been succesfully employed in the development of the



Xcalia30 product Xcalia Core for Services 4.3.031 for efficiently computing global
execution plans in a distributed environment.

Contrary to the current status of ECA rules-based systems, the production
rules approach has been succesfully employed for developing (commercial and
open source) software products. OPS5, JBoss Rules, Blaze Advisor, PegaRules,
and Jess have been given as examples of such systems in Section 3.5. The interest
in production rules has been influenced by (but has not arisen out of) the need
of reactive systems in the new setting – the Web. It might be the case that the
Web will accelerate the development of stable implementations also for ECA
rules sytems.

6 Conclusion

This paper has discussed the use of different kinds of reactive rules for program-
ming Web-based systems with reactive capabilities. Its main intent is to provide
a good foundation towards deciding on the type of reactive rules (systems) to
be used for implementing the desired Web application.

Enriching IT systems, such as database management systems not connected
to the Web, with reactive features is not a new research and development con-
cern. Reactive rules, as means to realize such systems, have been well-studied in
the literature and also have successfully been used in commercial software prod-
ucts. Through the application examples given in this paper, we have motivated
the need for employing reactive systems on the Web. We have also stressed the
need for adapting existing reactive rules-based approaches to the Web’s pecu-
liarities.

The two kinds of reactive rules – Event-Condition-Action rules and produc-
tion rules – have been discussed in detail and concrete languages of both kinds
have been used to exemplify the concepts and their suitability for programming
Web applications. By choosing an ECA rules-based language coming from the
academia – XChange – and a software product offered by ILOG – ILOG JRules
– for illustrating reactive rules systems, we have offered insights in the work done
in the academia and industry, which may play a role for those readers which are
at the beginning of their careers.

Though not an easy task, we have tried to reveal similarities and differences
between the two kinds of reactive rule sytems, so as to guide programmers in
choosing the suitable rule system for their Web applications. ECA rules are well-
suited for applications where the focus is on the distributed nature of Web and
there is a need to refer to events and/or detect composite events. Production
rules are well-suited for logically rich applications where the focus is rather on
the management of the state system for each Web node than on the distribution
aspects. These views reflect the current status of research and development on
reactive rules systems and, thus, some of the stated differences might progres-
sively become obsolete in the near or farther future.
30 Xcalia, http://www.xcalia.com/
31 Xcalia Core for Services 4.3.0, http://www.xcalia.com/products/core.jsp
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