
Realizing Business Processes with ECA Rules:

Benefits, Challenges, Limits

François Bry, Michael Eckert, Paula-Lavinia Pătrânjan, and Inna Romanenko

Institute for Informatics, University of Munich
Oettingenstr. 67, D-80538 Munich, http://www.pms.ifi.lmu.de

{bry,eckert,patranjan}@pms.ifi.lmu.de, romanenk@cip.ifi.lmu.de

Abstract. Event-Condition-Action (ECA) rules offer a flexible, adap-
tive, and modular approach to realizing business processes. This article
discusses the use of ECA rules for describing business processes in an
executable manner. It investigates the benefits one hopes to derive from
using ECA rules and presents the challenges in realizing business pro-
cesses. These constitute a list of requirements for an (executable) business
process description language, and we take them as a basis to investigate
suitability of the concrete ECA rule language XChange in realizing a
business process from the EU-Rent Case Study.

1 Introduction

Success in an increasingly global and competitive market requires companies
to adjust internal activities and resources in an adequate and timely manner.
Without suitable enterprise computing systems, this is infeasible. Managing and
automating business processes is a key factor for successful enterprise computing
systems.

A business process can be described as “a structured, measured set of activ-
ities designed to produce a specified output for a particular customer or mar-
ket” [1]. Different methods and tools have been developed to describe business
processes both for modeling purposes and for automatic execution. Such a de-
scription is also often called workflow or business protocol, and its automatic
execution often called (workflow) enactment. The focus of this paper is on exe-
cutable business process descriptions.

Recently, interest in rules is growing in different communities: companies
manage and specify their business logic in the form of business rules [2], efforts
are made for standardizing formats for rule interchange [3] as required for ex-
ample in policy-based trust negotiations [4], and rule languages are becoming
popular for reasoning with Web and Semantic Web data [5]. Like rules in general,
Event-Condition-Action rules offer a flexible, adaptive, and modular approach
to realizing business processes.

In this article we analyze realizing business processes (i.e., describing business
processes in an executable manner) based on ECA rules. The focus is on control
flow, because this is the aspect one is most concerned about during specification;
other issues are shortly discussed.

We investigate the benefits one hopes to derive from using ECA rules (Sec-
tion 2) and present the challenges in realizing business processes (Section 3).
These constitute a list of requirements for an (executable) business process de-
scription language, and we take them as a basis to investigate suitability of the
concrete ECA rule language XChange in realizing a business process from the
EU-Rent Case Study (Section 4). We close with a discussion of the practical lim-
its of ECA rules for business processes (Section 5) and conclusions (Section 6).

2 ECA Rules for Business Processes: Benefits

Managing and automating a business process requires a machine-readable de-
scription of the business process. The most widely used language for describing
business process today is the Business Process Execution Language (BPEL) [6].

Simplified, BPEL describes a process as activities (typically provided as Web
Services) with control flow (e.g., sequential execution) in an imperative fashion.
Additionally, handlers to catch errors or other exceptional situations in the pro-
cess can be specified.

In this article we argue for a different approach to describing business pro-
cesses based on ECA rules. ECA rules have the form “on event if condition do
action” and specify to execute the action automatically when the event happens,
provided the condition holds. Whereas traditional business process description
languages center around activities, ECA rules put emphasis on events. An ECA-
rule-based approach for specifying business processes can have the following
advantages:

– Requirements are frequently specified in the form of rules expressed in either
a natural or formal language, in particular business rules, legislative rules, or
contractual rules. In requirements on business processes, we often find ECA
rules such as “a credit card application (event) will be granted (action)
if the applicant has a monthly income of more than EUR 1.500 and no
outstanding debts (condition).” Ideally, a one-to-one mapping between rules
used for requirements specifications and (executable) rules used for workflow
enactment can be achieved.

– Reactive rules, especially ECA rules, easily integrate with other kinds of
rules commonly used in business applications such as deductive rules (rules
expressing views over data or rules used for reasoning with data) and nor-
mative rules (rules expressing conditions that data must fulfill; also called
integrity constraints). Methods for automatic verification and validation of
rule sets have been well-studied in the past and can be applied.

– ECA rules have a flexible nature: they are easy to adapt, alter, and main-
tain as requirements change, which is quite frequently the case for business
processes. Even more, many rule engines allow rules to be added, modified,
or deleted “on-the-fly,” i.e., without interrupting running processes.

– An important part of business process descriptions is handling of errors and
exceptional situations; in fact, it is often the longest and most labor-intensive

part. Since errors and exceptional situations can be conveniently expressed as
(special) events, ECA rules allow to treat them just like “normal” situations,
thus making their handling quite easy.

– Rules can be managed in a single rule base as well as distributed in several
rule bases. The latter is advantageous for cross-enterprise processes, where
there is no central instance (such as a workflow management system) exe-
cuting and monitoring processes.

– In an activity-centered control flow, activities are started as reaction to the
(successful or unsuccessful) completion of another activity; reaction to inter-
mediate states of activities are typically not supported [7]. ECA rules with
their emphasis on events offer more flexible means to specify control flow, if
appropriate events are generated by the activities.

Whether an activity-centered or an event-centered approach for describing
business processes is better suited depends, of course, always on the individ-
ual process and its environment. In situations where modeling and specifying a
process is better done with an activity-centered view, it is usually possible to
automatically or semi-automatically derive ECA rules realizing the execution of
the process.

3 Challenges for Realizing Business Processes

Every business process execution language should answer certain requirements
for effective and efficient support of business processes, primarily the ability to
realize separate activities (tasks or steps) and to control their cooperation (or
interworking). In this section we present the essential challenges for realizing
business processes.

3.1 Control Flow

Control structures are the core elements of every business process modeling (or
execution) language. They describe temporal and logical dependencies between
activities such as: sequential execution of activities, parallel execution, synchro-
nization, alternative execution. Van der Aalst et al. [8] have identified 21 patterns
of control flow ranging from the simple patterns just named to more complex,
process specific patterns. The technical ability of a business process description
language to express these patterns can be viewed as an essential indicator of the
language usability to design and implement business processes.

Consider the business process for handling a rental reservation (RR) depicted
in Figure 1 in Business Process Modeling Notation (BPMN) [9]. A customer
invokes the business process by sending a rental reservation request to a rental
company.

If the customer is already registered, the customer blacklist is checked (check
blacklist); in case the customer is on the blacklist, the rental request is rejected
(send rejection to customer) and the process ends. If the customer is not regis-
tered yet, her data are recorded (introduce new customer).

Fig. 1. Reservation business process represented in BPMN

In the next step the reservation data is checked (verify RR data); e.g., that
there are no overlaps with other reservations of the customer and that a car in
the specified group is available. In case of a violation, the process ends again
with a rental rejection.

Next, a number of activities are performed, which depend on certain con-
ditions (possibly no activity, if none of the conditions holds). If an applicable
discount exists, it is offered to the customer (offer special advantages). If the
customer’s rental request indicates that a guaranteed rental (car can be picked
up within 24 hours after the scheduled pick-up time) is desired, corresponding
arrangements are made (guarantee rental).

Finally, the customer is notified that her rental request has been accepted
(send acknowl. to customer) and, in parallel, the rental reservation is recorded
(write to DB). With this the process ends.

We will now analyze the control flow patterns in this example:

– Sequence is the most basic control pattern; it runs two (or more) activities
one after the other. In the example, introduce new customer and verify RR
data are in a sequence. Sequencing of activities is drawn as a solid arrow in
BPMN.

– Exclusive Choice allows execution of exactly one alternative path chosen
at the runtime based on the evaluation of a condition. In the example, one
of check blacklist and introduce new customer is chosen exclusively, based on
whether the customer is registered. The alternative execution paths can be
brought together again with a Simple Merge; when the chosen activity of
the Exclusive Choice finishes, execution continues with the activity after the
corresponding Simple Merge. Both patterns are represented in the BPMN
with simple diamonds (so-called XOR gateways).

– Multi-Choice is similar to Exclusive Choice, but allows more than one
alternative paths to be chosen and executed in parallel, or even to execute no
path at all. The counterpart to join the parallel execution paths (or continue
execution if no path has been chosen) is the Synchronizing Merge, which
waits for all chosen paths to finish before continuing. BPMN uses diamonds
with circles inside (OR gateways) to depict these patterns. In our example,

either both offer special advantages and guarantee rental, only one of them,
or none are to be executed, depending on the stated conditions.

– Parallel Split executes multiple paths (with independent activities) in par-
allel. Synchronization joins them again by waiting for all paths to finish. In
the graphical representation both patterns are indicated through diamonds
with plus symbol (AND gateways). In the example, send acknowl. to cus-
tomer and write to DB are independent activities performed in parallel.

There are more control flow patterns, but the above are the most common and
are supported by virtually all business process modeling or execution languages.
The realization of the above patterns with ECA rules will be investigated in the
next section.

3.2 Process Instances

Another challenge for a business process language is the ability to support per-
forming of different activities within a process instance. A process instance is
the execution representation of a process. Considering the example of handling
a rental request: a process instance is created each time when a rental request
from a customer is received. Several process instances corresponding to different
rental requests (possibly from the same customer) run in parallel.

When a cancellation request from a customer arrives, this is specific to one
of the customer’s previous rental requests. It should cancel only the one corre-
sponding process instance, not all processes. A business process language hence
must provide a mechanism that assigns events that happen as well as running
activities to their corresponding process instances.

3.3 Integration with Business Rules

Business rules are used for defining or constraining aspects of business, such as
inserting business structure or controlling or influencing the behavior of business.
They represent the business logic of a company and exist in every enterprise.
Often the logic of workflow-based systems is given or influenced by business rules.
Frequently the rules are embedded within the business process itself which makes
changing and maintaining business rules difficult and costly. Recently business
rules management, i.e., separating business processes and business rules, and
formally specifying, enforcing, integrating, and maintaining business rule sets,
has gained much attention.

Business rules can be classified according to their effect. A common classifi-
cation [10] distinguishes three types:1

– structural rules (also called normative rules or constraints) define restrictions
on business concepts and facts,

1 Other classifications for business rules [11] or rules in general [12] exist; the presented
classification is well-accepted, clear, and suitable in the framework of this article.

– derivation rules (also called deductive or constructive rules) are statements
of knowledge derived from other knowledge using inference or mathematical
calculations,

– dynamic rules (also called active, reactive, or reaction rules) concern dynamic
aspects of the business; they constrain or control the actions of business.

In business processes, business rules play an important role at decision points,
where processes change their behavior based on certain criteria or rules. The
most common approaches for integrating business rules and business processes
are (1) checking the rules explicitly as activities, e.g., calling a rule engine Web
Service, and (2) checking the rules implicitly at decision making points. A busi-
ness process language should support the integration of business rules.

3.4 Exception Handling

The ability to specify exceptional conditions and their consequences, including
recovery measures, are as important for realizing business processes as the ability
to define “normal behavior.” An exceptional situation in the process of Figure 1
could, for example, occur during the verify RR data activity if the credit card of
a customer has expired. Possible means for recovery include asking the customer
for updated information or canceling the whole rental request.

Because of the multitude and diversity of exceptional situations, the effort
for specifying exception handling often surpasses the effort for specifying normal
behavior. Hence, every business process language should provide a systematic
and elegant mechanism to specify, handle, and recover from exceptions.

3.5 Abstractions for Reusability and Maintainability

Business process specifications should exhibit modular structure to ease reusing
and maintaining parts of the specifications such as sub-workflows. An important
step towards reusability and maintainability is the integration of business rules
into process specifications (see above). However, further means are required: for
example, use of a sub-workflow in several other workflows requires support from
the business process language and cannot be realized through the integration of
business rules.

Modularity is best explored in object-oriented and procedural languages; for
rule-based languages, however, modularity is still a research challenge.

4 Realization in XChange

In this section we demonstrate the capabilities of the rule-based language XChange
in realizing business processes. The concrete processes go along the lines of the
EU-Rent Case Study [13], a specification of business requirements for a fictive car
rental company, promoted by the European Business Rules Conference [14] and
the Business Rules Group [15]. Our focus is on control flow, but we also discuss
the integration of business rules and other issues touched on in Section 3.

<xchange:event>
<reservation-request>

<customer>John Q Public</customer>
<email>john@public.com</email>
<car>

<group> A </group>
</car>

<period>
<from>2006-06-10</from>

<duration> 2 </duration>
</period>
<location>Budva</location>

</reservation-request>
</xchange:event>

xchange:event [

reservation-request {
customer { "John Q Public" },

email { "john@public.com" },
car {

group { "A" }

},
period {

from { "2006-06-10" },
duration { "2" }

}

location { Budva }
}

]

Fig. 2. Reservation Request (RR) event in XML and term representation

ON xchange : event {{
r e s e rva t i on−r e que s t [[

var Customer −> customer {{ }}]] }}
FROM in { r e sou r c e {” http : // rent . eu/ customers . xml” } ,

customers {{
without var Customer }} }

DO in { r e sou r c e {” http : // rent . eu/ customers . xml” } ,
customers {{

i n s e r t var Customer }} }
END

Fig. 3. XChange ECA rule for introducing a new customer

4.1 XChange in a Nutshell

XChange is a reactive language based on ECA rules and is tailored to the Web
and XML data, which makes it an interesting candidate for realizing and com-
posing Web Services. An XChange program is located at one Web node and
consists of one or more (re)active rules of the form event query — condition
query — action. Events are represented and communicated between different
Web nodes as XML messages (e.g., with SOAP [16]). Every incoming event is
queried using the event query (introduced by keyword ON). If an answer is found
and the condition query (introduced by keyword FROM), which can query arbi-
trary Web resources, has also an answer, then the specified action (introduced
by keyword DO) is executed.

Event queries, condition queries and actions follow the same approach of spec-
ifying patterns for the data that is queried, updated, or constructed. XChange
embeds the XML query language Xcerpt [17] and extends it with update facilities
and reactivity.

The parts of an XChange ECA rule communicate through variable substitu-
tions. Substitutions obtained by evaluating the event query can be used in the
condition query and the action part, those obtained by evaluating the condition
query can be used in the action part.

Example. Figure 2 depicts an incoming rental request event. On the left it is
in XML syntax, on the right it is in XChange’s term syntax, which is used for
conciseness in data, queries, and updates. Figure 3 depicts an XChange ECA

rule which reacts to this event (ON-part), checks that the customer is not yet
registered (FROM-part), and inserts him into the customer database (DO-part).

In the term syntax, square brackets [] denote that the order of the children
of an XML element is relevant, curly braces { } denote that the order is not
relevant.

In event queries and condition queries, both partial (i.e., incomplete) or total
(i.e., complete) query patterns can be specified. A query term t using a partial
specification (denoted by double brackets or braces) for its subterms matches
with all such terms that (1) contain matching subterms for all subterms of t

and that (2) might contain further subterms without corresponding subterms
in t. In contrast, a query term t using a total specification (denoted by single
brackets or braces) does not match with terms that contain additional subterms
without corresponding subterms in t. Query terms contain variables for selecting
subterms of data terms that are bound to the variables. Using “->” (read “as”),
a restriction can be made on the bindings of the variable left of “->”; every
binding has to match the (sub-)query to the right. The results of a query are
bindings for the free variables in that query. In the example, Customer is bound
to customer { "John Q Public" }.

Updates in the action part are queries to Web resources, augmented with
the desired update operations (insert, delete, replace-by). Another form of
action supported by XChange is the raising of a new event.

XChange is a rich language and we will discuss further constructs relevant in
the scope of this article as we go along. For a short introduction to XChange see
[18], for a complete introduction accompanied by the specification of declarative
and operational semantics see [19].

4.2 Control Flow

We start off by implementing the control flow for the process from Figure 1 by
refining the rule from Figure 3. The first control flow pattern in the process
is the Exclusive Choice: the next action depends on the condition of being a
registered customer. Such a choice is conveniently implemented by means of an
extended form of ECA rules, called ECAA rule [20]: the event is the reservation
request (message in Figure 2), the condition customer unregistered (a query to
a database), the action to be executed is either introduce new customer (in case
the condition holds) or check blacklist (otherwise).

ECAA rules are only syntactic sugar that significantly increases readability
of rule sets; every such ECAA rule can be translated into two ECA rules with
one condition being the negation of the other.

Figure 4 shows an XChange ECAA rule implementing the Exclusive Choice.
The action in case the customer is unregistered (DO-branch) is the update to
the customer database already discussed. To continue in the process after this
action, an event is raised. This event will trigger further rules implementing part
of the whole process. This style of implementing the sequence pattern by passing
along events is common for ECA rules [20].

ON xchange : event {{
var Rental −> r e s e rva t i on−r e que s t {{

var Customer −> customer {{ }} }} }}
FROM in { r e sou r c e {” http : // rent . eu/ customers . xml”} ,

customers {{ without var Customer }} }
DO and [

in { r e sou r c e {” http : // rent . eu/ customers . xml” } ,
customers {{ i n s e r t var Customer }}

} ,
xchange : event {

new−customer { var Rental } }]
ELSE xchange : event {

check−b l a c k l i s t { var Rental } }
END

Fig. 4. Exclusive choice on the customer’s registration status

ON xchange : event {{
b l a c k l i s t e d { var Rental } }}

DO rep ly−customer [var Rental , ” Fa i l u r e ” , ”You are b l a c k l i s t e d . ”]
END

Fig. 5. Send rejection to customer if blacklisted

For the ELSE-branch, the action for check blacklist is simply sending a mes-
sage to a Web Service implementing it. The answer from the service is another
message that will (just as the event raised in the DO-branch) trigger further
rules.

The rule in Figure 5 implements the reaction to a positive answer from the
check blacklist service. The action send rejection to customer is implemented as
a procedure and will be discussed later.

Next, the process merges a negative answer from check blacklist and an an-
swer from introduce new customer, and continues with the verify RR data action.
The corresponding rule in Figure 6 uses a disjunction of events to implement the
Simple Merge and raises an event that is sent to a service taking care of testing
compliance of the rental request with the company’s business rules.

In case the rental request satisfies the rental rules, verify RR data replies
with an event RR-ok; otherwise with RR-not-ok (which contains a reason for
rejection). The rule in Figure 7 reacts to this RR-not-ok event and sends a re-
jection message to the customer (in analogy to the rule for blacklisted customers
in Figure 5).

ON or {
xchange : event {{ not−b l a c k l i s t e d { var Rental } }} ,
xchange : event {{ new−customer { var Rental } }} }

DO xchange : event { ve r i f y−RR−r u l e s { var Rental } }
END

Fig. 6. Simple Merge of the check blacklist and introduce new customer branches

ON xchange : event {{
RR−not−ok { var Rental −> r e s e rva t i on−r e que s t {{ }} ,

var Message −> message {{ }} } }}
DO rep ly−customer [var Rental , ” Fa i l u r e ” , var Message]
END

Fig. 7. Send rejection to customer if RR rules are violated

ON xchange : event {{
RR−ok { var Rental −> r e s e rva t i on−r e que s t {{ guarantee {” yes ”} }} ,

var Pr i ce −> pr i c e {{ }} } }}
DO xchange : event {

guarantee−r e n t a l [var Rental , var Pr i ce] }
END

ON xchange : event {{
RR−ok { var Rental −> r e s e rva t i on−r e que s t {{ guarantee {”no”} }} ,

var Pr i ce −> pr i c e {{ }} } }}
DO xchange : event {

guarantee−done [var Rental , var Pr i ce] }
END

ON xchange : event {{
RR−ok { var Rental −> r e s e rva t i on−r e que s t {{

per iod { from { var From } , durat ion { var Duration } } ,
car {{ group { var Group } }} }} ,

var Pr i ce −> pr i c e {{ }} } }}
FROM ex i s t−d i s c oun t s [var From , var Duration , var Discount]
DO xchange : event {

apply−d i s c oun t s [var Rental , a l l var Discount , var Pr i ce] }
ELSE xchange : event {

d i scounts−done [var Rental , var Pr i ce] }
END

Fig. 8. Multi-Choice for offer special advantages and guarantee rental

The rules in Figure 8 implement the Multi-Choice in the process following
successful verification of the rental rules (event RR-ok). The corresponding Syn-
chronizing Merge is implemented in the event part of the rule in Figure 9; it uses
a conjunction of events to merge. Note that the events guarantee-done and
discounts-done are generated whether the corresponding actions are executed
or not. This is necessary for the merge.

The upcoming Parallel Split is also implemented in the rule in Figure 9,
namely in the action part. With the actions send acknowl. to customer and
write to DB the process ends. For simplicity, we skipped the Synchronization of
the action before the end of the process. It could be implemented in the same
manner as the Synchronizing Merge.

4.3 Abstractions and Business Rules Integration

Reusability and maintainability of business processes can be greatly increased
by convenient abstraction mechanisms and the integration of business rules.

An important abstraction mechanism is the capability to bundle actions that
are complex or used frequently into procedures [21]. An action used frequently

ON and {
xchange : event {{

guarantee−done {{
var Rental −> r e s e rva t i on−r e que s t {{ var Var }} }} }} ,

xchange : event {{
d i scounts−done [

var Rental , var Pr i ce] }} }
DO and {

in { r e sou r c e {” http : // rent . eu/ r e n t a l s . xml” } ,
r e n t a l s {{ i n s e r t r en t a l { a l l var Var , var Pr i ce } }} } ,

r ep ly−customer { var Rental , ” F in i shed ” , ”Rese rvat ion s u c c e s s f u l . ” }
END

Fig. 9. Synchronizing Merge of the above Multi-Choice and Parallel Split for send

acknowl. to customer and write to DB

PROCEDURE rep ly−customer [
r e s e rva t i on−r e que s t {{ emai l { var Email } }} ,
var Status , var Message]

DO xchange : event {
xchange : r e c i p i e n t { var Email } ,
eu−rent−r ep l y [var Status , var Message] }

END

Fig. 10. Procedure for sending a reply to the customer

in our process is the reply to a customer. Figure 10 demonstrates defining such
a procedure in XChange. It is called in the rules of Figures 5, 7, and 9.

Concerning the integration of business rules, the verify RR rules action illus-
trates checking business rules explicitly as activities by calling some service. This
service can actually be implemented in XChange, see Figure 11. The implementa-
tion consists of one ECA rule reacting to the incoming event verify-RR-rules, a
deductive rule for get-price (the result of which is queried in the condition part
of the ECA rule), and two procedures car-unavailable and rental-overlaps

for checking their corresponding business rules. (For space reasons, the figure
only shows the procedure car-unavailable; the other procedure is similar.)
The procedures generate appropriate replies in case of violations; if no violation
is detected, the RR-ok event is raised by the ECA rule.

4.4 Process Instances

To deal with process instances in ECA rules different approaches are conceivable:

– Rule tied to process instances: In this approach, rules are executed as
part of a process instance; their event queries only see events that are part
of this process. Special constructs are required to start and end processes,
and fork and join sub-processes.

– Rule outside process instances: In this approach, rules run separated
from process instances; events have to carry some identifier for the process
they belong to. This identifier has to be explicitly queried in the event part
of rules and passed on by the actions and used services.

ON ve r i f y−RR−r u l e s {
var Rental −> r e s e rva t i on−r e que s t {{

car {{ group { var Group} }} ,
pe r iod { from { var From } , durat ion { var Duration } }

}} }
FROM get−pr i c e [var Group , var From , var Duration , var Pr i ce]
DO or [

car−unava i l ab l e { var Rental } ,
r e n ta l−ove r l ap s { var Rental } ,
xchange : event { RR−ok [var Rental , var Pr i ce] }]

END

CONSTRUCT get−pr i c e [var Group , var From , var Duration , var Pr i ce]
FROM in { r e sou r c e {” http : // rent . eu/ p r i c e s . xml” } ,

desc car−group {{
name { var Group } ,
p r i c e s {{

r en t a l {
durat ion { var Duration } ,
p r i c e { var Pr ice } } }} }} }

END

PROCEDURE car−unava i l ab l e {
var Rental −> r e s e rva t i on−r e que s t {{

car {{ group { var Group } }} }} }
FROM in { r e sou r c e {” http : // rent . eu/ r e n t a l s . xml” } ,

without desc car {{
model { var Group } ,
car−s t a tu s { ” av a i l a b l e ” } }} }

DO xchange : event {
RR−not−ok {

var Rental ,
message {” Se l e c t ed car group unava i l ab l e ”} } }

END

Fig. 11. Implementation of the verify RR data activity in XChange

In the presented rules the second approach has been used, using as identifier
of the process instance the rental-request-information, which is passed along
through all events.

The disadvantage of the approach with rules outside process instances is that
it puts more burden on the programmer’s shoulders: the rules have to query the
identifier in the event part (e.g., to ensure that for a conjunction of events only
events of the same process instance are used) and passed along in every event
that is raised. Approaches where rules are tied to process instances are hence
more convenient.

However, tying rules to process instances is sometimes not possible for dis-
tributed workflows, in particular cross-enterprise workflows or workflows depend-
ing on events from other, parallel workflows.

4.5 Exception Handling

Since exceptions can be conveniently expressed as (special) events, ECA rules are
a convenient mechanism for handling exceptions. They allow to treat exceptions
like any other event.

The process we presented did not contain any exceptions as such, though one
could argue that a customer being blacklisted or a violation of the rental rules
could be perceived as an exception.

Exception handling is not a focus in this paper; however, ECA rules have
quite successfully been employed for exception handling in the past [22].

5 ECA Rules for Business Processes: Limits

While using ECA rules in realizing business processes has the benefits outlined
in Section 2, the approach has also some practical limits, just like any other
approach. In the following we present the limits we have identified from the
concrete study of using the ECA rule language XChange for specifying executable
business processes presented in Section 4.

A general limit of ECA rules is that they do not always reflect the proce-
dural, imperative way of thinking familiar to many people from imperative or
object-oriented programming. This is particularly obvious when looking at the
realization of the sequence pattern with ECA rules: for sequencing of activities
A and B, B is triggered by a separate rule which reacts on a finish event of A.
(XChange alleviates this to some degree through the and[...] when the activ-
ities are updates, though this is only a special case.) However, for distributed
workflows without a central coordinator (e.g., cross-enterprise workflows) this
style of programming is not unnatural and hard to avoid.

Closely related to this is that ECA rules usually do not have a local state
that is specific and internal to the current process instance. ECA rules have to
explicitly maintain this state in events and databases. For example, an incoming
rental request could contain information such as the customer’s e-mail address.
This information is not needed immediately in the process of Figure 1, but only
late in the process for sending rejection or acknowledgment back. In the first rule,
this information has to be either saved in a database or passed along through
all rules as part of event data.

Monitoring of business processes specified with ECA rules is not as straight-
forward as for other approaches, which are based on some activity-centered,
automata-like model (e.g., BPMN or BPEL). In activity-centered process spec-
ifications, a process’s state is obvious from the finished and running activities.
In contrast, in event-centered process specifications, the process’s state is given
through the history of events, which is less easy to comprehend.

Because of this “hidden” process state in ECA rule-based specifications,
there is no clear notion of which events are expected next. (Enabled) ECA rules
are triggered by every incoming event matching the event query, regardless of
whether this event is expected or not. This might entail unexpected behavior,
especially if events are generated “out-of-order” by faulty or malicious behavior
of systems. Possible solutions to this depend on the ECA rule language’s ca-
pabilities. Dynamic enabling and disabling of rules provides an approach on a
meta-level; however an activity-centered solution is much simpler.

Current rule languages have only limited support for structuring rule sets.
In practice, however, structuring is very much needed to reduce the complexity
and expenses in the production of business process specifications. It can be
expected that this issue will be overcome through further research and practical
experiences, in particular by adding support for modules.

Last not least, development and maintenance of business processes is greatly
supported by visual tools. For event-centered approaches, visualizing single ECA
rules alone does not suffice: it is important to visualize whole rule sets with the
associated control flow. Again, this issue might be overcome through further
development.

Of these limits, the first four stem from the rule-based, as opposed to an
imperative, programming style. How strongly this limits the applicability of ECA
rules to business processes hence also depends largely on the experience with
rule-based programming. The latter two limits are more a limitation of current
rule languages and expected to be solved in the near future.

6 Conclusion and Outlook

In this article we have analyzed the realization of business processes by means
of ECA rules. With a focus on control flow, we have presented an implementa-
tion of a concrete business process scenario in XChange. This work has greatly
influenced and advanced the development of XChange as a reactive language. In
particular, it has led to the introduction of a procedure notion, which is absent
in most other rule languages. Constructs for structuring rule sets in XChange
are an issue of ongoing development deserving refinement and further research.

Issues also deserving attention for future work regard exception handling in
connection with transactions and compensating actions, as well as issues relating
to process instances.

As this paper has shown, there is still a lot to be done for using ECA rules
in business processes. The first results of this paper are promising and give
requirements and guidelines for future work, in particular on language design.

Acknowledgments

This research has been funded by the European Commission and by the Swiss
Federal Office for Education and Science within the 6th Framework Programme
project REWERSE number 506779 (http://rewerse.net).

References

1. Davenport, T.H.: Process Innovation: Reengineering Work through Information
Technology. Havard Business School Press (1993)

2. The Business Rules Group: Defining business rules – what are they really? Avail-
able at www.businessrulesgroup.org (2000)

3. World Wide Web Consortium: Rule interchange format working group charter.
See www.w3.org/2005/rules/wg/charter (2005)

4. Bonatti, P.A., Olmedilla, D.: Driving and monitoring provisional trust negotiation
with metapolicies. In: IEEE Int. Workshop on Policies for Distributed Systems
and Networks, IEEE Comp. Soc. (2005)

5. Bry, F., Schwertel, U.: REWERSE – reasoning on the Web. AgentLink News (15)
(2004)

6. Andrews, T., et al.: Business process execution language for web services version
1.1. Available at www.ibm.com/developerworks/library/ws-bpel (2003)

7. Carter, B.M., Lin, J.Y.C., Orlowska, M.E.: Customizing internal activity behaviour
for flexible process enforcement. In: Proc. Australasian Database Conference, Aus-
tralian Computer Society (2004)

8. van der Aalst, W.M.P., ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.P.:
Workflow patterns. Distributed and Parallel Databases 14(1) (2003)

9. White, S.A.: Introduction to BPMN. Technical report, Object Management Group
(OMG) (2004) Available at www.bpmn.org.

10. Hall, J.: Business rules boot camp. Tutorial at the European Business Rules
Conference (2005)

11. Wagner, G.: How to design a general rule markup language? In: Proc. Workshop
on XML Technologien für das Semantic Web - XSW. Volume 14 of LNI, GI (2002)

12. Bry, F., Marchiori, M.: Ten theses on logic languages for the Semantic Web.
In: Proc. Int. Workshop on Principles and Practice of Semantic Web Reasoning.
Volume 3703 of LNCS, Springer (2005)

13. EU-Rent Case Study. www.eurobizrules.org/ebrc2005/eurentcs/eurent.htm (2005)
14. European Business Rules Conference. www.eurobizrules.org (2005)
15. Business Rules Group. www.businessrulesgroup.org (2005)
16. Gudgin, M., et al.: SOAP version 1.2. W3C recommendation, World Wide Web

Consortium (2003)
17. Schaffert, S., Bry, F.: Querying the Web reconsidered: A practical introduction to

Xcerpt. In: Proc. Extreme Markup Languages. (2004)
18. Bailey, J., Bry, F., Eckert, M., Pătrânjan, P.L.: Flavours of XChange, a rule-based

reactive language for the (Semantic) Web. In: Proc. Int. Conf. on Rules and Rule
Markup Languages for the Semantic Web. Volume 3791 of LNCS, Springer (2005)

19. Bry, F., Eckert, M., Pătrânjan, P.L.: Reactivity on the Web: Paradigms and ap-
plications of the language XChange. J. of Web Engineering 5(1) (2006) 3–24

20. Knolmayer, G., Endl, R., Pfahrer, M.: Modeling processes and workflows by busi-
ness rules. In: Business Process Management. Volume 1806 of LNCS, Springer
(2000)

21. Bry, F., Eckert, M.: Twelve theses on reactive rules for the Web. In: Proc. Workshop
Reactivity on the Web at Int. Conf. on Extending Database Technology. Volume
3268 of LNCS, Springer (2006)

22. Brambilla, M., Ceri, S., Comai, S., Tziviskou, C.: Exception handling in workflow-
driven web applications. In: Proc. Int. Conference on World Wide Web, ACM
(2005)

