
On Reasoning on Time and Location on the Web

François Bry, Bernhard Lorenz, Hans Jürgen Ohlbach, Stephanie Spranger

University of Munich, Germany,
http://www.pms.informatik.uni-muenchen.de

Abstract Reasoning on time and location is receiving increasing at-
tention on the Web due to emerging fields like Web adaptation, mobile
computing, and the Semantic Web. Web applications in these fields of-
ten refer to rather complex temporal, calendric, and location informa-
tion. Unfortunately, today’s Web languages and formalisms have merely
primitive temporal and location data types and temporal and location
reasoning capabilities – if any. This article reports on work in progress
aiming at integrating temporal and locational reasoning into XML query
and transformation operations. We analyze the problem and propose a
concrete architecture. A prototype of the temporal reasoner, the Web-

Cal system has already been realized.

1 Introduction

The next generation of the World-Wide-Web must have machine readable and
machine understandable Web content, and no longer just html pages – this is
the now widely agreed vision of the ‘Semantic Web’ initiative [5]. The basic tool
for the first step, to make Web content machine readable, is undisputedly XML.
The second step, however, to make Web content machine understandable, seems
to become a never ending story. Almost anything, human beings can think of,
can become Web content. Making all this machine understandable, means for-
malizing the whole knowledge of mankind in a way that computers can work
with; and this is the old vision of Artificial Intelligence. One can attack this
problem in at least two ways. The first approach is to develop XML compat-
ible knowledge representation and reasoning tools, and to leave the concrete
formalization of knowledge with these tools to the application developers. RDF
and OWL are systems of this kind. The second approach is to develop formal
theories and mechanisms of particular concepts occurring in Web content, and
to integrate these theories into the other XML mechanisms, in particular into
XML query and transformation languages. Both approaches are complementary
to each other in the same way as general purpose inference systems in logic are
complementary to special theory reasoning.
In this paper we propose the development of special theories and XML mecha-
nisms for the concepts time and location, and the integration into XML query
and transformation languages. Our proposal goes far beyond the temporal data
types of the W3C standard XML Schema [1,2,3], which has in fact no reasoning
mechanisms and no location data types and operations.



The time theory for XML we propose works with the WebCal system, a server
for advanced calendrical calculations. The WebCal system is based on ideas
first published in [13,14,15]. WebCal has an international dimension: it provides
most of the calendar systems world-wide in use, with timezones, daylight savings
time regulations, leap years, leap seconds etc. It also has an historical dimension:
it models historical sequences of calendrical regulations, for example sequences
of calendar systems, sequences of daylight savings time regulations, timezones
changing over time etc. It has an application oriented dimension, i.e. one can
define new application specific temporal notions, for example school holidays,
financial years, ecclesiastical calendars, Mary’s birthday, my own working hours,
and a lot more. WebCal can deal with fuzzy notions like ‘late night’ or ‘around
noon’ because it represents time intervals as fuzzy sets.
The location theory for XML is not yet as far developed as the time theory, but
the solutions for the location theory will be in the same style as the solutions
for the time theory.
We shall integrate these mechanisms into the rule based query and transfor-
mation language Xcerpt [7,8,6]. Xcerpt is a declarative (logic-based) query and
transformation language for the Web currently developed and tested on web-
based systems at the University of Munich. Because of its ‘logic bias’, Xcerpt
appears to be a very convenient ‘host’ for temporal data types and temporal
reasoning. Most of the ideas and methods proposed in this paper, however, are
independent of Xcerpt and should work with any query language.
In order to illustrate the problems and approaches, we start with a small intro-
ductory example.

2 An Introductory Example

The first example illustrates the problems with temporal reasoning in the Web
context. Quite similar problems come up with locational reasoning.
Suppose we have a cinema program as an XML document. The XML document
could look like:

<cinema_program>

<cinema name="Atlantis" location="Munich">

<year year="2003">

<month month="January">

<day day="1"> <film>

<title>Lampedusa</title>

<start>20:00</start>

<duration>120min </duration>

</film>

<film>

<title>City of God</title>

<start>22:00</start>

<duration>121min </duration>

</film>

</day> ... </cinema_program>



A reasonable query could now be “give me all films ending before midnight
1/1/2003”. None of the currently available query languages can deal with such
a query. What are the problems?

1. The end times are not explicitly represented in the XML document.
2. The end times could be computed, but the information needed for this is

distributed over parts of the XML document.
3. The used calendar system is not mentioned. It could, however, be deduced

from the location ”Munich”.
4. The notion ‘midnight’ in the query is not clear. Is midnight in Munich meant,

or midnight at the place of the querying person, which could be in another
continent.

5. Would we really want to exclude ‘City of God’ although it ends only one
minute after midnight? What kind of relation is to be used to evaluate ‘24:01
before midnight’? A fuzzy ‘before’ relation could evaluate this expression to
a non-zero fuzzy value, such that this film could also be included in the
answer set, maybe at the end of the answer list.

In order to evaluate this query in the user’s sense, we need a query language
plus quite a number of extra mechanisms:

1. first of all we need a context detection and managing mechanism. In the
example it must figure out the calendar system from the location ‘Munich’
(alternatively one could require to specify the calendar system in the XML
document). It must also figure out the calendar system used in the query.
In addition it must determine the timezone and the daylight savings time
regulations – again from the location ‘Munich’ or from some explicit data in
the XML document.

2. in order to compute from start time and duration the end time, we need a
time reasoner which can compute from “year = 2003”, “month = January”,
“day = 1”, “start = 22:00” and “duration = 121min” the end time;

3. since the information to be fed into the time reasoner is distributed over the
XML document, we need an extraction language with which we can specify
where to get the necessary data from and how to transform it to become a
valid input for the time reasoner;

4. since ‘midnight’ is just a string, we need a definition of ‘midnight’ in terms
of concrete time points. To this end, a specification language for specifying
application or user specific temporal notions is necessary;

5. the relation ‘24:01 before midnight’ must be evaluated by the time reasoner,
possibly with a fuzzy version of the ‘before’ relation.

6. the query language must use the fuzzy values to order the answers.



3 The Top Level Architecture

We propose the following top level architecture:

Documents
Definitions Query Temporal Database

Definitions XML document Locational Database

Extr. Specs

Systems

Extraction and
Transformation
Engine

Query Engine
Context Manage-
ment System

Time Reasoner Location Reasoner

Let us explain each component in more detail.

The Definition Files. Both, the query and the XML document may use appli-
cation or user specific temporal and locational notions. These notions must be
defined in special definition files, and loaded into the time and location reasoners
before they get invoked. Examples of defined temporal notions which might oc-
cur in XML documents are: ‘3 weeks after Easter’, ‘the first half or the semester’,
‘the third school hour’, ‘weekend’, ‘the time of the Olympic Games’, ‘late night’,
‘around noon’ etc. Queries can contain similar expressions, but in addition very
user specific expressions. For example, the user may define ‘weekend’ for himself
different to the common notion of ‘weekend’. Therefore the query and the XML
document may need different definitions.
A few examples of definable locational notions which might occur in XML doc-
uments and queries are: ‘in Munich’, ‘in the south of Munich’, ‘close to the
station’, ‘along the A1’ ‘between Munich and Frankfurt’.
Since locations are 2 or 3-dimensional, there is a much greater variety of loca-
tional notions, than of temporal notions. One of the first jobs in the proposed
project will therefore be to select classes of locational notions which can be
processed in a reasonable way.
The definition files should not be part of the DTD or the XML schema because
the notions defined there are not specific to one particular XML document type.
With the definition files I can build up libraries of temporal notions which can
be used for many different XML-documents. Therefore the definition files are
more like style sheet files or JavaScript program files to be loaded together with
the XML-document.

The Extraction Specifications. These specify how to extract and transform
the data from the XML document to be submitted to the time and location
reasoner. In the example of Section 2 we would specify something like: ‘in order



to calculate the end time, extract the ‘year’ attribute, the ‘month’ attribute, the
‘day’ attribute, the ‘start time’, turn the ‘month’ attribute into a number and
combine this to a string of the form year/month/day/hour/minute. Then extract
the ‘duration’ element and split it into the duration number and the time unit.
Now call the time reasoner to add the duration to the start time. (start hour
and minute + duration does not always yield the proper end time, for example
when summertime is changed to wintertime. Therefore the complete date and
time is needed here.) The preparation of the input to the time reasoner may
even require access to external reources. If for example in the cinema example
the year is not explicitly stated in the document, one may get the current year as
the default from the system clock. This very informal description must of course
be put into a formal language. A rule based query language like Xcerpt might
be appropriate here.

The Temporal Database. This database contains information which is not
specific to any application or user. It need not be one single database, but it can
be distributed and hierarchically organized. It must contain in particular map-
pings from countries and other areas to calendar systems, timezones, daylight
savings time regulations. If we want to process XML documents with historical
content, we may even need mappings from countries to historical sequences of
calendar systems and other time measurement parameters.
It also can contain the dates of public and ecclesiastical holidays, school holidays,
the dates of public events, and a lot more.

The Locational Database. This database could be a Geographic Informa-
tion System with geographic information about the landscape, places, streets,
parks, houses etc. It could also contain routes and timetables of public transport
systems: buses, underground, trains, taxi stands etc.
Information like ‘persons in a wheelchair cannot use bus line 263’ could also be
there, or heuristics of the kind ‘single female persons should avoid Central Park
at night’.

The Extraction and Transformation Engine. The Extraction and Trans-
formation Engine processes the extraction specifications. In the example of Sec-
tion 2 it would collect the relevant data for the start time and duration and turn
it into suitable input for the time reasoner.

The Query Engine processes XML queries almost in the usual way. It moves
down the document tree and does string comparisons and maybe evaluate reg-
ular expressions over strings. In addition it must also call the time and location
reasoners for evaluating expressions like ‘24:01 before midnight’. If these expres-
sions yield fuzzy values as a result, the query engine must use them to order
the answers. This is quite easy if only one expression is involved. But consider
the following query ‘give me all large cinemas in the south of Munich’. ‘large



cinemas’ is a fuzzy expression and ‘in the south of Munich’ is a fuzzy expression.
The evaluation of this query may yield for each cinema a pair of fuzzy values,
and this pair has to be turned into a single total ordering. There may be extra
parameters necessary in the query itself, which tell the evaluation engine whether
and how to prefer larger cinemas over ones more in the south of Munich, or the
other way round. Another alternative is to leave the answers unordered, but re-
turn the fuzzy values together with the answers. Then it is up to the application
what to do with them. The special theories – time and location and others –
should of course not be hardwired into the query language. Instead one should
be able to load them as a kind of library into the language evaluator. This is
much more flexible and extendible.

The Context Management System. This system is needed to configure the
time and location reasoner. In particular, the time reasoner needs to know the
calendar system, the timezone, the daylight savings time regulations, in addi-
tion to various application specific parameters. For example, on the northern
hemisphere the seasons spring, summer, autumn and winter begin and end at
different dates than on the southern hemisphere. It is the job of the context
management system to turn the information it can get about the document, the
application, and the user into corresponding configuration parameters for the
time and location reasoner. In the age of mobile computing where the user of a
Web Service can move his location (he drives in a car), or even change his device
(he switches for the notebook to his PDA or his mobile phone), while accessing
the Web service, the context becomes dynamic. It may therefore be necessary
for the Context Management System to permanently monitor the query context.
Dynamic context need not only come from users changing their location or de-
vice. In an ordinary session of a user with some system, for example a tutoring
system, the context may change during the course of the session, just by the
interactions of the user with the system. Therefore context management has a
much wider scope than just tracking times and locations.

The Time Reasoner. The proposed time reasoner is the WebCal system,
which is explained in more detail in Section 4.

The Location Reasoner. The main purpose of locational notions in XML
documents is to relate locational aspects of objects and events to locational
aspects of previously introduced objects or events, or to concrete coordinates.
Compared to the one-dimensional time axis, there is a much greater variety of re-
lations between 2- or 3-dimensional locational data. The basic relations between
2-dimensional regions have been investigated in the area of qualitative spatial
reasoning [10,4,16]. In this area, sophisticated automated reasoning about the
spatial relations between physical objects or regions of space has been inves-
tigated; and in many cases, this must be done without precise, quantitative
information about these relations. Typically, some knowledge of the topological



relationships between the entities of interest may be available, along with incom-
plete and imprecise information about distances, directions and relative sizes;
and from this partial information, useful conclusions must be drawn. Examples
of the kind of question for which qualitative spatial reasoning is required are:
identify the islands in the lake and the largest one. Which parts of the network
of tunnels can the robot traverse without getting stuck? Could the collection of
objects in the scene fit together to make a spherical or cylindrical shell? When
cog A is turned clockwise, will cog B turn and if so, in which direction?

The kind of locational reasoning in the XML-context we want to investigate has
a different focus. It is about relations between geographical objects, countries,
cities, streets, footpaths, houses etc. which involve a metric. The metric on 2-
or 3-dimensional locational data comes from the way objects can move from
point A to point B. Suppose the query is ‘give me the nearest cinema playing
Terminator 3’. ‘nearest’ is here the crucial notion. It is very unlikely that it just
refers to the geographical distance to my current location. Instead it very likely
refers to the time I will need to get there, and maybe the money it will cost me.
But this depends on a lot of different factors: am I walking or driving by bicycle,
motorbike or car?; am I sitting in a wheelchair?; can I use public transport?; am
I alone or with children or with a pram?; how old am I?; am I male or female?;
can I park in a difficult parking lot?; is it advisable for a woman to cross a dark
park at night? etc. Evaluating ‘nearest’ actually amounts to planning a route
from my current location to the destination. Route planning for cars is not a
difficult issue anymore. The difficulties come up when all the above mentioned
possibilities should be taken into account. In particular for people without cars
one has to combine quite a number of different networks into a search graph:
streets, footpaths, bus lines, underground lines, tram lines etc.

One of the tasks of the location reasoner will be to evaluate ‘nearest’ in this sense.
The location reasoner has to get all the relevant parameters from the context
management system, combine the relevant networks into a search graph, and find
the shortest path to the potential destinations (the cinemas playing Terminator
3 in the above example).

The XML Document and the Query. We want to put as few restrictions
to the structure of an XML document with temporal and locational data as
possible, but certain parts need to be stated in a formal language if the data
is to be processed automatically. In the cinema program document above, for
example, we used the XML element ‘<start>’, but we could also have used
‘<start time>’ or something else. This freedom is possible because we have the
extraction language, where we can specify where to look for the start time in
the XML document. The specifications in the extraction language must follow
the DTD or XML Schema specification of the XML document. If we want to
process two different XML documents, where one uses ‘<start>’ and the other
uses ‘<start time>’, we need two different extraction specifications, which is
not a good idea. One could think of an additional abstraction layer, where the
difference between ‘<start>’ and ‘<start time>’ becomes irrelevant, and the



matching to the concrete DTD is an extra step, but this has still to be investi-
gated.

The extraction language allows us to leave the structure of the XML document
free. The content of the XML elements and attributes with temporal and loca-
tional data, however, need to be written in a formal language. In particular we
need to agree on formats for date and time strings, but this is only the most
simple case. In the general case we may express temporal and locational notions
by relating them to other temporal and locational notions. The spectrum of
variations for this is almost infinite. Examples for temporal notions are ‘three
weeks after Easter’, ‘during my holidays’, ‘after the Iraq war’, ‘from around noon
until early evening’, ‘at Mary’s birthday’ etc. Examples for locational notions
are ‘in Munich’, ‘along the A1’, ‘in the center of London’, ‘between Picadilly
and Trafalgar Square’, ‘three miles from the river’ etc. It would be extremely
user friendly if we could put this as strings in natural language into the XML
documents, but making the reasoners understanding its meaning is then almost
impossible. Therefore we need a formal language to express these facts. The
specification language of WebCal provides some basics for the temporal part
of such a language, but it needs to be considerably extended for this purpose.

Modern designs of formal languages are typed. Types and type checking for a
language not only help avoiding mistakes. They also can provide useful informa-
tion for guiding the processing of the expressions. Therefore the formal language
for the XML documents and for the queries will be typed. A first proposal for a
type system for this purpose has been presented in [9]. Typical types are ‘time
point’, ‘time interval’, ‘duration’ etc.

Another problem to be solved is deliberate ambiguity. Consider for example the
string ‘three weeks after Easter’. First of all, it does not contain the information
about the year in which the term ‘Easter’ is to be evaluated. The year may be
listed in another part of the XML document, such that the extraction language
can make it precise by turning ‘Easter’ into for example ‘Easter(2003)’. But this
is still ambigue. It is not clear whether the western Easter date or the orthodox
Easter date is meant. They may differ by a week. We may want to leave this
ambigue in the XML document itself, and resolve the ambiguity by the query
context. One querying person may want to interpret Easter as western Easter,
and another person may want to interpret it as orthodox Easter.

A similar example with ambigue locational notions could be an XML element
<location> capital </location>, where it is left open which capital of which
country is meant. Only the query context may make this clear.

Deliberate ambiguity means that the formal language for the time and location
dates cannot always refer to concrete events whose data can be taken from the
temporal and locational databases or from the definition files. We must allow
for an extra level of indirectness. This also means that this indirectness has
to be eliminated in an extra step at query time, for example by transforming
‘Easter(2003)’ into ‘Easter(2003,orthodox)’.

The time and location part of the query language is a little bit simpler than the
time and location part in the XML documents. Ambigue queries where it is not



clear whether for example the western Easter dates or the orthodox Easter dates
are meant, cannot be reasonably evaluated. Therefore we do not need the extra
level of indirectness as in the XML document.

4 Temporal Reasoning with WebCal

WebCal is a computer program which provides advanced calendrical calcu-
lations for Web services. WebCal has an international dimension: it provides
most of the calendar systems world-wide in use, with timezones, daylight savings
time regulations, leap years, leap seconds etc. It also has an historical dimension:
it models historical sequences of calendrical regulations, for example sequences
of calendar systems, sequences of daylight savings time regulations, timezones
changing over time etc. It has an application oriented dimension, i.e. one can
define new application specific temporal notions, for example school holidays,
financial years, ecclesiastical calendars, Mary’s birthday, my own working hours,
and a lot more. WebCal can deal with fuzzy notions like ‘late night’ or ‘around
noon’ because it represents time intervals as fuzzy sets. The program is based
on an algebraic model of basic temporal notions, which gives all the operations
a very precise semantics. The main idea behind WebCal is to provide a few
powerful datastructures, and to offer applications as many operations as possible
on these datastructures.

4.1 Fuzzy Time Intervals

All time information which is submitted to WebCal is immediately turned
into intervals of reference time seconds. For example, the command ‘parse 2000’
(year in UTC) turns the year 2000 into the interval [946684831 978307231[ which
corresponds to the time interval from the beginning of the first second in the
year 2000 till the end of the last second in the year 2000.

In order to be able to deal with fuzzy notions like ‘around noon’, WebCal

represents all intervals as fuzzy sets. Even ordinary intervals are in fact fuzzy
sets. For example, the above mentioned year 2000 is represented as a rectangular
polygon: [946684831,0 946684831,1000 978307231,1000 0,0[. Here the number
1000 stands for the fuzzy value 1.0. We choose an integer representation for
fuzzy values instead of a floating point representation because algorithms for
polygons with integer coordinates are more efficient and less error prone than
algorithms for polygons with floating point coordinates.

Admissible fuzzy intervals in WebCal are any polygons of the form [x1, y1

x2, y2 . . . xn−1, yn−1 xn, yn[ where the xi are integers in increasing order, and
the yi are integers between 0 and 1000.



-

6

time0

1

Fuzzy Interval

If y1 or yn is not 0 then this represents an infinite fuzzy interval where y1 or
yn respectively stretch the interval to the infinity. Fuzzy intervals can also be
non-convex and therefore represent the union of separate intervals.
WebCal provides the following classes of operations on crisp and fuzzy time
intervals:

– turning crisp intervals into fuzzy intervals by applying ‘fuzzification func-
tions’;

– measuring various features of an interval, in particular its size as the integral
over the polygon;

– different hull operations (monotone hull, convex hull, crisp hull);
– the usual set theoretic operations on fuzzy intervals, in particular union,

intersection, complement, set difference. (For the expert: these operations
can be parameterized with t-norms, t-conorms and negation functions);

– some other functions which turn fuzzy sets into fuzzy sets. As an example,
consider an XML document about, say, the institute’s birthday parties. It
may contain the entry that the birthday party for the director took place
‘from around noon until early evening’ of 20/7/2003. ‘Around noon’ is a
fuzzy notion and ‘early evening’ is a fuzzy notion. What is now the duration
of the birthday party? It must obviously also be a fuzzy set. The fuzzy value
of the birthday party duration at a time point x is 1 if the probability that
the party started before x is 1 and the probability that the party ended after
x is also 1. Therefore the fuzzy value at point x is computed by integrating
over the probabilities of the start points and the end points. This is one of
the operations the WebCal system provides. The resulting fuzzy set is:

-

6

time0

1

Birthday Party Time form around noon until early evening
11 12 13 20 21 2422

The dashed curve may for example represent the percentage of people at the
party at a give time.
We can continue this example to illustrate another phenomenon when we
reason about time in the XML context. Suppose my diary is also an XML



document and it contains the information ‘I met this nice girl at the director’s
birthday party’. If I query the XML document ‘did I meet a nice girl between
20 and 21 hours?’ the system needs to determine the probability that I met
the girl in this time. Since the girl was at the party, the ‘meeting the girl’
event is correlated with the party time. Therefore the probability that this
happened is given by the integral over the party time’s fuzzy value during this
time period divided by the whole integral. If my diary contained in addition
the information ‘my mobile phone rang during the director’s birthday party’,
this is an event which is not correlated with the party itself. Therefore the
probability that it rang between 20 and 21 hours is just given by 1 hour
/(maximal length of the party time).
All these operations are supported by WebCal;

– various relations between points and intervals. These relations yield again
fuzzy values as results. Therefore a relation ‘12:01 before midnight’, where
midnight may for example be represented by a one hour interval, in fact
yields a non-zero fuzzy value. In addition to the standard relations ‘before’,
‘starting’, ‘during’ etc. WebCal also provides relations like ‘during the first
third of the interval’ or ‘in the middle of the second half’ etc.

– Fuzzy versions of Allen’s interval relations ‘before’, ‘starts’, ‘during’, ‘fin-
ishes’, ‘after’, ‘equal’. The relations are parameterized. The parameter con-
trols how fuzzy the relation behaves. If the parameter is very large then the
relations behave like the ordinary non-fuzzy relations.

4.2 Partitionings

The key notion for modeling calendar systems as well as many repeating events,
for example the seasons, is the notion of a finite partitioning of the real numbers.
A finite partitioning of R splits the time axis into an infinite sequence of finite
intervals, and these intervals can be numbered by integers. Basic time units like
seconds, minutes, hours, days, weeks, months, years etc. can all be represented
by finite partitions of R. The partitions can be of equal length, but usually
they have different sizes. In fact, the only relevant partitioning with equal sized
partitions in WebCal are the seconds. Already the minutes have different sizes:
minutes with added leap seconds are longer than 60 seconds.
Besides the basic time units in calendar systems, there are a lot of other temporal
notions which can be modeled as partitions: the seasons, the sequence of Easter
dates, financial years, semesters in universities, the sequence of sunrises and sun-
sets, the sequence of the tides, the sequence of school holidays etc. The WebCal

interface provides different specification mechanisms for defining temporal no-
tions as partitionings at run time. There are, however, other partitionings which
need to be defined with special algorithms. Examples are the sequence of Easter
dates, sunsets and sunrises etc. They are built-in.
WebCal treats built-in partitions which model time units of calendar systems
in the same way as defined partitions representing for example the seasons on the
northern or southern hemisphere. All operations working for example with weeks
and months work in the same way for the defined partitions. The algorithm for



computing the n’th week in a month can therefore also compute for example the
n’th week in the summer.
In WebCal there are four different methods for defining partitionings. The
first method requires a starting point, an average length of the partitions and
a correction function. All standard time units, seconds, minutes, hours, weeks,
months, years etc. can be defined this way. The correction function for years, for
example, has to deal with leap years.
The second method defines a partitioning by giving an anchor date and the
length or the partitions. For example, the following command specifies semesters
as sequences of 7 months followed by five months, starting in October.

timeUnit semester regular 2000/10 winter 7 summer 5 month

In the third method we provide instead of the lengths of the partitions concrete
dates. For example, the following command

timeUnit season calendrical 2000/3/21 spring 6/21 summer 9/23 autumn 12/21
winter +1/3/21 month

specifies the seasons as a partitioning.
Finally, with the fourth method we provide concrete dates. It can for example
be used to define holidays.

timeUnit BavarianHolidays finite 2002/10/28 Herbst 2002/11/2 gap 2002/12/23
Weihnachten 2003/1/4 gap 2003/3/3 Winter 2003/3/7 gap 2003/4/14 Ostern
2003/4/26 gap 2003/6/10 Pfingsten 2003/6/21 gap 2003/7/28 Sommer 2003/9/8

In this case the partitioning is preceded by an infinite partition and followed by
an infinite partition. In all other cases the sequence of partitions is infinite itself.
Partitions can be labeled, and these labels can be used in various algorithms.
‘summer’, ‘winter’ etc. are such labels. ‘gap’ is a built-in label.

4.3 Calendar Systems

A calendar system in WebCal is essentially a collection of time units (sec-
onds, minutes, hours, day, weeks, months, years etc.). Each of these time units
is modeled as a partitioning of the reference time line. WebCal provides a class
Partitioning, which allows one to define partitionings by providing the average

length of a partition and a correction function for the cases that the length of
a particular time unit differs from the average length. For example, the Grego-
rian year is defined by an average length of 31536000 seconds (365 days) and a
correction function which adds 86400 seconds (one day) for each leap year. This
way, adding a new calendar system is quite easy, and the code to be implemented
needs to deal with the calendar specific concepts (leap years, length of months,
etc.) only.
Since calendar systems have been changed during the history of countries and
societies, WebCal allows one to define historical sequences of calendar systems.
For example, ‘Julian 1582/10/4 Gregorian’ in the ‘calendarSequence’ command
specifies that all dates before October, 4th, 1582 (in the Julian calendar) should
be interpreted in the Julian calendar, and all later dates should be interpreted
in the Gregorian calendar.



4.4 Manipulation of Intervals

With the ‘shift’ command one can shift intervals by a given number of time
units. For example, one can shift forwards by 3 month, 1.5 days, 1 semester, and
backwards by 2.6 weeks etc.

Very similar to the shift command is the ‘extend’ command. Whereas shift always
shifts the whole interval, the extend command only shifts the upper or lower part
of the (fuzzy) interval. This way intervals can be extended for example by 1 year,
by 3.5 minutes, by 1.2 seasons, by 2 holiday periods etc.

The most powerful command is the ‘within’ command. It models expressions like
‘the second day within the week’ (Tuesday) or ‘the third month within the year’
(March) or the ‘the last day within the year’ (new years eve) or ‘the third decade
within the century’ or ‘the second but last winter within the decade’ or ‘the last
week within the summer holiday’ etc. Within comes with a number of control
parameters which give it an enormous flexibility to compute different things with
the same basic algorithm. For example, the version ‘first month within day’ can
be used to cast a smaller interval, for example a day, into a larger interval, in
this case a month.

4.5 Definition Language

Many temporal notions are very application or user specific. For example, ‘the
second school hour’ is a temporal notion, which may only be relevant for me and
a few other people. Such a notion can’t be built into a system. Nevertheless, I
may want to ask a TV-program database ‘give me all documentations about the
Iraq war shown during the second school hour’. To account for this, WebCal

provides a specification language for defining new temporal notions. With this
language, we may for example define the n’th school hour during the time interval
x:

school hour(x, n) =
shift(extend(begin minute(hour within day(x, (n <= 5)?8 : 13)),

45, minute), (n− 1) ∗ 45, minute)

This defines a block of 45 minute school hours between 8 o’clock and 11:45, and
a second block of 45 minute school hours after 13:00.

4.6 Limits of the Current Version of WebCal

There are various things on the agenda to be built-in. Some of them are only
a matter of time, but they do not need new concepts: more calendar systems,
special time sequences like sunrises, sunset, moonrises, tides, solar and lunar
eclipses etc. Although these require special algorithms, they all can be modeled
as partitionings, and this fits nicely into the concepts of WebCal. The Easter
dates (western and orthodox) are already modeled this way



More serious changes are required to overcome the next restriction: so far, We-

bCal can only deal with concrete time intervals, for example ‘one week af-
ter Easter’. It cannot deal with notions like ‘one week between Christmas and
Easter’. This denotes a ‘floating interval’ which is constrained by concrete dates.
In order to deal with such intervals, we need a constraint handling mechanism.
Unfortunately things are not so easy that we can take one off the shelf. Consider
the following constraints: ‘at most one month’ and ‘at least 29 days’. This means
that it cannot be a February, except in a leap year. Obviously these constraints
depend very much on the structure of the calendar system. It is currently not
clear how to integrate this into WebCal.

5 Conclusion

In this paper we tried to give an overview on the various aspects of temporal and
locational reasoning in the Web context. We focused on the problem to evalu-
ate queries to XML documents and taking into account the proper semantics of
temporal and locational notions. We have shown that there are quite a number
of different ideas, methods and systems involved to evaluate even such simple
queries like ‘give me all films ending before midnight’ to an XML cinema pro-
gram database. Some of the problems have already been solved, in particular for
temporal reasoning. Before we can show a first prototype of a complete system,
however, many other problems still have to be investigated. For most of them it
is not really difficult to find some solution, but all the solutions must fit together
in a quite complex system, and the solutions must really be practical, and not
only solve simplified abstracted cases.

References

1. W3C http: // www. w3. org/ TR/ xmlschema-0/ : XML Schema Part 0: Primer.
2001.

2. W3C http: // www. w3. org/ TR/ xmlschema-1/ : XML Schema Part 1: Structures.
2001.

3. W3C http: // www. w3. org/ TR/ xmlschema-2/ : XML Schema Part 2: Datatypes.
2001.

4. B. Bennett, A.G. Cohn, F. Wolter, and M. Zakharyaschev. Multi-dimensional
modal logic as a framework for spatio-temporal reasoning. Applied Intelligence,
17(3):239–251, 2002.

5. T. Berners-Lee, M. Fischetti, and M. Dertouzos. Weaving the Web: The Original
Design and Ultimate Destiny of the World Wide Web. Harper, San Francisco,
September 1999. ISBN: 0062515861.

6. François Bry, Sacha Berger, and Sebastian Schaffert. Xcerpt and visXcerpt: From
Pattern-Based to Visual Querying of XML and Semistructured Data. In Proceed-
ings of the 29th Intl. Conference on Very Large Databases (VLDB03), Germany,
2003.

7. François Bry and Sebastian Schaffert. A Gentle Introduction into Xcerpt, a Rule-
based Query and Transformation Language for XML. In International Workshop

http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-2/


on Rule Markup Languages for Business Rules on the Semantic Web (invited ar-
ticle), http: // www. soi. city. ac. uk/ ~msch/ conf/ ruleml , Italy, June, 2002.

8. François Bry and Sebastian Schaffert. The XML Query Language Xcerpt: Design
Principles, Examples, and Semantics. In Akmal B. Chaudhri, et al. (Eds.), Lecture
Notes in Computer Science (LNCS) on Web, Web-Services, and Database Systems,
pages 295–310, 2002.

9. François Bry and Stephanie Spranger. Temporal Constructs for a Web Language.
In Proceedings of the 4th Workshop on Interval Temporal Logics and Duration
Calculi during ESSLLI’03, Austria, August, to appear, 2003.

10. A G Cohn, B Bennett, J M Gooday, and N Gotts. RCC: a calculus for region
based qualitative spatial reasoning. GeoInformatica, 1:275–316, 1997.

11. Anne Doucet, Stéphane Gançarski, Geneviève Jomier, and Sophie Monties.
Versions of Integrity Constraints in Multiversion Databases. In Abdelkader
Hameurlain, A. Min Tjoa (Eds.): Database and Expert Systems Applications, 8th

International Conference, DEXA, Toulouse, Proceedings. Lecture Notes in Com-
puter Science, 1308, Springer, pages 252–261, 1996.

12. Stéphane Gançarski. Database Versions to represent Bitemporal Databases. In
Trevor J. M. Bench-Capon, Giovanni Soda, A. Min Tjoa (Eds.): Database and Ex-
pert Systems Applications, 10th International Conference, DEXA, Florence, Pro-
ceedings. Lecture Notes in Computer Science, 1677, Springer, pages 832–841, 1999.

13. Hans Jürgen Ohlbach. About real time, calendar systems and temporal notions. In
H. Barringer and D. Gabbay, editors, Advances in Temporal Logic, pages 319–338.
Kluwer Academic Publishers, 2000.

14. Hans Jürgen Ohlbach. Calendar logic. In I. Hodkinson D.M. Gabbay and
M. Reynolds, editors, Temporal Logic: Mathematical Foundations and Computa-
tional Aspec ts, pages 489–586. Oxford University Press, 2000.

15. Hans Jürgen Ohlbach and Dov Gabbay. Calendar logic. Journal of Applied Non-
Classical Logics, 8(4), 1998.

16. J. G. Stell. Part and complement: Fundamental concepts in spatial relations. In
Proceedings 7th International Syposium on AI and Mathematics, Florida, January
2002. to appear.

http://www.soi.city.ac.uk/~msch/conf/ruleml

	On Reasoning on Time and Location on the Web
	Introduction
	An Introductory Example
	The Top Level Architecture
	Temporal Reasoning with WebCal
	Fuzzy Time Intervals
	Partitionings
	Calendar Systems
	Manipulation of Intervals
	Definition Language
	Limits of the Current Version of WebCal

	Conclusion
	References


