
INSTITUT FÜR INFORMATIK
Lehr- und Forschungseinheit für

Programmier- und Modellierungssprachen

Oettingenstraße 67, D–80538 München

LMU
Maximilians
Universität
München

Ludwig

An Entailment Relation
for Reasoning on the Web

François Bry and Sebastian Schaffert

Technical Report, Computer Science Institute, Munich, Germany
http://www.pms.informatik.uni-muenchen.de/publikationen
Forschungsbericht/Research Report PMS-FB-2003-5, May 2003

An Entailment Relation
for Reasoning on the Web

François Bry and Sebastian Schaffert

Institute for Computer Science, University of Munich, Germany
corresponding address: schaffer@informatik.uni-muenchen.de

Abstract. Reasoning on the Web is receiving an increasing attention
because of emerging fields such as Web adaption and Semantic Web.
Indeed, the advanced functionalities striven for in these fields call for
reasoning capabilities. Reasoning on the Web, however, is usually done
using existing techniques rarely fitting the Web. As a consequence, ad-
ditional data processing like data conversion from Web formats (e.g.
XML or HTML) into some other formats (e.g. classical logic terms and
formulas) is often needed and aspects of the Web (e.g. its inherent in-
consistency) are neglected. This article first gives requirements for an
entailment tuned to reasoning on the Web. Then, it describes how classi-
cal logic’s entailment can be modified so as to enforce these requirements.
Finally, it discusses how the proposed entailment can be used in applying
logic programming to reasoning on the Web.

1 Introduction

Emerging Web applications and issues primarily call for reasoning capabilities.
E.g. Semantic Web applications rely on declarative meta-data specifying the
content of Web pages and Web sites and on description logic and/or ontology
reasoning for processing these meta-data. Web services similarly rely on declar-
ative meta-data for describing software resources made available on the Web.

There exist languages for expressing such meta-data (e.g. RDF, OWL [1,2])
and also systems for reasoning on meta-data expressed in such languages (e.g.
Triple, FaCT [3,4]). However, such languages and/or reasoning systems are re-
stricted to working with meta-data in a specific format and are not capable of
retrieving and reasoning with any kind of data on the Web, i.e. Web pages and
databases as well as – but not limited to – semantic annotations and ontological
data. This article investigates a language capable of this.

Such reasoning languages have a multitude of applications. For instance, con-
tract negotiation often takes place when Web services are traded. Wrappers are
tools for a structure aware data retrieval that often rely on declarative structure
specifications such as grammars, DTD [5] and/or schemas [6]. Data mediators
convert data structured according to one DTD or schema into data after an-
other DTD or schema. Adaptive Web systems provide and/or render Web data
depending on contexts specifying e.g. user preferences or rendering device char-
acteristics. The adaption of data to context is often realized with rule-based
expert systems, i.e. a form of reasoning systems.

Reasoning on Web resources calls for methods better fitting the Web con-
text than classical logic and conventional logic programming and automated
reasoning. With conventional methods, additional data processing like data con-
version from Web formats (e.g. XML [5] or HTML [7]) into some other formats
(e.g. classical logic terms and formulas) is often needed and aspects of the Web
(e.g. the need for partial queries on graph-shaped terms and the Web’s inherent
inconsistency) are neglected.

This article first gives a few requirements for an entailment tuned to Web
applications. Instead of tree-shaped terms, terms possibly containing cyclic ref-
erences are needed for such references often occur in XML [5] and HTML [7]
data. Atomic formulas are needed using which it might be possible to express
partial queries like with XPath [8] or XQuery [9]. A notion of formula satisfac-
tion recursively defined on the formulas’ structure is desirable since reasoning
on the Web should be kept as “local” as possible. Also, meta-level, inconsistency
tolerant, and nonmonotonic forms of reasoning are needed for Web applications.
This article defines a notion of an entailment relation fulfilling these require-
ments. Finally, it discusses how this entailment relation can be used in applying
logic programming to reasoning on the Web.

2 Semistructured Expressions

In contrast to the tuples of a relational database that are tree shaped, Web
pages correspond to nested, possibly cyclic graphs. Abstracting from XML [5]
and HTML [7], Web pages are conveniently formalised as “semistructured data”
[10]. Semistructured data items are conveniently represented by “semistructured
expressions” (short “sse”) [10] that are defined by the following grammar:

<sse> := (oid ”@”)? (label | label <list>) .
<list> := <ordered-list> | <unordered-list> .

<ordered-list> := ”[” <sse-str-ref> (”,” <sse-str-ref>)* ”]” .
<unordered-list> := ”{” <sse-str-ref> (”,” <sse-str-ref>)* ”}” .

<sse-str-ref> := <sse> | ””” string ””” | ”^” oid .

In this grammar, expressions between < and > are non-terminal symbols. ”@”,
”[” , ”{”, ”]”, ”}”, ”””, and ”^” are terminal symbols. “string”, “oid” and “label”
denote strings, tags and object identifiers, respectively. As usual in the formal-
isation of programming languages, these three symbols are terminal symbols to
which values are assigned.

Slightly extending over XML and HTML, parentheses [] are used for express-
ing a compulsory order (e.g. f[a, b] and f[b, a] denote different data items), while
parentheses { } serve to express that the order is irrelevant (e.g. both f{a, b}
and f{b, a} denote the same data item). Ordered subterms are useful in rep-
resenting (structured) texts and unordered subterms are useful in representing
(structured) database items.

Semistructured expressions give rise to expressing tuples. E.g.

flight { number ["AF123"],

departure-time ["1230"],

arrival-time ["1405"],

departure-airport ["Munich"],

arrival-airport ["Paris"] }

is a possible representation of a tuple from a relation “flight” with attributes “num-
ber”, “departure-time”, “arrival-time”, “departure-airport”, and “arrival-airport”.
Semistructured expressions also give rise to representing cyclic XML documents like
the following (where “key” is an attribute of type ID and “person-ref” is an attribute
of type IDREF):

<persons>

<person key="bry">

<vorname>François</vorname>

<nachname>Bry</nachname>

<friend person-ref="schaffert"/>

</person>

<person key="schaffert" >

<vorname>Sebastian</vorname>

<nickname>Wastl</nickname>

<nachname>Schaffert</nachname>

<friend person-ref="bry"/>

<friend person-ref="schaffert"/>

</person>

</persons>

This XML document can be expressed as a semistructured expression as follows:

persons [&1 @ person [first-name ["François"],

last-name ["Bry"],

friend [^ &2]],

&2 @ person [first-name ["Sebastian"],

nickname ["Wastl"],

last-name ["Schaffert"],

friend [^ &1],

friend [^ &2]]]

Note that this semistructured expression contains two (directed) cycles.
Object identifiers in a semistructured expression are assumed to fulfil the following

well-formedness conditions:

– Every object identifier &n referred to (i.e. occurring right of ^) in a semistructured
expression, is also defined (i.e. occurs left of @) in this semistructured expression.

– An object identifier &n is defined (i.e. occurs left of @) at most once in a semistruc-
tured expression.

It might be convenient to also require that an object identifier &n defined in a
semistructured expression is also referred to in this semistructured expression.

Without loss of generality, some features of XML and HTML (such as attributes,
namespaces, DTD and/or schemas) that are not relevant to the present study and
redundancies of XML and HTML (such as the three referencing formalisms through

ID-IDREF attributes, URIs, and Links) are not conveyed in semistructured expressions.
Note that attributes can be expressed as semistructured expressions using an unordered
collection of strings.

In the literature, slightly different formalisms are used for semistructured expres-
sions. E.g. in [10] unordered children are not considered, one-element lists are rep-
resented without parentheses (e.g. instead of “first-name[”François”]”, [10] writes
“first-name:”François””), object identifier definitions and object identifier references
both appear to the right of an expression.

3 Requirements on a Logic for Reasoning on the Web

The paradigm considered in the following is to view a Web page as a ground atom and
the Web as a (very large) set of Web pages. This paradigm translates into logic the view
of a Web page as a data item and of the Web as a (large and highly distributed) database
which is common in database research. A logic fulfilling the following requirements
would make it possible to express Web-related reasoning problems directly, i.e. without
translation of syntax and/or reasoning paradigms.

Terms Shaped as Rooted Graphs. Since Web pages (and therefore semistructured
data) are shaped as rooted graphs possibly including cycles, a logical language with
terms similarly shaped would ease reasoning with Web data.

Terms as Formulas. There is no natural way to classify Web page (and therefore
semistructured) constructs into constructs interpreted as predicate and constructs in-
terpreted as function symbols. Thus, there is no natural way to classify the subexpres-
sions of a Web page (or semistructured expression) into terms and formulas. Therefore,
a logical language not distinguishing between terms and formulas would be natural for
reasoning on the Web.

Also, the resource description framework (RDF) proposed by the W3C [1] as a
means to add semantics to web pages does not make such a distinction. In RDF,
statements can both be interpreted as predicates and as objects.

Partial Queries. Queries on the Web as expressed in XQuery [9] and XPath [8] might
specify Web pages partially. Therefore, a logical language for reasoning on the Web
should make partial queries possible.

Satisfaction Recursively Defined. Classical logic satisfaction is defined by structural
recursion: The truth value of a formula in an interpretation is defined in terms of the
truth value of its subformulas in this interpretation. Recursive definitions of formula
satisfaction give rise to evaluation procedures that are local to the formulas to eval-
uate and therefore can be efficiently processed against large data and/or knowledge
bases. Therefore, a formula satisfaction recursively defined on the formulas’ structures
is desirable.

Meta-level Statements. Reasoning with meta-level assertions like database integrity
constraints (i.e. statements that some Web data or sites should, or could, but not neces-
sarily do fulfil) is desirable for advanced (e.g. adaptive or semantic Web) applications.

Inconsistency Tolerance. Because the Web is inherently heterogeneous, it is inher-
ently inconsistent. Therefore, an inconsistency tolerant entailment relation is desirable
for reasoning on the Web.

Nonmonotonic Negation. Nonmonotonic negation is needed on the Web as it is
needed in relational databases: I.e. missing statements (e.g. a missing flight) allow to
conclude the truth of the statement’s negation (e.g. a missing flight does not exist).

4 Formulas for Reasoning on the Web

Building upon semistructured expressions (cf. above Section 2), a logical language is
proposed for reasoning on the Web. In this language, semistructured expressions are a
special kind of ground atomic formulas. Atomic formulas extend semistructured expres-
sions with logical variables and a “descendant” construct used for “partial queries”.

4.1 Atomic Formulas

Atomic formulas extend semistructured expressions with (logical) variables and with
the descendant construct desc. These constructs can be informally understood as
follows: Variables range over semistructured expressions and the descendant construct
desc gives rise to specify a subexpression at any depth. Atomic formulas (or atoms)
are defined by the following grammar:

<atom> := (oid ”@”)? (”desc”)?
(variable | label | (variable | label) <list>) .

<list> := <ordered-list> | <unordered-list> .
<ordered-list> := ”[” <atom-str-ref> (”,” <atom-str-ref>)* ”]” .

<unordered-list> := ”{” <atom-str-ref> (”,” <atom-str-ref>)* ”}” .
<atom-str-ref> := <atom> | ””” string ””” | ”^” oid .

Note that variables can occur everywhere except at the place of an object identifier.
As in Prolog, identifiers beginning with an upper case letter will denote variables. The
following atomic formula can be used for querying a Web page listing flights like an
example of Section 2:

flight {

number [Nb],

departure-time [Time1],

arrival-time [Time2],

departure-airport ["Munich"],

arrival-airport ["Paris"]

}

The following atomic formula is a partial query to the same Web page returning
the numbers (as bindings for the variable Nb) of the flights to Paris:

flight {

number [Nb],

arrival-airport ["Paris"]

}

Note the difference from classical logic and Prolog that require such a query to
explicitely mention all the attributes of a flight tuple.

The descendant construct is a further means for expressing partial queries. The
following three atomic formulas are partial queries to the persons Web page of Section
2. The first query evaluate to false. The second query evaluates to true returning the
binding last-name/Label. The third evaluates to true (because of the references between
the ‘person’ expressions).

desc "Mary"

persons { desc Label ["Schaffert"] }

desc person [desc "Sebastian", desc "François"]

Ordered lists in queries are satisfied only by ordered lists in semistructured ex-
pressions, while unordered lists in queries are satisfied by both ordered and unordered
lists in semistructured expressions. Thus, evaluated against f [g[a, b], g{c, d}] the query
desc g[X, Y] returns the single answer a/X, b/Y while desc g{X, Y } returns the two
answers a/X, b/Y and c/X, d/Y . Unordered lists are not easily expressible in a DTD.
A similar notion is achieved with all groupings of XML Schema [6].

4.2 Compound Formulas

Compound formulas are built up as usual from atomic formulas using the connectives
∧, ∨, ⇒, ⇔, and ¬ and the quantifiers ∀ and ∃. E.g. the following is an open formula
specifying one-stop connections from Munich to London:

flight {departure-airport ["Munich"], arrival-airport [Via]} ∧
flight {departure-airport [Via], arrival-airport ["London"] }

The following is a closed formula expressing that every flight from A to B has a
return flight:

∀ Nb1 ∀ D ∀ A

flight{number[Nb1], departure-airport[D], arrival-airport[A]}

⇒ ∃ Nb2

flight{number[Nb2], departure-airport[A], arrival-airport[D]}

4.3 Propositional Formulas

As defined in 2, a semistructured expression, might be a label only (e.g. a or flight).
Such semistructured expressions correspond to XML and HTML empty elements [5,7].
They might be seen as classical logic propositional variables or 0-ary predicate symbols,
i.e. atomic formulas of propositional logic. Let us call such semistructured expressions
“propositional atoms”. Formulas build up (as defined in Section 4.2) from propositional
atoms have exactly the form of propositional logic formulas. In the following, they are
called “propositional formulas”.

5 Entailment: Positive Formulas

The meaning of positive formulas (i.e. formulas in which no negations explicitely occur)
has been informally introduced in Section 4. It is now formalised.

5.1 Interpretations

In a first approximation, an interpretation is conveniently defined as a set of semistruc-
tured expressions. Since semistructured expressions represent Web pages, this definition
is well suited to reasoning on the Web. This definition is refined below in Section 6.1
so as to accommodate negation as discussed in Section 3.

The notion of interpretation considered here and in Section 6.1 can be further
developed assigning to every label (or tag) a “multi-arity relation” (i.e. a subset ofS

n∈N E
n where E is the set of semistructured expressions). This leads to an novel

and interesting notion of relation composition. For space reasons, this is not further
developed here.

The definition of interpretations considered here might be unusual from the angle
of classical logic. Arguably, it is rather natural from the angle of logic programming
since it is quite close to Herbrand interpretations.

Because queries on the Web might be partial specifications, some subexpressions
of a semistructured expression true in an interpretation I are also true in I. Consider
for example the following (singleton) interpretation F :

flights{

flight {

number [AF1],

departure-time [1230],

arrival-time [1405],

departure-airport ["Munich"],

arrival-airport ["Paris"]

},

flight {

number [AF2],

departure-time [1530],

arrival-time [1615],

departure-airport ["Paris"],

arrival-airport ["Munich"]

}

}

So as to accommodate partial queries as described in Section 4.1, the following
semistructured expressions (among others) must be satisfied (or true) in F :

flights

flights { flight }

flights { flight { number } }

flights { flight { number [AF1] } }

flights { flight { number [AF1] }, flight { number [AF2] } }

5.2 Rooted Simulation

A notion of rooted simulation is used below in Section 5.3 in formalising the satisfaction
of semistructured expressions and atomic formulas in an interpretation. The following
definition is inspired from [11,12] and refines the simulation considered in [13]. Recall
that a (directed) rooted graph G = (V, E, r) consists in a set V of vertices, a set E
of edges (i.e. ordered pairs of vertices), and a vertex r called the root of G such that
there is in G a path from r to each vertex of G.

Definition 1 (Rooted Graph Simulation). Let G1 = (V1, E1, r1) and G2 =
(V2, E2, r2) be two rooted graphs and let � ⊆ V1 × V2 be an order relation. A rela-
tion S ⊆ V1 × V2 is a rooted simulation of G1 in G2 with respect to � if:

1. r1 S r2.

2. If v1 S v2, then v1 � v2.

3. If v1 S v2 and (v1, v
′
1) ∈ E1, then there exists v′2 ∈ V2 such that v′1 S v′2 and

(v2, v
′
2) ∈ E2

A rooted simulation S of G1 in G2 with respect to � is minimal if there are no rooted
simulations S ′ of G1 in G2 with respect to � such that S ′ ⊂ S (and S 6= S′).

E

B

A

G

F

ED

A

D

B BC

A

G

F

D

B

A

B

D E

B

Fig. 1. Rooted Graph Simulations (with respect to vertex adornment equality)

Definition 1 does not preclude that two distinct vertices v1 and v′1 of G1 are simu-
lated by the same vertex v2 of G2, i.e. v1 S v2 and v′1 S v2. Figure 1 gives examples of
simulations with respect to the equality of vertex adornments. The simulation of the
right example is not minimal.

In the following, the order relation � considered is “equality of labels” and “com-
patibility of grouping”, i.e. if v1 has label l1 and unordered children and if v2 has label
l2 and ordered children, then v2 6� v1 even if l1 = l2 and v1 � v2 if l1 = l2.

A semistructured expression E induces as follows a graph GE whose vertices are
adorned with labels of E and their “kinds of grouping”, i.e. ordered ([]) or unordered
({ }): The vertices of GE are those subexpressions of E that are semistructured ex-
pressions, a vertex of GE is adorned with the leftmost label and kind of grouping of
the semistructured expression it corresponds to, GE has an edge (E1, E2) if E2 is an
immediate, proper subexpression of E1 or if an immediate, proper subexpression of
E1 is a reference to E2. Figure 2 illustrates this view of semistructured expressions as
graphs.

a

c d a

f[]

a{}

c

f[]

d

a{}

Fig. 2. f [a, a[c, d, a]] and f [&1 @ a{c, d, ˆ&1}] as graphs

Considering the view of semistructured expressions as graphs, the notion of rooted
simulation immediately extends to semistructured expressions. Intuitively, there exists
a simulation of a semistructured expression E1 in a semistructured expression E2 if the
labels and the structure of E1 can be found in E2 (cf. Figure 3).

c

f[]

d

a{}

f[]

a{}a

c d a

Fig. 3. Minimal simulation of f [a, a{c, d, a}] in f [&1 @ a{c, d, ˆ &1}]

5.3 Satisfaction of Atomic Formulas

Recall that an interpretation is a set of semistructured expressions. A semistructured
expression E is satisfied (i.e. true) in an interpretation I if for some semistructured
expression E′ ∈ I there exists a minimal rooted simulation of E in E′. In particular,
E is satisfied in I if E ∈ I (since vertex identity is a rooted simulation of E in itself).
Thus, interpretations must be closed under rooted simulation: if I is an interpretation,
E ∈ I, and E′ is a semistructured expression simulated in E, then E′ ∈ I.

This definition conveys the notion of partial queries to those ground atomic formulas
that are semistructured expressions. It is extended to atomic formulas with variables
or descendant constructs by extending the notion of rooted simulation of Section 5.2
as follows (cf. Figure 4 for an illustration):

Definition 2 (Formula Satisfaction – Part 1).

– There exists a minimal rooted simulation of an atomic formula desc A in a
semistructured expression E if there exists a subexpression E′ of E and a min-
imal rooted simulation of A in E′.

– There exists a minimal rooted simulation of an atomic formula A in a semistruc-
tured expression E if there exists a grounding substitution of A (i.e. an assignment
of semistructured expressions for variables in A) and a minimal rooted simulation
of Aσ in E.

5.4 Satisfaction of Compound Formulas

The satisfaction of compound formulas in which no negations explicitely occur is defined
as usual recursively on the formulas’ structures. The satisfaction of formulas with
explicit negation is handled in a nonstandard manner in Section 6.1 below.

Definition 3 (Formula Satisfaction – Part 2). Let I be an interpretation. Let F ,
F1, and F2 be formulas. Let X be a variable.

X

f{}

a

g{}

b c

h{}

f[]

g{}

a b

h{b,c}/X

Fig. 4. Minimal simulation of the atomic formula f{X, g{a}} in the semistruc-
tured expression f [h{b, c}, g{a, b}]

– F1 ∧ F2 is satisfied in I if both F1 and F2 are satisfied in I.
– F1 ∨ F2 is satisfied in I if at least one of F1 and F2 is satisfied in I.
– F1 ⇒ F2 is satisfied in I if ¬F1 ∨ F2 is satisfied in I.
– F1 ⇔ F2 is satisfied in I if both ¬F1 ∨ F2 and F1 ∨ ¬F2 are satisfied in I.
– ∀XF is satisfied in I if for all semistructured expressions E F [E/X] is satisfied

in I.
– ∃XF is satisfied in I if for some semistructured expression E F [E/X] is satisfied

in I.

5.5 Entailment

Entailment between formulas or sets of formulas F and G is defined as usual: F |= G if
every interpretation satisfying F also satisfies G. A (paraconsistent) model of a set F
of formulas is a (paraconsistent) interpretation satisfying each formula in F . A model
M of F is minimal if no strict subsets of M are (paraconsistent) models of F .

5.6 Satisfaction of Propositional Formulas

On propositional atoms, i.e. atomic formulas reduced to labels (cf. Section 4.3), Defini-
tion 2 coincides with classical logic satisfaction. Therefore, the satisfaction of a proposi-
tional positive formula resulting from Definitions 2 and 3 coincides with that of classical
logic.

6 Entailment: Integrity Constraints and Nonmonotonic
Reasoning

In this section, the notion of interpretation introduced in Section 5.1 is refined yielding a
framework for defining the satisfaction of negated formulas in a (nonstandard) manner.

6.1 Paraconsistent Interpretations

In the (paraconsistent) interpretations defined below both a negated formula ¬F and
its negation ¬¬F might be satisfied. In other words, classical logic’s double negation
elimination (i.e. ¬¬F |= F) is dropped. Keeping with relational databases and logic
programming, if an atomic formula A is true (false, resp.) in an interpretation I, then
¬A is false (true, resp.) in I, and if ¬¬A is true (false, resp.) in I, then ¬¬¬A is false

(true, resp.) in I. Furthermore, if a (paraconsistent) interpretation satisfies a formula
F , then I also satisfies ¬¬F . Thus, an atomic formula A can be interpreted as follows
(the first and last interpretations are like in classical logic):

A ¬A ¬¬A ¬¬¬A

true false true false

false true true false

false true false true

Definition 4 (Interpretation). A (paraconsistent) interpretation I is a set of
semistructured expressions or doubly negated semistructured expressions such that:

1. I is closed under rooted simulation, i.e. if E ∈ I and if E′ is a semistructured
expression simulated in E, then E′ ∈ I.

2. If E is a semistructured expression and if E ∈ I, then ¬¬E ∈ I.

A (paraconsistent) interpretation I is consistent if for all ¬¬E ∈ I, E ∈ I. It is
inconsistent otherwise.

Dropping the elimination of double negation avoids problems found in classical
logic. Consider for example a course database with integrity constraints as follows:

DB: course[”CS1”]
course[”CS2”]
teaches[”Anna”, ”CS1”]

IC: ∀X.course[X] ⇒ ∃Y.teaches[Y, X]

In classical logic, for which a so-called “open world assumption” holds, there exists
a model for this database and integrity constraint (since it is not explicitly stated
that there is no teacher for CS1), and thus it is consistent. Database systems avoid
this problem by relying on a so-called “closed world assumption” or Clark’s comple-
tion [14] and by distinguishing between basic data (like course[”CS1”]) and integrity
constraints. Such a distinction is not necessary with paraconsistent interpretatrions as
above because integraity constraints are prefixed with a double negation. The integrity
constraint of the example above is thus expressed as:

IC: ¬¬
`
∀X.course[X] ⇒ ∃Y.teaches[Y, X]

´
A paraconsistent model satisfying course[”CS1”], course[”CS2”], and the formula

above does not have to satisfy teaches[a, ”CS2”] for some a. Instead, it suffices that
¬¬teaches[a, ”CS2”] holds for some a, intuitively expressing that teaches[a, ”CS2”]
should hold for some a.

6.2 Satisfaction of Negated Formulas

The satisfaction of negated formulas in a (paraconsistent) interpretation I is defined
recursively on the formulas’ structure by extending Definition 2 of Section 5.4 with the
following rules:

Definition 5 (Formula Satisfaction – Part 3). Let I be an interpretation. Let A
be an atomic formula. Let F be a formula.

– ¬A is satisfied in I if A is not satisfied in I, i.e. there are no semistructured
expressions B ∈ I with a minimal rooted simulation of A in B.

– ¬¬¬A is satisfied in I if there are no ¬¬B ∈ I with a minimal rooted simulation
of A in B.

– ¬¬¬¬F is satisfied in I if ¬¬F is satisfied in I.

In a word, four and more than four nested negations are treated in the spirit of classical
logic, double negations are not eliminated, and F |= ¬¬F . Two kinds of positive
literals are available, atoms and doubly negated atoms. Negated atoms and doubly
negated atoms are treated in the relational database and logic programming style.
From Definitions 4, 2, 3, and 5, it (easily) follows that for all formulas F , F |= ¬¬F
(but ¬¬F 6|= F).

Note that a consistent interpretation of propositional formulas induces a classical
logic interpretations of these formulas. This is not the case of an inconsistent interpre-
tation in which for some A, ¬¬A is true but A is not true.

Section 6.3 and Section 6.4 below point to the advantages of this unusual treatment
of negation for reasoning on the Web.

6.3 Meta-level Reasoning: Integrity Constraints

Positive and general program clauses and programs are defined as usual but referring
to the nonstandard atomic formulas defined in Section 4.1:

Definition 6 (Program Clauses and Programs).

– A program clause is an expression of the form A ← B1, . . . Bn where the Bi are
atomic formulas or negated atomic formulas and A is an atomic formula in which
no desc constructs occur. It denotes the formula ∀X1 . . .∀Xm (B1 ∧ . . .∧Bn)⇒ A
where X1, . . . , Xm are the variables occurring in B1, . . . , Bn, or A. If all Bi are
atomic formulas, then it is a positive clause, else a general clause.

– A positive (general, resp.) program is a finite set of positive (general, resp.) pro-
gram clauses. A propositional program is a program in the clauses of which only
propositional atomic formulas or propositional negated atomic formulas occur.

Precluding desc constructs in clauses’ heads ensure that positive programs have only
one minimal model. Indeed, a clause like a{desc b} ← B1, . . . Bn defines infinitely many
atoms e.g. a{b}, a{a{b}}, a{a{b}, a{b}}, etc.

Integrity constraints to a program P are closed formulas that might (or, depending
on the application, should, or could) logically follow from P . If C is a set of integrity
constraints to a program P , the problem called “integrity verification” is to decide
whether P |= C. If this is the case, P is said to satisfy the integrity constraints,
otherwise to violate them. Note that the data specified by P , i.e. the model(s) of P ,
should not depend on C. Thus, integrity constraints are statements on P , i.e. meta-level
statements.

If integrity constraints are represented as doubly negated (closed) formulas ¬¬F ,
then the entailment relation of Section 6.1 suffices to solving integrity verification
problems:

Proposition 1. A positive program P satisfies a set of integrity constraints C repre-
sented as doubly negated formulas if and only if the minimal (paraconsistent) models
of P ∪ C are consistent.

Proof. Let P be a positive program and let C be a set of integrity constraints (of the
form ¬¬F) to P . Let I be a paraconsistent interpretation such that I |= P ∪ C, i.e. a
paraconsistent model of P ∪ C. Clearly, the subset of I consisting in all atoms of I is
a standard Herbrand model of P (as defined in [15]). If I is minimal, then the subset
of I consisting in all atoms in I is the minimal Herbrand model of P (in the standard
sense). Now, observe that P |= C if and only if P ∪ C has no minimal models that
are inconsistent (i.e. models M with ¬¬A ∈ M and A 6∈ M for some semistructured
expression A).

6.4 Nonmonotonic Reasoning

With the entailment relation of Section 6.1, a ground program clause A ←
B1, . . . Bn,¬C1 ∨ . . . ∨ ¬Cm is logically equivalent to A ∨ ¬B1 ∨ . . . ∨ ¬Bn ∨ ¬¬C1 ∨
. . .¬¬Cm. It is not only satisfied in interpretations in which A, or some ¬Bi, or some
Cj is true, but also in interpretations in which some ¬¬Cj is true. Among such (para-
consistent) interpretations are inconsistent interpretations satisfying ¬¬Cj but not
satisfying Cj . Such interpretations “gives room” for interpreting so-called cycles of re-
cursion through negation with an odd length [16] in a quite natural manner. E.g. the
clause p← ¬p has a single minimal (inconsistent) paraconsistent model: {¬¬p}. Major
advantages of the treatment of negation proposed above is that it extends the Stable
Model Semantics [17] and gives it a “minimal model setting”:

Proposition 2. Let P be a propositional program. Every consistent model of P (in
the sense of Section 6.1) is stable. Every stable model of P (in the sense of [17])
characterises a consistent model of P (in the sense of Section 6.1).

If M = {A1, . . . , Ak} is a stable model, then the model in the sense of Section 6.1 M
is said to characterise is {A1,¬¬A1, . . . , Ak,¬¬Ak}.

Proof. Proposition 2 follows from the characterisation of minimal (paraconsistent)
models given below in Proposition 3 which rephrases the program transformation of
[17] and extend it to general formulas.

Proposition 3. Let M be a (paraconsistent) model of a set of formulas S. Let M =
{¬E | E semistructured expression and E 6∈ M}∪{¬¬¬E | L semistructured expression
and ¬¬E 6∈ M}.M is a minimal model of S if and only if for all K ∈M, S∪M |= K.

Proof. Necessary condition. AssumeM is a minimal (paraconsistent) model of S. If
M = ∅, then the property trivially holds. Otherwise, let K ∈M. If S ∪M 6|= K, then
by Definition 5 S ∪M∪{¬K} has a minimal (paraconsistent) model N . By definition
of N , N |= ¬K, hence by Definition 5, N 6|= K, i.e. K 6∈ N . Since N |= S ∪ M,
N ⊆ M. Since K ∈ M \ N , N 6=M contradicting that M is a minimal model of S.
Thus, S ∪M |= K.
Sufficient condition. Assume that for all K ∈M, S∪M |= K. IfM is not a minimal
(paraconsistent) model of S, then there exists a strict subset N ofM such that N |= S.
Let N = {¬E | E semistructured expression and E 6∈ N}∪{¬¬¬E | E semistructured
expression and ¬¬E 6∈ N}. From the necessary condition it follows that for all K ∈ N ,
S ∪N |= K. Since N is a strict subset ofM there exists K ∈M \N , hence ¬K ∈ N
and (?) S ∪N |= ¬K. By hypothesis, S ∪M |= K. Since N ⊂M,M⊂ N . Therefore,
(??) S ∪N |= K. (?) and (??) are contradictory, refuting that M is not minimal.

7 Logic Programming for Reasoning on the Web

Many Web applications are based on (1) selecting data from the Web and (2) process-
ing the selected data in manners that are particularly amenable to declarative pro-
gramming, especially to logic programming. The entailment relation introduced in the
previous sections has been conceived so as to support such applications that are briefly
described below. It provides with the semantics of a prototype Web query language
called Xcerpt [13,18].

Dynamic Web pages. Dynamic Web pages are texts or data that are dynamically
generated when called. They make it possible for different pages to share data thus
ensuring data consistency and to generate up-to-date Web pages from changeable data.
Arguably, logic programming queries would be as convenient for the Web as views are
in relational databases. Dynamic Web pages based on a logic query language would be
more amenable to reasoning (e.g. for query optimisation purposes) than dynamic Web
pages based on imperative scripts.

Adaptive Web. Most adaptive Web systems combine portions of text into Web pages
depending on contexts specifying so-called user models (i.e. user preferences and/or
rendering device characteristics) using rule-based systems. Arguably, a logic program-
ming query language would be convenient to implement both, the retrieval of portions
of text from the Web and their combination into context-dependent Web pages, thus
considerably simplifying the implementation of adaptive Web systems.

Structure Transformations. Structure transformations are an essential application of
languages such as XQuery [9] and XSLT [19]. Arguably, logic programming languages
are especially convenient to express structure transformations because they are term
(or pattern oriented) and because they are convenient to express recursion through
term structures.

Styling. Styling, i.e. enriching an XML or HTML page with rendering parameters, is
a special kind of transformation conveniently expressed in rule-based formalisms. CSS
[20] is such a language that has interesting similarities with logic programming.

Semantically Aware Querying. Considering semantics annotations as expressed e.g.
in ontologies while evaluating queries on the Web is an emerging research issue. To
this aim, the reasoning system of ontologies is coupled with a programming language.
Arguably, a logic programming query language could be used for both tasks.

8 Related Work

The work presented in this paper is related to query and transformation languages
for XML [5] and semistructured data. XPath [8] and XQuery [9] are well known such
languages. They are widely used Web standards. They are “navigational” in the sense
that they express data retrieval in terms of root-to-node data item traversals, i.e. a
rather procedural approach.

Other query languages for XML [5] and semistructured data do not build upon
a navigational paradigm. UnQL [21] first proposed to express queries as terms (or

patterns) as in logic and in the present paper. Such query languages can be called
“positional” because the relative positions of the data to retrieve, e.g. variables, are
well conveyed in query terms (or patterns). A further positional query language is
XMas [22]. Both UnQL and XMas are functional and inspired from the object database
query language OQL [23]. Xcerpt (cf. http://www.xcerpt.org) is a further positional
query and transformation language for XML and semistructured data. Xcerpt is based
on the logic programming paradigm. The present paper is a contribution to Xcerpt’s
semantics. Xcerpt’s operational semantics has been presented in [13].

Further query languages for XML and semistructured data are XSLT [19] and
fxt [24]. XSLT is based on the matching of XML elements and on a built-in structural
recursion of XML documents and it also offers a comprehensive collection of imperative
programming constructs. A severe limitation of XSLT is that it has no real notion of
procedure: An output of an XSLT subprogram cannot be further processed within
the same program. fxt builds on tree grammars and an efficient matching of regular
expressions (describing the children of a node) against semistructured expressions.
fxt’s processing is based on tree automata. In some projects, Prolog has been adapted
to process and/or query XML and/or semistructured data, e.g. in [25,26,27]. Such
Prolog extensions and/or adaptions are inspiring for query languages for XML [5] and
semistructured data.

The approach to nonmonotonic reasoning described in the present paper is rem-
iniscent of a widespread, often empirical approach consisting in “duplicating” every
predicate p (cf. e.g. [16,28,29]). [30] describes in more detail this approach in the frame-
work of classical logic. Proposition 3 is an adaptation to the nonstandard models of
Definition 4 of a result given in [31] for classical logic.

9 Conclusion

This article has first given requirement for logics for reasoning on the Web as needed for
emerging applications such as Semantic Web and adaptive Web systems. Then, it has
defined an entailment relation for such a logic. A first salient aspect of this entailment
relation is that it conveys a notion of partial queries reminding of the Web query
languages XPath [8] and XQuery [9]. A second salient aspect of the entailment relation
is that the satisfaction of a formula is recursively defined on the formulas’ structures,
like in classical logic and unlike most nonmonotonic logics. Arguably, such definitions
of formula satisfaction give rise to efficient inference procedures local to the formulas
considered, thus well-suited to the Web. A third salient aspect of the entailment relation
proposed in this paper is that it extends the Stable Model Semantics [17] and gives it
a “minimal model setting”. Finally, the article has briefly discussed how the proposed
entailment relation can be used in applying logic programming to reasoning on the
Web.

The work reported about in this paper is part of a project aiming at defining a
(prototype) logic programming language for reasoning on the Web called Xcerpt [13,18].

References

1. W3C: Resource Description Framework (RDF). (1999)

2. W3C: Web Ontology Language (OWL). (2003)

http://www.xcerpt.org

3. Decker, S.: TRIPLE – an RDF query, inference, and transformation language.
website (2002) http://triple.semanticweb.org/.

4. Horrocks, I.: The FaCT System. website (1999) http://www.cs.man.ac.uk/

~horrocks/FaCT/.
5. W3C: Extensible Markup Language (XML) 1.0, Second Edition. (2000)
6. W3C: XML Schema Part 0: Primer; Part 1: Structures, Part 2: Datatypes. (2001)
7. W3C: XHTML 1.0: The Extensible HyperText Markup Language. (2000)
8. W3C: XML Path Language (XPath). (1999)
9. W3C: XQuery: A Query Language for XML. (2001)

10. Abiteboul, S., Buneman, P., Suciu, D.: Data on the Web. From Relations to
Semistructured Data and XML. Morgan Kaufmann (2000)

11. Henzinger, M.R., Henzinger, T.A., Kopke, P.W.: Computing Simulations on Finite
and Infinite Graphs. Technical report, Cornell Univ. (1996)

12. Milner, R.: An Algebraic Definition of Simulation between Programs. Memo aim-
142, Stanford Univ. (1971)

13. Bry, F., Schaffert, S.: Towards a Declarative Query and Transformation Language
for XML and Semistructured Data: Simulation Unification. In: Proc. Int. Conf. on
Logic Programming. LNCS, Springer-Verlag (2002)

14. Clark, K.L.: Negation as failure. In Gallaire, H., Minker, J., eds.: Logic and Data
Bases. Plenum Press (1978) 293–322

15. Lloyd, J.: Foundations of Logic Programming. Springer-Verlag (1987)
16. Apt, K.R., Bol, R.: Logic Programming and Negation: A Survey. J. Logic Pro-

gramming 9 (1994)
17. Gelfond, M., Lifschitz, V.: The Stable Model Semantics for Logic Programming.

In: Proc. Int. Conf. on Logic Programming. (1988) 1070–1080
18. Bry, F., Schaffert, S.: A Gentle Introduction into Xcerpt, a Rule-based Query

and Transformation Language for XML. In: Proc. Int. Workshop on Rule Markup
Languages for Business Rules on the Semantic Web. (2002) (invited article).

19. W3C: Extensible Stylesheet Language (XSL). (2000)
20. W3C: Cascading Style Sheets, level 2. (1998)
21. Buneman, P., Fernandez, M., Suciu, D.: UnQL: A Query Language and Algebra

for Semistructured Data Based on Structural Recursion. VLDB Journal 9 (2000)
22. Baru, C., Ludöscher, B., Papakonstantinou, Y., Velikhov, P., Vianu, V.: Features

and Requirements for an XML View Definition Language: Lessons from XML
Information Mediation. In: Proc. QL’98 – The Query Languages Workshop. (1998)

23. Alashqur, A.M., Su, S.Y.W., Lam., H.: OQL: A Query Language for Manipulating
Object-Oriented Databases. In: Proc. Int. Conf. on Very Large Data Bases. (1989)

24. Berlea, A., Seidl, H.: fxt – A Transformation Language for XML Documents. J.
of Computing and Information Technology (2001)

25. Seipel, D.: Processing XML-Documents in Prolog. In: Proc. Workshop Logische
Programmierung. (2002)

26. Heumesser, B., Seipel, D., Güntzer, U.: Flexible Processing of XML-Based Mathe-
matical Knowledge in a Prolog-Environment. In: Proc. Int. Conf. on Mathematical
Knowledge Management. LNCS (2003)

27. May, W.: A Logic-Based Approach to XML Data Integration. (2001) Habilitation
Thesis.

28. Inoue, K., Sakama, C.: A Fixpoint Characterization of Abductive Logic Program-
ming. J. Logic Programming (1996) 107–136

29. Lifschitz, V., Pearce, D., Valverde, A.: Strongly Equivalent Logic Programs. ACM
Trans. Computational Logic 2 (2001) 526–541

http://triple.semanticweb.org/
http://www.cs.man.ac.uk/~horrocks/FaCT/
http://www.cs.man.ac.uk/~horrocks/FaCT/

30. Bry, F.: An Almost Classical Logic for Logic Programming and Nonmonotonic
Reasoning. In: Proc. Paraconsistent Computational Logic. (2002)

31. Niemelä, I.: A Tableau Calculus For Minimal Model Reasoning. In: Proc. Work-
shop on Theorem Proving with Analytic Tableaux and Related Methods. LNAI,
Springer-Verlag (1996)

