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Abstract

We examine the small ball asymptotics for the weak solution X of
the stochastic wave equation

O ha) = 25 (,2) = g(X(1,2) + F (4, 2)W (1)

on the real line with deterministic initial conditions.

Key words: small ball, stochastic wave equation, Brownian sheet.

1 Introduction

Let X be a random variable on a probability space (2, F,P) taking values
in a real Banach space. The small ball asymptotics is the order of the
probability P{|| X || < €} as ¢ — 0+. We examine the small ball asymptotics
for the weak solution X = {X(¢,z); (¢,z) € R4 x R} of the stochastic wave
equation

2 2
X )= P 1 w) = g(X(t,2) + £ (1, ) dW (1, 2) W

on the real line with deterministic initial conditions (F, ). The random field
X is almost surely continuous and for each compact set A C Ry x R, X|4
can be considered as a random variable with values in the Banach space
of continuous functions on A endowed with the supremum norm. In the
case ¢ = 0 and f = 1 the solution of (1) is very similar to a Brownian
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sheet. M. TALAGRAND derived in [12] precise small ball asymptotics for
this random field. This is our point of depart, and as a matter of fact, the
small ball asymptotics for the solution of (1) is of the same order: Let f be
a square integrable function which is continuous and does not vanish at at
least one point. Furthermore, let ¢ be LIPSCHITZ continuous and u be the
solution of the deterministic partial differential equation

%u ; %u

—( 733) - @

with initial conditions (F, x). Theorem 2.11 below states in terms of Landau
symbols that the upper small ball asymptotics reads

P sup [X(t,2) — ult.a)] < £} < O(exp(~(log(1/2))*/=%)

(t,z) = g(u(t, z))

with A(r,0) = {(s,y) : 0 < s < r,]y] < r — s}. Moreover, Theorem 3.4
states that the lower asymptotics is of the same order.

The rate of the asymptotics is given in terms of Landau symbols. Let
u and v be real valued functions. We write u(z) = O(v(z)), if there is a
constant C such that |u(x)|/|v(z)| < C for £ — xo or x — oco. Furthermore,
let w be a real valued function. If there are functions v and v with w(z) <
u(z) for x — xp or x — oo and u(z) = O(v(z)), then we write w(z) <
O(v(z)). Vice versa, if there are functions u and v with w(z) > u(z) for
x — zp or £ — oo and u(z) = O(v(x)), then we write w(z) > O(v(zx)).

J. KueLBs, W.V. Li and W. LINDE showed that evaluating small ball
asymptotics are in general equivalent to solving a demanding metric entropy
problem in functional analysis; see [6] and [9]. This explains why relatively
little is known about small ball asymptotics, except for special examples.
The oldest examples concern Brownian motions and Brownian bridges. Let
BM denote a standard Brownian motion and BB a Brownian bridge. Then

2

p{ up [BM(D)] < e}~ %exp{ -5}

and the probability

2

V2T ox (-5
P 82

for ¢ — 0+, respectively. For the proof of these and many more interesting
results and topics related to small ball asymptotics we refer to the surveys
J.P.R. CHRISTENSEN [3], M. LEDOUX [7], M.A. LI1FsHITS [11] and W.V.
L1 and Q-M. SHAO [10].

J.B. WALsH introduced in the eighties an integration theory with respect
to martingale measures in order to establish a framework for stochastic par-
tial differential equations similar to ITO’s theory, see for example [13]. It was

p{ sup [BB(t)] <} ~
t€[0,1]
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used by R.A. CARMONA and D. NUALART in 1988 to examine the vibrating
string in [1] and its companion article [2]. Different approaches to stochastic
partial differential equations are treated in the textbooks [4] of G. DAPRATO
and J. ZABCzYK in 1992 and [5] of H. HOLDEN, B. OKSENDAL, J. UBQE
and T. ZHANG in 1996.

This article is organised as follows. The upper asymptotics are derived
in Section 2 and the lower ones are obtained in Section 3. The underlying
ideas are similar. We transfer the small ball asymptotics for the Brownian
sheet to the solution X of (1) in the case ¢ = 0 and f = 1 by a clockwise
rotation of 45°. Then we use the partial differential equation to derive the
asymptotics for the general case. In each section we discuss as a special
example the KLEIN-GORDON equation on the real line

9?X 92X

o (1) = o5 (te) —aX(tz) = dW (L)

perturbed by space-time white noise.

2 Upper Asymptotics

We start with preparations for the proofs of Proposition 2.6 and its Corol-
lary 2.7. The underlying ideas are similar to the ones used in the proof of
the upper asymptotics in Theorem 1.1 [12]. A central tool is TALAGRAND’s
combinatorial inequality stated in Proposition 2.5.

Proposition 2.1 Let C € (0,1] and let M, N € N with CM < N <
M. Then for a sequence (&)i<n of independent standard normal random
variables one has

IP’{ oGl < %} < exp (—%) :

i<N 0

where Cy = —2/(C InE{exp(—|&1])})-

Proof. Chebyshev’s exponential inequality yields
M M
§ 1< 1< — - E 1) .
P{ P €| < CO} S exp (CO> E{ exp ( Z |€z|>} (2)

Since the random variables ¢; are independent and identically distributed
the right hand side of (2) is equal to

exp (_CM IDE{(;XP(—|61|)}> ]E{exp(—|§1

I = Efexp (& )}V M2,
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Moreover, E{exp(—|¢1])} < 1 and N > CM, thus one has

- M
Efexp(—|&1]) 1Y M2 < Efexp (—|6])} M2 = exp (_a>
which completes the proof. O

Let H = L%([0,1]?, B[0,1]?, A?) and let (by,) be a complete orthonormal
system of (the separable Hilbert space) H. Let further (¢,,) be a sequence

of independent standard normal random variables. An isonormal process
W = {W(h); h € H} can be constructed by

W(h) = &m(h,bm), (3)

where the brackets are the canonical inner product of H; see for example [4].
This construction is independent of the choice of the complete orthonormal
system, because the process is determined by its finite dimensional distri-
butions. On the other hand, the proof of TALAGRAND’s combinatorial in-
equality (5) depends heavily on the choice of a special complete orthonormal
system which will be introduced now.

Definition 2.2 Set h_1y =1,

- 1 if we0,1/4) U (3/4,1]
h(u) = { —1 if u € [1/4,3/4)

and fiz an integer ¢ > 1. Define for integers m > 0 and 0 < k < 27
B e (1) = 2972 (297 (4, — k279™)).
Furthermore, set
Z={(m,k);m=>0, 0<k<2/}bU{(-1,0)}
and
OS(I) = {hmk ® hny; ((m, k), (n,1)) € T x T}

The family OS(Z) is for each ¢ > 1 a complete orthonormal system in H.

We need the following two sets of indices for the further discussion.
Notice that A° = A\OA denotes the open interior of a set A and supp(f)
denotes the support of a function f.

Definition 2.3 For a set A C [0,1]* define
I(A) = {((ma k)a (nal)) €T x I; Supp(hm,k ® hn,l)o C A} :
For an integer N € N define

T(N) ={((m,k),(n,1)) ETXT ; m>0,n>1m+n=N,
0<k<20m0<[<21"}
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The set Z(A) is that set of indices in Z x Z for which the corresponding
functions in OS(Z) have their supports essentially in A. The set 7(N)
consists of those indices such that the corresponding functions in OS(Z)
have supports with given and fixed length of the edges. In the next example
the relation between Z(A) and 7 (N) is exploited.

Example 2.4 Let A = supp(hp i ® hyy) for fixed integers m > 0, n > 1,
0<k<2™and0<1<29 If N <m+n then the sets Z(A) and T(N)
are disjoint, because the edges of the supports of functions associated to
T(N) are too long. If N > m + n, however, then Z(A) N T (N) is not empty
and the number of elements |Z(A)N T(N)| = (N — (m +n) + 1)20(N=(m+n)),
It is related to |7 (N)| by

IZ(A) N T(N)| (N = (m+mn) + 1)2¢(N-(m+n))

T N2aN

—q(m+n)
:(1—m+n+i>2“m+”)272 = C >0

N N m-+n

Thus for all N > m + n there is a constant C > 0 independent of N such
that
[ T(N)| = [Z(A) N T(N)| = C|T(N)].

The next proposition is the key to the proof of Proposition 2.6. Define for
(m,k) €T

G(2) = / B (11) . (4)

Proposition 2.5 ([12], Proposition 2.4) For ¢ = 9, N € N, and for
each family of numbers (a((mk),n,0)))7(n) one has

SUD Y () (nd))Imk (2) It (1) = 275NN gy i |- (5)
PyelOl () T(N)

One idea of the proof of this proposition is that the g,  ® g5, ;s have positive
and negative values and therefore can compensate the sign of the numbers
A((m,k),(ny))- Another ingredient is the fact that for fixed m and n and
different pairs (k,l) and (k',1") the supports of gy, 1 ® gny and gmp @ gn 1
have disjoint interiors.

Define for z, y € [0, 1] the set R(z,y) = [0,z] x [0, y].

Proposition 2.6 Suppose that f € L?[0,1]? satisfies the decomposition

f = fc : lsupp(hm/,k/®hn/,l/) + fv ’ lsupp(hm/,k1®hn/,l/)ca
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where f. € R\{0}, f, € L?[0,1]? and hyy gy @ hyr p € OS(T). Moreover, let
{W(h); h € L?[0,1]} be an isonormal process. Then for e — 0+

IF’{ sup ‘W(]-R(:E,y)f)‘ < 8} <0 (exp <_ |fc|2(100§$/8))3>> |

z,y€(0,1]

where C is a positive constant depending only on m' +n'.

Notice that the asymptotics depend only on a constant part of f.

Before we begin to prove Proposition 2.6 we need another fact. Let f €
L?[0,1]2 and let (b, )men and (£,,)men be like in the remarks to equation (3).
Furthermore, let K, £ C N with £ N £ = (). Then two stochastic processes
Wi and W, are given by

Wi = {WlC(ley Z fm 1ny fa >; (x,y) € [07 1]2}
mex
and
WCZ{WC 1R ng 1R:1:yfa >7( )6[031]2}'
meLl

Recall that a regular random variable X with values in a Banach space B is
Gaussian, if for each continuous linear functional [ on B the random variable
[(X) is a real Gaussian random variable; see [8], p. 55. Therefore Wi and
W, can be considered as centred Gaussian random variables with values
n (C[0,1)%,]] - |l). Moreover they are independent and Lemma 2.1, [12]
implies that

P{[[Wi + Welloo < e} < P{|[Wklloo <} (6)

for any € > 0.

Proof of Proposition 2.6. We construct the stochastic process W =
{W(h); h € L*[0,1]?} explicitly. Consider the complete orthonormal sys-
tem OS(Z), a sequence (&y,5,n,) of independent standard normal random
variables and let W be given by

W(h) =" &mkmilhs hmg @ hny).
ITXT

Set A = supp(hpy g ®hyy 7). Then by construction of W and the assumption
on f one has

IP){ I;g[g’l] ‘W(IR(I,y)f)‘ < 6}

= HD{ sup ‘ Z £m,k,n,l<1R(:1:,y) (fclA + fleC)a hm,k 02y hn,l)‘ < 6}
ry€el0,1] ' o7
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= P{ sup Z Emnit (fellrzy)Las hmg ® Bny) (7)
x:l/e[o’l] ITXT

+<f’U]-R(x,y) 1AC’ hm;k ® hn;l>) ‘ < 6}.

Only linearity of the inner product was used. Set K = Z(A) and £ =
Z x T\ Z(A). Then by inequality (6) the probability in (7) is less or equal
to

HD{ sup ‘ Z £m,k,n,l (fC<1R(ac,y) lAa hm,k X hn,l> (8)
TY€10,1] T 74y

+ <fle(I,y)1AC7hm,k 029 hn,l>) ‘ < 6}.

The indices in Z(A) refer only to functions in OS(Z) with support essentially
in A. Hence for gm defined like in (4) by gmx(z) = [ hmk(u) du, the
probability in (8) is equal to

IP{ sup ‘ Z §m,k,n,l fe gm,k($) gn,l(y)‘ < 5}-
2y€0,1] 1 7 4)
The indices are further reduced from Z(A) to Z(A) N T(N). Inequality (6)
yields that the expression above is less or equal to
]P{ sup ‘ Z gm,k,n,l fc gm,k(x) gn,l(y)‘ < 6}

2y )T (V)
and by TALAGRAND’s inequality (5) this is bounded from above by

P{ > Jbmkma fol < 23qN/2+75}

T(A)NT(N)

= IP{ Z |§m,k,n,l| < |fc|7123qN/2+75}_ (9)

I(A)NT(N)
The final part follows from Proposition 2.1. To this end recall that by
Example 2.4 there is a constant C' > 0 which is independent of N such that
IT(N)| 2 |Z(A) N T(N)| = C|T(N)].

Moreover, let ¢ be standard normal and set Cy = —2/(C' InE{exp(—|¢|)}).
Let € be sufficiently small such that for at least one N > m’ + n/,

G, o N2 N2-aN/29-T
|[fel e < Co23aN/2+T Co .

Choose N maximal; N is of order log(1/¢). Then (9) is less or equal to

N2V
]P{ Z |€m,k,n,l| < }a

Co
Z(ANT(N)
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and by Proposition 2.1 this probability can be bounded from above by

N2qN _ N32714
B e Al 5 ( N2-aN/29-7)2
CO CO

This bound is of order

exp (_ |fc|2(10g(1/6))3> |

3.2
Cge

In summary, for ¢ — 0+,

o i W] <<} <0 (o (LUELLEUI)Y

3.2
2,y€el0,1] Cpe

This completes the proof. a
Proposition 2.6 can be generalized.

Corollary 2.7 Let f € L?0,1]? and suppose that there are indices (m', k'),
(n',I') € T and a real number f. > 0 such that

(f2 - fC)|supp(hm/,k/®hn/,l/) >0

almost everywhere, where by ® hyy yp € OS(T). Let {W (h); h € L?[0,1]*}
be an isonormal process, then for e — 0+

P{ sup  |W(Lry )| < g} <0 (eXp <_M>> :

3.2
2,y€[0,1] e

where C is a positive constant depending only on m' +n'.

For the proof let v denote a positive measure on [0, 1]?. Let further be W
a centred Gaussian process with

E{WY (z,y)W"(z',¢')} = v ([O,min(x,x')] x [0, min(y,y’)]) ) (10)

Proof of Corollary 2.7. Set A = supp(hpy i ® hyr ), then
f?= ((f2_fc)'1A+f2'1AC> + fer1a.

Moreover, set . = ((f2—f.)-1a+f2-14c)/2 and v = (f,-14)/?; the function
v satisfies the assumption of Proposition 2.6. Define for an arbitrary function
w € L?[0,1]? the measure v, on B[0,1]? by v4,(B) = [, w(z)? dz. Then the
two measures v, and v, are positive and v, + v, = vy by definition.
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Consider the three centred Gaussian processes W¥f, W"» and W*» and
assume that the last two are independent. One has

law(W"F) = law(W"* ") = law(W"* + W),

and W"» and W"» can be considered as centred Gaussian random variables
with values in (C[0,1]%,]| - ||o). They are assumed to be independent and
thus Lemma 2.1, [12] yields

PHW™ + W loo < e} SP{|IW]|oo < e}

for ¢ > 0. Furthermore, the processes W7 and {W (Lg(yy)f); (z,y)
[0,1)2} are equal in law. Similarly, the processes W** and {W(1gzy)v); (
[0,1]?} have the same law. Thus we can conclude

IF’{ sup ‘W(lR(m,y)f)‘ < 8} < IP{ sup ‘W(lR(I’y)U)‘ < 6}
z,y€[0,1] z,y€[0,1]
for ¢ > 0. The assertion follows by application of Proposition 2.6. |

Corollary 2.7 holds for each f € L%[0,1]? such that f? is bounded away
from zero at least on a rectangle. For example, this is satisfied, if f is
continuous and does not vanish at at least one point. Hence, the important
case of continuous functions which do not vanish identically is covered.

Definition 2.8 Let B C R?. Let CR(B) denote the set
{f € L*(B); 3Q = [a,b] x [¢,d] C B, fo >0 with (f> — fo)|g >0 a.e.}.
Corollary 2.7 can still be improved.

Remark 2.9 Let v be a positive and non singular measure on [0, 1]? and
let WY be a centred Gaussian process as in (10) before. Then Theorem 4.2,
[12] yields for ¢ — 0+

where C(v) is a positive constant depending only on v. Let f € L?[0,1]? and
define v(A) = [, f(2)?dz for A € B[0,1]2. Tt is straightforward that v is a
positive and non singular measure on [0, 1]2. Moreover, {W (1 Ry f); (T,Y) €
[0,1)2} is a centred Gaussian process with

E{W(lR(x,y)f)W(lR(x’,y’)f)} =v ([07 min(x, l‘,)] X [07 min(y, yl)]) :

Thus TALAGRAND’s theorem yields

1@{ sup | W (Lr@y f)] < s} <O <exp (_ O(f)(log(l/s))3>> |

2
,y€[0,1] €

as € = 0+, where C(f) depends only on f. Notice that the only restriction
on f is its square integrability.
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Our aim is to derive small ball asymptotics for solutions of a certain class of
stochastic wave equations. The simplest stochastic wave equation on a real
line is
O*X *X
—(t, 1) — —=
ot ox

with zero initial conditions. We define

(t,z) = dW (t,x) (11)

Alt,z) ={(s,y) e Ry xR:0<s<t |z —y|l <t—s}

and let
G(tv T, s, y) = 1A(t,x)(37 y)/2 (12)

be GREEN’s function for the wave equation on the real line. The solution
of (11) can be written as {W(G(t,x)); (t,x) € Ry x R}; see for exam-
ple [13] or [2]. By rotation and shift, we establish a link to the process
{W(lgwy)); (t,2) € Ry x R} for which we derived asymptotics before.

A point z € [0,1]? is transferred to a point (t,z) € R. x R by a 45°-
clockwise rotation and a shift by (—271/2,0), i.e.

t+2*1/2—x t+2*1/2+m
z = , .
V2 V2

Let the clockwise rotation with shift be denoted by r~ and the shift with
anti-clockwise rotation be denoted by 7.

equivalently

Corollary 2.10 Let f € CR(A(271/2,0)), then

C(f)(log(l/e))3>>

42

P s W(GEa)f) <e}<O (eXp (_

(z,t)EA(2-1/2,0)

for e = 0+, where C(f) is a constant depending only on f.
Proof. Define the function f,— on [0,1]? by

£ (2) _{ f(r7(2)) ifz1+20>1

10 otherwise.

Then the two random variables W (G(t,z)f) and W ((1/2)1g, f,-) are equal
in law for z = r*(¢,z). Thus

sup  |W(G(t,z)f)| and  sup [W((1/2)1g, f,-)|
A(2-1/20) [0,1]?
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are equal in law and the assertion follows from Corollary 2.7. |

Putting things together gives the main result of this section. Notice that we
use for the partial differential equations in question their integral equation
representation, too; see again [13] or [2].

Theorem 2.11 Let f € L?>(R, xR) such that f|a@-1/2,0) € CR(A(271/2,0))
and let g be a LIPSCHITZ continuous function on R. Let ug be a continuous
function from Ry xR to R and let X be the solution of the stochastic integral
equation

X(t,z) = up(t, ) —i—/R /RG(t,x,s,y)g(X(s,y)) dyds + W (G(t,z)f) (13)

simultaneously for (t,z) € Ry x R, almost surely. Finally, let u be the
solution of the deterministic integral equation

u(t, x) = uo(t, z) + /R ) /R Gt x5, 9)g(uls,y)) dyds.  (14)
Then for e — 0+,

C(f)(log(1/e))?
IP’{ sl X (¢, 2) —u(t,z)| < 5} <0 <eXp (_4(1 ¥ CL%Q;/Z)%Z)) '

Proof. Rewriting the subtraction of (14) from (13) and taking absolute
values yields

W(G(t,)f)|
< X (t) — ult,z)| + /R /R G(t, 7, 5,9)|9(X (5,9)) — glu(s,y))] dyds.

Since ¢ is LIPSCHITZ continuous with LIPSCHITZ constant Cp(g), the last
expression is less or equal to

X(t2) —u(t.2)| + Culg) /R /R G(t, 2, 5,9) X (5,y) — u(s,y)| dyds

< sup | X (t,z) — u(t, z)] <1 + M)

T (@hen 120 2

simultaneously for all (£,z) € A(27'/2,0) with probability one. Further-
more, if Supx(5-1/2 gy [X (¢, 2) — u(t, )| < e, then this implies

sup  [W(G(4,2)f)] < e(l+CL(g)/4),
A(271/2)0)
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and thus for ¢ — 0+,

IP’{ sup | X(t,z) —u(t,z)| < 6}
A(271/2)0)

<P{ s (WG] <1+ Culo)/4)]
(z,t)eA(2-1/2,0)

<0 (exp (—45(?&?%4;332)) '

|

As announced, we discuss the KLEIN-GORDON equation perturbed by space-
time white noise.

Example 2.12 Consider the stochastic KLEIN-GORDON equation

’X ’X

—(t,z) — —5(t,x) = aX(t,z) + dW (¢, x 15
(1) = S (40) = aX(t0) + AW (,0) (15)
with initial conditions (F,p). Let uw be the solution of the deterministic
KLEIN-GORDON equation

9?X (t.2) P?X
_— y x J—
ot? 9>

with initial conditions (F, ). Then Proposition 2.11 yields that for ¢ — 0+

lostt/a ).

(1 + a/4)2C3e?

(t,z) = aX(t,x) (16)

P{ sup | X(t,z) —u(t,z)| < e} <0 (exp <_4

A(271/2)0)
(17)
On the other hand the solution of equation (15) is given by
X(ta) =iruto) + [ [ GholtospdWisw,  08)
Ry JR

where

Galt,a,s,y) = Glt.a.s,y) (Valt =5 = @ =y)) s @ >0

and

Gialt,a,5,y) = Glt,a,5,9) 0 (VIal(E =) = (@ = 9))); @ <0,

respectively. Iy is the modified Bessel function of order zero and of the first
kind and Jj is the regular Bessel function of order zero and of the first kind.
The function jg, is defined by

o T+t

x+t
pn G%q(t,z,0,y)F(y) dy+/ Gka(t,z,0,y)u(dy).
r—t x—t

jF,u(tv ]7) =
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Moreover, jg, is the solution of the deterministic homogeneous KLEIN-
GORDON equation (16) which yields jr, = u. Thus inequality (17) yields a
small ball asymptotics for (18), i.e. for e — 0+

lostt/a ).

P{ sup | X(t,z) — jru(t,z)| < 8} <0 <exp (—4(1 —|—a/4)205’62

A(271/2,0)

In the case @ = 0, equation (18) reduces to the solution of the linear stochas-
tic wave equation.

3 Lower Asymptotics

In this section we derive the small ball asymptotics from below. We start
from TALAGRAND’s general result for a Brownian sheet and transfer this
asymptotics to our special case of stochastic wave equations. We give the
main result of this section in Theorem 3.4. Finally, we discuss again the
example of the stochastic KLEIN-GORDON equation.

Let v be a positive measure on [0, 1]? and let W" denote again a centred
Gaussian process on [0, 1]? with

E{W" (z,y)W" (2',y")} = v ([0, min(z,")] x [0, min(y,y")]) .
The analogue of Corollary 2.7 reads:
Proposition 3.1 ([12], Proposition 4.1) For ¢ — 0+,
log(1/¢))?
P{_swp WG] < el 2} 2 0 (exp (-CELEL ).
z,y€(0,1] €

Let f € L?[0,1]% with || f||2 > 0. Consider the positive and non singular mea-
sure v on B[0, 1]* defined by v(A) = [, f(2)? dz. Then {W (L) f); (z,y) €
[0,1)2} is a centred Gaussian process with

E{W(lR(m,y)f)W(]-R(:D’,y’)f)} =V ([07 min(x,x')] X [07 min(yayl)])
and Proposition 3.1 yields for ¢ — 0+,

o{ s W] <<} >0 (o (LULLE)Y

2
z,y€[0,1] €

The next step is rotating and shifting coordinates like in the section above.
Recall that the 45°-clockwise rotation with shift is denoted by r~ and the
shift with anti-clockwise rotation is denoted by rt.

Corollary 3.2 Let f € L2(A(271/2,0)) with ||f|l2 > 0. Then for e — 0+,
HFCACIN

42

P{ s |W(G(tn)f)<ec}>0 (exp (—

A(2-1/2)0)
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Proof. Define the function f,— on [0,1]? by
_ . S
£ () = { fir=(2) ifz1+20>1

0 otherwise.

Then the two random variables W (G (¢, z)f) and W ((1/2)1g, f,-) are equal
in law for z = r*(¢,z) and hence

sup  |W(G(t,z)f)| and  sup [W((1/2)1r. f,-)|
A2-1/2)0) [0,1]2
are equal in law, too. This implies the assertion. O
Recall now GRONWALL’s lemma [14], Proposition 19. III, p. 125: Let the
order interval {y < z} be given by
{yjz}:{yeRi; 0<y; <z, foralli e {1,...,d}}
and denote the closure of a set G € R‘i by G.

Lemma 3.3 (Gronwall) Let G € R1, « € R, 8 > 0 and let v € C(G)
with

v(z) <a+p | v(y) dy.
Gn{y=z}

Then
o~ (Bz1 -+ 24)"
v(z) < aFy(Bzy---2q) = oz; 7(2,!)[[ .
Especially, Ei(z) = exp(z) and Es(z) = Iy(2y/z), where Iy denotes the
modified Bessel function of order zero and of the first kind.

Theorem 3.4 Let f € L?*(R. x R) with fL1a@-120)ll2 > 0 and let g
be a LIPSCHITZ continuous function on R. Further, let ug be a continuous
function from Ry xR to R and let X be the solution of the stochastic integral
equation

X(t,z) = up(t, ) —i—/R /RG(t,x,s,y)g(X(s,y)) dyds + W (G(t,z)f) (19)

simultaneously for (t,z) € Ry x R, almost surely. Finally, let u be the
solution of the deterministic integral equation

u(t, x) = uo(t, z) + /R ) /R Gt x5, 9)g(uls,y)) dyds.  (20)
Then for e — 0+,

IP{ sup | X(t,z) —u(t,z)| < 6}
A(271/2)0)

>0 (exp (_ |1 £]]220( 20L(9))(10g(1/5))3>> ‘

42
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Proof. The following inequalities hold almost surely. Suppose that

sup W (G(t,2)f)| < £/To(2v/Cr(g)/V?2).

A(271/2)0)

With the integral equations (19) and (20), and the triangle inequality one
achieves for each (t,z) € A(271/2,0),

[ X (¢, 2) — ult, z)|
S/ /G(t,x,s,y)lg(X(s,y))—Q(U(say))ldyderIW(G(t,w)f)l
Ry JR

< CLT(Q)// X (s,) = uls,y)| dyds + £/Io(2/C(9) /V2).
A(2-1/2)0)

In the last inequality the LIPSCHITZ property of g is used. In the notation
with shifted and rotated coordinates this is equal to

C
| X (2) —u(z)| < #/R( )|X(w) —u(w)|dw + ¢/15(2+/CL(9) /V2),
where X (z) = u(z) =0 for z; + 20 < 1. GRONWALL’s lemma yields

[ X (2) —u(

e
Z)| < 10(2m/ﬁ)10(2 (CL(Q)/2)2122) <eg,

for z € [0,1]? and thus

sup | X(t,z) — u(t,z)| = sup | X (2) —u(z)] <e.
A(2-1/2,0) [0,1]2

This implies for € — 0+ that
IP’{ sup | X (t,z) —u(t,z)| < 6}
(z,)eA(271/2,0)

> IP’{ sup (W (G(t,z)f)| < 6/[0(2\/CL(9)/\/§)}

(z,t)EA(2-1/2,0)

S0 (exp (_||f||210( ch(g»aog(l/g))a))

4e2

and the proof is complete. O

The example is again the KLEIN-GORDON equation perturbed by space-time
white noise.

Example 3.5 Consider the stochastic KLEIN-GORDON equation

9?X 9?X
W(t,x) — W(t,m) —aX(t,x) =dW(t,z) (21)
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with initial conditions (F, ). The lower asymptotics can be derived like in
Example 2.12, and for ¢ — 0+

P{ sup |X(t,5) — jrult,®)| <e}
A(2-1/2)0)

S o (exp (_Io(\/2|04|)(10g(1/5))3>) |

42

where again

. o T+t N T+t N
iruta) = 5 [ Gialta 0P du+ [ Galt.o.0p)n(d)
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