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1 Introduction

Over recent years the application of diagnostic tests for the detec-
tion and evaluation of various diseases has considerably increased
(Begg (1983)). Two important summary measures of the accuracy
of a screening or diagnostic test are sensitivity and specificity. Sen-
sitivity is the probability of a test-identified case among the diseased
while specificity is the probability of a test-negative result among
the disease-free. It is also possible to give a summary of the test
accuracy in terms of diagnostic or screening errors. The proba-
bilities of these errors are by definition the false negative fraction
(FNF) which is one minus the sensitivity and the false positive frac-
tion (FPF) which is one minus the specificity (Lloyd and Frommer
(2003)). Definitive assessment or verification of the true disease sta-
tus is normally provided by a gold standard procedure. It is quite
simple to estimate the above mentioned error rates when all the
study subjects are verified. However, the gold standard procedure
may be more invasive, costly or risky. In addition it is unethical
to perform such procedures on individuals who have initial negative
test results (Walter (1999)). As a consequence only a subsample of
those who were initially tested receive the definitive assessment for
their disease status. Usually verification is done only for individuals
whose initial test results are positive. This leads to the problem
of estimation of sensitivity and specificity or alternatively FNF and
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FPF under partial verification. We consider the problem of estimat-
ing the FNF in multiple screening test, whereby the screening test
comprises k repeated applications of a dichotomous kit test. Indi-
viduals who tested negative in all the k tests were not verified.

Our approach is motivated by data from Lloyd and Frommer (2003).
In total 38000 patients were voluntarily screened for bowel cancer
at St. Vincent’s Hospital in Sydney, Australia. About 3000 pa-
tients tested positive at least once and their true disease status was
verified. Only 196 had the disease. The primary data consisted of
the count, between 1 and 6, of positive tests results for each of the
196 patients. Of the 196 patients 122 agreed to be screened further
several weeks after the primary data was collected. Results from
this second screening phase constitute the secondary data set. The
problem is to estimate the FNF.

In Section 2 the beta-binomial model is derived while Section 3
describes the Bayesian approach as used in this paper. Section 4
gives a brief description of a Bayesian logistic regression approach
to estimate the FNF as proposed in Lloyd and Frommer (2003). In
Section 5 we present our results in the estimation of the FNF us-
ing both the beta-binomial model as well as the Bayesian logistic
regression approach while in Section 6 we validate both the beta-
binomial as well as the Bayesian logistic models and finally give the
concluding remarks in Section 7.

2 Beta-binomial model

Let Y;; (1 = 1,..,n and j = 1,...,k) be a random variable from
a Bernoulli distribution with parameter p, 0 < p < 1. Thus p is
the probability that a randomly chosen individual tests positive.
Defining Y; = Zle Y;; it follows that Y is the count of the num-
ber of positive tests for the i-th individual and so has a binomial
distribution. We assume that the population of the individuals is
heterogenous so that p has a beta(c, 3) distribution;

f(p|&,5)=%a>0,5>0,0<p<1

where B(a, ) is the complete beta function. This assumption may



be valid when the data exhibits overdispersion. For the i-th ran-
domly chosen individual the distribution of Y; for the case of k trials
is the following mixture model

Pr(Y; = yila, B,k) = [y Pr(yilp, k) f (p|e, B)dp

Hence the distribution of the count of the positive tests for the i-th
randomly chosen individual is beta-binomial and is given as

k atvs Btk
Pr(Y; = yila, B,k) = myu(er, B) = ( v ) Sy

y; €4{0,...,k}and i =1,...n.

The beta-binomial model has been applied widely in different stud-
ies (Williams (1975), Lee and Sabavala (1987)). In the bowel cancer
data considered in this paper the individuals who tested negative in
all the £ = 6 initial tests were not verified. For fixed p it then follows
that the distribution of the positive counts Y; for the individuals who
underwent verification is a zero-truncated binomial distribution. As
a consequence the beta-binomial model is also truncated at zero
value. Truncation essential means that the denominators for sen-
sitivity and specificity remain unkown and so one cannot estimate
these summary measures. Putting y; = 0 in the beta-binomial dis-
tribution given above for the case of k = 6 diagnostic tests leads to
the expression for the FNF as

(e, ) = B850
If the responses of the individuals are considered independent then
the likelihood for the primary data is

[T "
Ly(aaﬁ) = ﬁ

where n = 3%, n; and n;(j = 1,...,k) is the count of individuals
with j positive tests while y = (y1, ...., yn) is the vectors of positive
observations for all the n individuals. If y; denotes the count of
the positive tests for the i-th randomly chosen individual who had a
further k£* tests in the secondary phase after registering y; positive



tests in the first £ trials we have that

k* Blatyi+y! ,B+k—yi+k*—y’)
PT(Y;* - yﬂyi’ a, 3, k*) = ﬂ-yfk*\yi(a’ 6) B ( Yi ) B(atyi,B+k—y:) ’

yr =0,..,k*and y; =1,....k .

This is another beta-binomial distribution. The likelihood for this
secondary data is

Ly(a, 8) = [Iiy Wyfk*\yi(aa B)Ls(i) = Hf:l Hf*:o {ij*”(a, B}

where S is the index set of all the individuals who participated in the
secondary phase and n;; is the number of individuals with j positive
tests in the secondary phase given that they had [ positive tests in
the primary tests.

3 Reparameterization and Bayesian approach

Instead of using the parameters a and [ we use here the reparam-
eterization 4 = a/(a+ ) and p = 1/(a + 8 + 1). The parameter
p is the expectation of the beta(c, 3) distribution. Due to multiple
diagnostic tests being done on the same individual there is bound to
be dependency in the response. The parameter p gives a measures
of the correlation of the responses of an individual. We assume that
p and p have each a priori the beta(0.5,0.5) distribution, which
turn out to be the reference prior in this setting (van der Linde
(2003)). The joint posterior distribution of x and p is then a com-
plex two-dimensional distribution. Attempts to obtain conditional
posterior distributions does not give distributions with well known
form. This then means that Gibbs sampling methodology is not
applicable in this case. However, other Markov Chain Monte Carlo
(MCMC) methods such as Metropolis-Hastings algorithm may be
used. Basically MCMC simulates a Markov chain whose stationary
or limiting distribution is the posterior distribution of interest.



4 Bayesian logistic regression

An alternative approach to estimate the FNF is based on logistic
regression (Lloyd and Frommer (2003)). This approach is based
on modeling and extrapolating patterns in the FNF conditional on
individual histories. In case of heterogeneity or if there is positive
correlation, then individuals who test positive more often in the past
are more likely to test positive in the future, and hence are likely to
return false negatives. Lloyd and Frommer (2003) shows that the
probability of m consecutive negative test results conditional on x
prior positive results out of k (denoted 7,41 ) is a decreasing func-
tion of x and an increasing function of k. Letting 74 denote the FNF
it can be shown that

_ Y111 k—1
Ve = m Hj:l Y104
Starting with the basis functions z/k,z/k* x/k® 1/k,1/k* and us-
ing the minimum AIC Lloyd and Frommer (2003) selects the follow-

ing model

log(%) = Bo+ Big + Bays
We fit the same model but in a Bayesian setup using the Metropolis-
Hastings algorithm and incorporating the Gamerman (1997) itera-
tive weighted least squares algorithm.We assume that 3y, 31 and s
have each a uniform prior distribution. For each posterior draw of
(Bo, B1, B2) we obtain a posterior sample of vjz. In particular for
the values (z =0,k = 1) and (z = 1, k = 1) posterior draws of 7, for
any value of k can be obtained. We use an automatic and efficient
algorithm proposed by Gamerman (1997) for MCMC simulation.

5 Results

The MCMC algorithm was tuned so that an acceptance rate of be-
tween 35% and 40% was obtained (Gelman, Roberts, Gilks (1995)).
In addition, thinning was done so as to eliminate serial correlation
in the draws of ;1 and p. Table 1 displays the estimates of the FNF
for different models. In model 1 only the primary data is used. In
both models 2 and 3 both primary and secondary data are used.



In model 2 we assume one dropout probability while in model 3 we
assume several dropout probabilities. Having one dropout proba-
bility is equivalent to assuming that all the individuals are equally
likely not to take part in the secondary phase of the screening tests.
Different dropout probabilities reflect the fact that the likelihood
of an individual having secondary tests is dependent on the pri-
mary result. The median posterior estimate of the FNF from the
primary data (model 1) was 26.4% with a 95% credible interval of
(0.123,0.650). The median posterior estimates of u and p in case of
model 2 were 0.455 and 0.500 respectively. The corresponding 95%
credible intervals were (0.208,0.569) and (0.374,0.660) respectively.

Estimation of the number of diseased individuals who were diag-
nosed as disease free depends of the draw of the FNF and whether
we are considering the primary data only or both primary and sec-
ondary data. For example in the case of model 1 the data con-
sists of 196 diseased patients so that solving the equation FNF =
m/(196 + m) for each draw of the FNF gives the posterior distri-
bution of the number of missed cases. For the case of model 1 the
median estimate of missed cases was approximately 71 with a 95%
credible interval as (33,174)(see Table 1). Inclusion of the secondary
data in the analysis (models 2 and 3) lead to lower estimates for the
FNF with narrower credible intervals. There does not appear to be
informative dropout as estimates of the FNF are similar in the last
two models.

The Bayesian logistic model with covariates z/k and z/k3 given
in Section 3 was fitted to the data in Table 2 of Lloyd and From-
mer (2003). The symbol z represents the number of positive tests
out of a total of k tests in the primary phase. Table 2 gives both
the Maximum Likelihood Estimates (MLE) and the corresponding
MCMC ones. Both approaches give roughly similar estimates. With
(x=0,k=1) posterior samples of 7)oy were obtained. This was re-
peated for (x=1,k=1) to obtain the posterior samples of 7;1;. Pos-
terior draws of v; for different values of k were obtained from the
expression for v in Section 3. For k=6 the mean estimate of the
FNF based on MLE using the primary data is 23.6% and is similar
to 23.8% obtained from Bayesian logistic regression.



6 Model Validation

We validate the beta-binomial model fitted to the primary data by
predicting the expected marginal frequencies for the secondary data.
Using the p and p parameterization the predictions are obtained
from the expression

o _ E\Bla+y*,8+k" —y")—Bla+y",B+k+k" —y")
Pry* =y Ia,ﬁ)—Ns<y*> .

for y* € {0, ..., k*}

where o = p(1/p—1) and B = (1—pu)(1/p—1). pand p are replaced
by the values from the posterior draws after the beta-binomial model
is fitted to the primary data with £ = k* = 6. Ny = 122 is the num-
ber of individuals who had secondary tests. We also validate the
Bayesian logistic model fitted above. To do this we need to evaluate
the conditional probability of an individual having [ positive tests
given that the individual had x positive test out of k previous tests.
For example the probability that an individual has one positive test
out of six tests is the sum of the probabilities of each of the follow-
ing 6-tuple binary vectors (1,0,0,0,0,0), (0,1,0,0,0,0), (0,0,1,0,0,0),
(0,0,0,1,0,0,), (0,0,0,0,1,0,), (0,0,0,0,0,1), where 1 is for positive test
and 0 otherwise. To evaluate the probability of the first vector say,
we have

Pr(1,0,0,0,0,0) = (1- ’Yl|00)’Yl|11’Yl|12’Yl|13’Yl|1471\15
(1 - ’Yl)’Yl|1171|12’71|13’Y1|14’Y1|15-

All the 71 can be obtained from the logistic model. However it is
computationally tedious because the conditional probabilities have
to be evaluated for all the different combinations of Os and 1s. For
example for two positive tests we have 10 different combinations
while for 3 positive tests we have 20 different combinations. Table
3 gives the results based on the two models. Generally the two
models do not predict the secondary observations quite well. The
"p-value” is the probability of the predicted value being less than



the observed count. Table 4 are the cell predictions based on the
beta-binomial model. Again the model do not appear to predict the
cell frequencies quite well.

7 Conclusion

We conclude that by using the Bayesian approaches on the observed
diagnostic histories and patterns it is possible to estimate the FNF'
Estimation from the primary data with beta(0.5, 0.5) reference priors
for 1 and p leads to a median estimate of the FNF as 26.4% with a
95% credible interval of (0.123,0.650). The corresponding estimate
based on the Bayesian logistic regression was 23.8%. There do not
appear to be informative selection with regard to those who had the
secondary tests because assuming that the individuals had varying
probability of taking part in the secondary phase do not result to
estimate of the FNF that is different from that obtained when all
the individuals had equal probability of missing the secondary tests.
Although the beta-binomial model do not appear to fit the data very
well it’s theoretically and computationally simple to handle and in
addition models the heterogeneity and correlation patterns within
an individual. The Bayesian approach further provides direct esti-
mates of credible intervals as we are dealing directly with samples
from the posterior distribution of the FNF. We therefore avoid the
problem of estimation of standard errors based on the delta approx-
imation method. One particular niece feature of the Bayesian ap-
proach is the ability to validate whether our model fits the data well.
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Table 1: Estimates of the FNF.

Missed
model mean s.e median  95% CI cases
1 0.295 0.135 0.264 0.123-0.650 70.3
2 0.249 0.095 0.232 0.122-0.486 59.2
3 0.245 0.087 0.229 0.122-0.461 58.2

Table 2: Logistic models using maximum likelihood method (MLE) and the
MCMC based on conditional FNFs (cf. Lloyd(2003))

MLE MCMC

estimate s.e estimate s.e median 95%C1
intercept 1.573 0.231 1.567 0.227 1.564 1.122-2.015
z/k -3.602 0.356 -3.590 0.351 -3.587 -4.285-2.906
z/k3 1.008 0.294 1.010 0.288 1.013 0.448-1.574
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Table 3: Predicted counts based on beta-binomial model and the Bayesian Lo-
gistic regression model. !based on beta-binomial model with y and p having
beta(0.5,0.5) prior each; 2based on Bayesian logistic model.

0 1 2 3 4 ) 6

Observed 22 8 12 16 21 12 31
Expected!

mean 11.7 14.0 14.7 15.1 16.1 18.8 31.8

p-value 1.000 0.000 0.001 0.783 1.000 0.000 0.431
Expected?

mean 29.0 18.7 12.1 9.7 12.3 16.5 24.8

"p-value” 0.189 0.000 0.457 1.000 1.000 0.041 0.925

Table 4: Observed and expected numbers of individuals testing positive y times
in the primary test and y* times on secondary test.

Yy
Yy 0 1 2 3 4 5 6
1 10 3 3 2 2 1 2
mean 8.2 6.7 4.3 2.3 1.0 0.3 0.1
"p-value” 0.950 0.000 0.000 0.152 0.999 1.000 1.000
2 3 2 2 1 4 1 1
mean 2.2 3.3 3.3 2.6 1.6 0.8 0.2
7p-value” 1.000 0.000 0.000 0.000 1.000 0.997 1.000
3 4 1 5 3 4 1 4
mean 1.1 2.8 4.1 4.5 3.9 2.6 1.0
"p-value” 1.000 0.000 1.000 0.000 0.712 0.000 1.000
4 1 1 0 3 4 1 4
mean 0.2 0.8 1.7 2.7 3.3 3.2 2.0
7p-value” 1.000 1.000 0.000 1.000 1.000 0.000 1.000
5 3 1 1 4 4 3 6
mean 0.1 0.4 1.1 2.4 4.3 6.5 7.3
median 0.1 0.4 1.1 2.4 4.3 6.4 7.3
"p-value” 1.000 1.000 0.016 1.000 0.001 0.000 0.000
6 1 0 1 3 3 5 16
mean 0.0 0.1 0.2 0.8 2.1 5.7 21.0
"p-value” 1.000 0.000 1.000 1.000 0.988 0.146 0.001
total mean 11.8 14.0 14.8 15.3 16.4 19.0 30.7
"p-value” 1.000 0.000 0.000 0.8308 1.000 0.000 0.5647
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