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Abstract

In market microstructure theory the effect of time between consecutive transactions and trade
volume on transaction price changes of exchange traded shares and options has been considered
(e.g. Diamond and Verecchia (1987) and Easley and O’Hara (1987)). The goal of this paper
is to investigate if these theoretical considerations can be supported by a statistical analysis of
data on transaction price changes of options on shares of the Bayer AG in 1993-94. For this
appropriate regression models with non linear and interaction effects are developed to study the
influence of trade volume, time between trades, intrinsic value of an option at trading time and
price development of the underlying share on the absolute transation price change of an option.
Since price changes are measured in ticks yield count data structure, we use in a first analysis
ordinary Poisson generalized linear models (GLM) ignoring the time series structure of the data.
In a second analysis these Poisson GLM’s are extended to allow for an additional AR(1) latent
process in the mean which accounts for the time series structure. Parameter estimation in this
extended model is not straight forward and we use Markov Chain Monte Carlo (MCMC) meth-
ods. The extended Poisson GLM is compared to the ordinary Poisson GLM in a Bayesian setting
using the deviance information criterion (DIC) developed by Spiegelhalter et al. (2002). With
regard to market microstructure theory the results of the analysis support the expected effect
of time between trades on absolute option price changes but not for trade volume in this data set.

Key words: Poisson-GLM, latent process, AR, MCMC, model selection, DIC, market mi-
crostructure, transaction price changes of options



1 Introduction

Financial transaction data, sometimes also called ultra-high-frequency data, have become a new fo-
cus of applied financial market theory as markets observed at this level generate data that describe
the trading and asset pricing process in a much more detailed way than well known macroeconomic
data such as daily stock returns, exchange rates, etc. (e.g. Dacorogna et al. (2001) and Bauwens
and Giot (2001)). From an econometric point of view ultra-high frequency financial data have two
main characteristics: the irregularity of time intervals between consecutive trades and the discrete-
ness of price changes. Sophisticated econometric models for transaction price changes which also
take into account the time series structure of the data have been developed and applied to real
market data with a focus on stock and bond markets. While one focus of current research is the
further development of autoregressive conditional duration (ACD) models based on the work by
Engle (2000), other publications (e.g. Liesenfeld and Pohlmeier (2003)) are concerned with the
adequate modelling of the asset pricing process at transaction level within a count data framework.
The aim of this paper is to model the relationship between absolute transaction price changes
of equity options and a series of explanatory micro-variables such as the already mentioned time
between consecutive transactions, trade volume and option-specific variables such as price change
of the corresponding underlying or the intrinsic value of the option at the time of the trade. This
will lead to a better insight into option market mechanics and option market microstructure in
general. In particular we are interested if a statistical analysis supports implications from market
microstructure theory. More specifically does a large time between trades and higher trading vol-
ume imply on average a larger absolute price change of the option? As a representative example
of an exchange traded equity option we consider in this paper options on shares of the Bayer AG
from 1993 to 1994, traded at the Deutsche Terminbérse (DTB) at that time. Together with the
SWX Swiss Exchange the Deutsche Borse AG now jointly operates the Eurex Exchange which has
replaced the DTB and is now the world’s largest exchange for financial derivatives.

We use a Poisson generalized linear regression model (GLM) as major stochastic tool for the sta-
tistical analysis of the available data. We also fit a Poisson-GLM with an AR(1) latent process in
the mean, which introduces autocorrelation and therefore accounts for the time series structure of
the data. This class of models has been discussed and applied to biometric and econometric data
for example by Zeger (1988), Chan and Ledolter (1995) and Davis et al. (1999). For parameter
estimation we use Markov Chan Monte Carlo (MCMC) methods and we finally compare and as-

sess the adequacy of the different models by using the deviance information criterion proposed by



Spiegelhalter et al. (2002).

Our modelling results indicate that the explanatory power of the variables ”time between consec-
utive transactions” and ”trade volume” is rather low in this data set with respect to the absolute
transaction price changes of the options considered as variable of interest in this paper. Although
we do not dispose of exact intraday data for the underlying Bayer AG share we can still observe
that explanatory variables which involve the value of the underlying (such as price changes of the
underlying itself or the intrinsic value of the option at the time of the trade) have an important
effect on the absolute transaction price changes of the options, which is, of course, in line with
basic economic considerations. Moreover, our modelling results for the data of one selected Call
option indicate that autocorrelations between the absolute transaction price changes are low and
a modelling approach which considers the absolute transaction price changes as independent is to
be preferred. This result may, however, merely be a consequence of the comparatively low trading
activity for the equity options considered in this paper and may not be generalized without further
investigation.

The paper is organized as follows: Section 2 gives a short introduction to the basic economic
background and terminology related to options and option markets. Section 3 describes and explo-
ratively analyzes the available data and gives first empirical results. The ordinary Poisson-GLM
and extensions of the model which incorporate an AR(1) latent process are briefly introduced in
Section 4. Poisson-GLMs are fitted to data for sets of options and results are related to implica-
tions of market microstructure theory for the effect of time between trades and trade volume on
absolute option price changes in Section 5. Section 6 focuses on one particular security for which an
ordinary Poisson-GLM and a Poisson-GLM with an AR(1) latent process are fitted in a Bayesian
model setting. The adequacy of the two models of different complexity is assessed using the de-
viance information criterion proposed by Spiegelhalter et al. (2002). Finally, Section 7 summarizes

the results and gives conclusions.

2 Economic background

In this chapter we give a very brief introduction to the basic definitions and market mechanics of
exchange-traded options. For a detailed introduction to options and other financial derivatives see

for example Hull (2003).

2.1 Basic definitions

An option is a privilege sold by one party to another that offers the buyer the right, but not the
obligation, to buy (Call option) or sell (Put option) an underlying asset by a certain date for an
agreed-upon price. The price in the contract is called exercise price or strike price. The date in

the contract is known as ezpiration date or maturity. Options that can be exercised at any time



up to the expiration date are referred to as American options, while those options that can only be
exercised on the expiration date itself are called Furopean options. Of course, there are two sides to
every option contract. Firstly, the investor who has bought the option or taken a long position and
secondly the investor who has sold the option or taken a short position. The seller of the option
is also called the writer of the option. The writer of an option receives a certain amount of cash,
the option price, up-front from the buyer. After paying the up-front option price, the holder of a
long position in an option does not have any potential liabilities later. The potential losses from a
short position, however, are theoretically unlimited. The following table shows the payoffs of the
four possible option positions at maturity of the option. St denotes the price of the underlying

asset at maturity, K the strike price of the option.

Call Put
Long position | maz(Sy — K,0) maz(K — St,0)
Short position | —maz (S — K,0) | —maxz(K — S1,0)

The intrinsic value of a Call option at time ¢ < T' is defined as:

maz(S; — K,0).

An option with intrinsic value > 0 is called in-the-money, an option with intrinsic value = 0 is
called at-the money if the current price of the underlying is equal to the strike price and out-of-
the-money if the current price of the underlying is below the strike price of the option. For Put
options the intrinsic value is defined as maz(K — St,0) and the in-the-money, at-the-money, out-
of-the-money terminology is used analogically. In general, the present value of a European option
equals the intrinsic value plus the time value of the option. The time value reflects the possibility
of favourable movements in the price of the underlying in the future. It is of course equal to zero
when the option has reached maturity. The underlying assets exchange-traded options are currently

actively traded on include stocks, stock indices, foreign currencies and futures contracts.

2.2 Option market participants

Before analyzing the option trading process it will be useful to shortly introduce the main partic-
ipants in option markets. There are three broad categories of traders that actively trade options:
Hedgers, who seek to reduce risk exposure, speculators who explicitly wish to take a position and
bet on market movements and arbitrageurs who try to lock in risk-free profits by entering into
transactions in two or more markets simultaneously. Orders are executed by a broker, an individ-
ual or firm that charges commissions for executing orders submitted by an investor. In order to
facilitate trading in a particular security option exchanges use market makers. A market maker is
both a broker and a dealer willing to accept the risk of holding a particular number of shares of

a particular security in order to facilitate trading in that security. Each market maker competes



for customer order flow by displaying bid and ask quotations for a guaranteed number of shares.
Once an order is received, the market maker will immediately sell from its own inventory, buy on
its own account or seek the other side of the trade so that the trade can immediately be executed.
Market makers ensure that both buy and sell orders can always be executed without any delay and

therefore add liquidity to the market.

Share price and price for the call option Bayer
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Figure 1: Bayer share (---) and Call option (—) with strike price 280 DM and
expiration month September 1993.

3 Data description and explorative data analysis

3.1 Data description and the variable of interest

As a representative example for option transaction data we consider in this paper American-style
options on shares of the Bayer AG. The available data set contains both call and put options
together with the corresponding strike price, time of maturity, trading time (up to hundredth of
a second) and trading volume (traded lots in contracts) of each trade. The major drawback of
the data is the lack of detailed intraday data for the underlying Bayer AG shares. Prices of the
Bayer AG shares are only available on a daily basis, so that the determination of option-specific
explanatory variables as mentioned in Section 1 is limited. One option contract consists of the right
to buy/sell 50 shares. Note however, that the option prices are always quoted for the purchase or
sale of 1 unit of the underlying, i.e. for the purchase or sale of 1 Bayer AG share. During the

sampling period the smallest possible incremental change of the option price was set to 0.10 DM.



The smallest possible incremental price change of a certain security is commonly called tick size.
Thus, in our data example 1 tick equals 0.10 DM.

In a first step we investigate empirically the relationship between the Bayer stock price and the
price of options on the Bayer share. Figure 1 shows the price development of a Call option on the
Bayer share with strike price 280 DM and expiration month September 1993. We have chosen the
strike price of 280 DM for this purpose since it was the most actively traded option within the

corresponding option series. Figure 1 shows a strong relationship between the value of the Bayer
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Figure 2: Price changes of the Call option with strike price 280 DM and expiration month Sept.
1993.

stock and the value of the Call option as expected. Furthermore one can observe that the number
of trades of the Call option increases as one gets closer to the expiration date of the option. For
example, only 30 transactions were observed in January 93 in contrast to 146-170 transactions per
month from June to September 93.

Our primary goal in this paper is to relate transaction price changes of options to other marks of
the trading process. In order to get a first impression of the structure of these price changes we
plot the price changes of the Call option on the Bayer share with a strike price of 280 DM and
expiration month September 1993 against time in Figure 2. Most option price changes are between
- 20 to 20 ticks, but a few larger values of more than 50 ticks especially in the last 3 trading months

of this Call option can be observed. When comparing the price changes of the option to the price



changes of the underlying share, one can see that relative price changes of the option are much
higher than those of the underlying, i.e. option price changes have much more financial impact
than those of the underlying. This well-known phenomenon is commonly called leverage effect of
the option. Histograms of the transaction price changes are reasonably symmetric around a peak
at 0, which gives some justification to consider absolute price changes as the variable of primary

interest for further modelling.

3.2 Relationship between absolute option price changes and time between con-
secutive transactions

We now consider again the absolute price changes of the Call option on the Bayer share with

strike price 280 DM and expiration month September 1993 and plot them against time between

consecutive transactions for each month in 1993 up to maturity of the option in Figure 3. We also

draw the regression line based on a simple linear least squares regression for each plot.

Absolute price change and time between transactions for the call option Bayer
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Figure 3: Relationship between absolute option price changes of the Call option with strike price
280 DM and expiration month 1993 and time between consecutive transactions.

The positive slopes of the regression lines indicate a positive relationship between absolute option
price changes and time between consecutive transactions, which means that the longer the time
between two consecutive transaction the larger the expected absolute option price change. Note

that the time between transactions can be considered as an indicator of the speed of the market.



3.3 Relationship between option price changes and stock price changes

As already mentioned earlier the major drawback of the available data is the lack of intraday prices
of the underlying Bayer share. So, when comparing the price of the underlying at a certain option
transaction time with the price of the underlying at the time of the previous option transaction this
will necessarily yield a difference of 0 unless the two transactions did not occur on the same day.
This drawback in mind we construct a vector with the price changes of the underlying share which
corresponds to the vector of the price changes of the considered option. Of course, the underlying
price change vector will contain mainly zeros. One can expect that in general there is a very strong
relationship between the price change of the underlying and the price change of the option. Just
consider the case of a Call option which is in-the-money. If the value of the underlying increases
e.g. by 0.50 DM, the intrinsic value of the option increases by the same amount. As the value of
the option can generally be calculated as intrinsic value + time value, one would expect the option

price to rise approximately 0.50 DM in this example.

Share price changes and price changes of the call option (Bayer) Share price changes and price changes of the put option (Bayer)

o o

10

price change (option)
price change (option)

absolute price change (option)

Figure 4: Relationship between option and share price changes (first row) and relationship between
absolute option and absolute share price changes (second row) for the Call and Put option on the

-10 -5 0 5

price change (share) from January until September , 93

Abs. share price changes and abs. price changes
of the call option (Bayer)

o o

5 o © o
Qg;mooooo (% é@ © ©
T T

T T T
0 2 4 6 8 10

absolute price change (share) from January until September , 93

absolute price change (option)

-15 -10 -5 0 5

price change (share) from January until September , 93

Abs. share price changes and abs. price changes
of the put option (Bayer)

T T T
0 5 10

absolute price change (share) from January until September , 93

Bayer share with strike price 280 DM and expiration month Sept. 1993 respectively.

8



Despite the lack of more detailed data for the underlying Bayer shares, one can still see a clear
positive relationship between the price changes of the Call option and the price changes of the
underlying and a clear negative relationship between the corresponding Put option price changes
and the price changes of the underlying Bayer share in the first row of Figure 4. Again, we draw the
regression lines in order to better illustrate these relationships. Figure 4 also shows the relationship

between the absolute option price changes and the absolute share price changes (second row).

3.4 Relationship between absolute option price changes and trade volume

In Figure 5 we show the relationship between the absolute transaction price changes of the Call
option with strike price 280 DM and expiration month September 1993 and the volume of the
corresponding transaction (traded lots in contracts). The negative slope of the regression lines
indicates that in general the absolute transaction price changes become smaller when the trade

volume increases.

Absolute price change and volume for the call option Bayer
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Figure 5: Relationship between absolute price changes of the Call option on the Bayer share with
strike price 280 DM and expiration month September 1993 and trade volume.

3.5 Relationship between absolute option price changes and intrinsic value of
the option

We have already defined the intrinsic value of an option in Section 2. However, when we consider

the intrinsic value as a possible explanatory variable for our variable of interest we will use this



term in a slightly different way. We define the variable ”intrinsic value” as I'V; := S; — K where
again Sy denotes the price of the underlying Bayer share at time ¢ and K denotes the strike price
of the option. Due to the lack of detailed intraday data for the Bayer share the intrinsic value as
previously defined can only be determined as a daily value and must therefore be considered as an
approximation of the real intraday value at the time of each trade.

As our variable IV} is not restricted to non-negative values it can also specify how far an option
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Figure 6: Relationship between absolute price changes of a set of Call and Put options on the Bayer
share with expiration month September 1993 and ”intrinsic value” of the options between January
1993 and September 1993.

is out-of-the money and therefore provides more detailed information than the common definition
of the intrinsic value of an option stated in Section 2. We define IV; in this way for both Call
options and Put options which somehow simplifies the data handling but, of course, has to be
remembered when it comes to economic interpretations. In the following we will not consider single
options but a whole set of options (options of the same type with the same expiration date but
with different strike prices and possibly a different life-span) during a certain period of time, up
to maturity of the options. We successively write the observations of the different options into one
vector. This approach broadens the data base and it is therefore easier to analyze the relationship

between possible explanatory variables such as the previously defined ”intrinsic value” and the

10



variable of interest. In Figure 6 we show the relationship between the absolute option price changes
and the ”intrinsic value” as previously defined for a set of Call options and for a set of Put options
respectively. The regression lines indicate that the more the options are in-the-money in the proper
economic sense (for both Call and Put options), the larger the absolute option price changes. In
addition to the expectation of the absolute option price changes, it can also be observed that their

variance increases the more the options are in-the-money.

4 Regression models for count response data

Due to the count data structure of absolute option transaction price changes measured in ticks, a
natural starting point for a regression analysis is the Poisson regression model. Since the Poisson
regression model is a special case of a generalized linear model, its statistical properties are well-
known and parameter estimation can easily be handled (see for example McCullagh and Nelder
(1989)). Moreover, the interpretation of the modelling results is straightforward. Note however,
that the Poisson distribution allows only one single parameter to estimate both the mean and the
variance, which may be a very restrictive approach for some real data problems.

In a second step, we also take into account the time series structure of the transaction price changes
by considering a Poisson-GLM with an AR(1) latent process in the mean. The unobservable la-
tent process introduces autocorrelation into the model and therefore accounts for its time series
structure. Parameter estimation in this class of models is, however, much more complicated than
in ordinary Poisson-GLMs. In the literature several estimation techniques have been proposed.
In this paper we will use the WinBUGS software (freely available on the BUGS-project website
http://www.mrc-bsu.cam.ac.uk/bugs/welcome.shtml) which estimates the parameters of the model
with Markov Chain Monte Carlo (MCMC) methods. MCMC methods can be used in Bayesian
Inference. In contrast to the classical approach, model parameters are considered to be random
variables in Bayesian Inference. They are distributed according to a prior distribution which sum-
marizes all a-priori knowledge about the parameters obtained for example by previous experiments
or experts’ assumptions. Then, given a random sample, the knowledge about the model parame-
ters can be updated by using the new sample and by calculating the conditional distribution of the
parameters given the new sample. This conditional distribution is commonly called posterior dis-
tribution. MCMC methods can be used to obtain an approximate sample from a complex posterior
distribution by recording values of a simulated Markov Chain with a limiting distribution which is
equal to the posterior distribution of the model parameters. The mean of these values generated by
the Markov Chain can then be used as estimate for the model parameters. For a detailed introduc-
tion to MCMC estimation see for example Gamerman (1997) or Gilks et al. (1996). We will assess

convergence of the MCMC simulation with the method proposed by Gelman and Rubin (1992).

11



Before we build and fit specific models in the following sections, we give a very brief introduction

to Poisson-GLMs in general and to Poisson-GLMs with an AR(1) latent process in the mean.

4.1 The Poisson generalized linear model

As already mentioned earlier, the Poisson regression model is a special case of the generalized
linear model (GLM). In a GLM, given the covariates x;, the response variables y;, i = 1,...,n are
independent and identically distributed with a density of the form

By — b(0)
a(¢)

which is (for a known ¢) a density from the exponential family. € is a location parameter (not

:0,8) = exo { Feln i)} (41)

necessarily the mean) and ¢ is a dispersion parameter. The probability density function of the

Poisson distribution with mean A\

fpoi(y) = exp{—A +ylog A —logy!'}

can be rewritten in the form (4.1) with a(¢) =1, 6 =logA, b(0) = exp(f) = exp(logA) = A, and
c(y, ¢) = —logy!. The function which links the regressors to the parameter(s) of the distribution
of the variable of interest is called link function. In the case of the Poisson regression model the
canonical link function is the log-link, i.e. n; := a:fﬁ = log();) for i = 1,..,n. Therefore, the

conditional mean of y; given the covariates x; is given by
E(Y; | ;) = exp(m;) = exp(xiB), i =1,..,n.
One important property of the Poisson distribution is equidispersion, i.e.
Ai=E(Y; | =) = Var(Y; | ;).

If in a data set the variance exceeds the mean, we say that the data shows owverdispersion. We
speak of underdispersion, if the variance is lower than the mean. For a detailed discussion of
Poisson regression models and of count data regression in general see Cameron and Trivedi (1998)

or Winkelmann (1997).

4.2 Poisson-GLMs with an AR(1) latent process in the mean

This class of models can be considered as an extension of the previously described Poisson-GLM
when the observations Y;, t = 1,...,T, come from a time series and are unlikely to be independent.

The general model framework as considered for example by Chan and Ledolter (1995) is given by:

Y; ~ Poi()\;), A = exp(u + x!B), (4.2)
up = p- U1 + €, £t 11d N(0,0?)

12



where the observations Y; conditional on x; and on the latent variables u; are independent for
t=1,..,T. Since {u;} is an ordinary AR(1) process, it follows that

o?
l—p

E(us) =0, 05 = Var(uw) = 5

Yulk) = Cov(ur, upsr) = pho.

Thus, in this model u; ~ N(0,02) and using the common formulas for the expectation and variance

of the log-normal distribution it follows that

IS

g

)

Var(eap(u)) = eap(0?)(eap(o?) - 1).

Eezp(u)) = exp(

|

Using these results it is easy to see that

o2
E(Yilxy) = B(B(¥ilur, %)) = Blep(w)) - exp(xB) = exp (7 ¥ X§B> R
Using the abbreviation 14 := exp(x!B) the variance of Y; conditional on the regressors (but not

conditional on the latent process) can be calculated as:

Var(Yi|x;) = EVar(Yixs,ur)) + Var(E(Yy|xe, ut))
2
= exp(=2) v+ Var(exp(u) - 1)

= exp(2) v+ Var(exp(u)) - I/tz

M|§qw M|§qw o Q

= exp(=2) - v + exp(o?)(exp(o?) — 1) - V2. (4.4)

Since Var(Yyx;) > E(Y;|x;) if 02 > 0, the model allows for overdispersion. Furthermore, for
k = 1,2, ... the autocovariance between Y; and Y;;; conditional only on the regressors can be

calculated as :

Cov(Yy, Yiklxi, Xe4k) = vt - vk - expl(oy,) - (exp(p®oy) — 1). (4.5)

Note that if v, (k) # 0 it follows that Cor (Y, Yiir|xe, Xe4x) # 0, i.e. the latent process induces
autocorrelation into Y;. Since v, (k) = 0 only if p = 0, autocorrelation in Y; given the regressors is
present if p # 0.

These results are also stated in Zeger (1988) and Davis et al. (1999) for a slightly different pa-
rameterization of the latent process. Parameter estimation of Model (4.2) is not straightforward
and computer intensive. Chan and Ledolter (1995) use a Monte Carlo Expectation Maximization
(MCEM) algorithm while Zeger (1988) proposes estimating equations based on a time series ana-
logue of quasi-likelihood methods. We will carry out parameter estimation using the WinBUGS

software for MCMC estimation.
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5 A Poisson-GLM for the absolute transaction price changes of
sets of Call and Put options

When building a regression model the regressors that enter into the model have to be determined,
possibly after transformations and possibly taking into account interaction effects between the re-
gressors. In order to get a better impression of the significance of the explanatory variables already
considered in the previous section we show the following plots, which illustrate the empirical effects
of the explanatory variables on the variable of interest for the set of Call options with expiration
month September 1993, considered between January and September 1993 (Figure 7), and for the
set of corresponding Put options (Figure 8). For these plots the explanatory variables were divided
into their 10 % quantiles and for each quantile the empirical log-mean of the variable of interest
(the absolute option price changes) was calculated separately. These plots once again confirm the
assumptions about the relationships between the explanatory variables and the absolute option
price changes which we have already stated in the previous section. Note that in the case of the
absolute price changes of the underlying share only values # 0 were considered and divided into

20% quantiles.

In order to statistically quantify the influence of the explanatory variables on the absolute op-
tion transaction price changes we fit a first Poisson-GLM where all explanatory variables enter into
the model without transformations and without interaction effects. Table 5 summarizes the results

of the modelling for two sets of Call options and two sets of Put options.

Call options Put options
str. month 09 str. month 09
93 94 93 94
trade volume —— —— trade volume — +
time betw. transactions | ++ ++ time betw. transactions | ++ ++
abs. share price change | ++ ++ abs. share price change | ++ ++
IV of option ++ ++ IV of option —— ——

Table 1: Influence of regressors: +/- represents a weak (2 < |t — value| < 6) positive/negative
influence and ++/-- a strong (|t — value| > 6) positive/negative one.
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Figure 7: Main effects for abs.transaction price changes of a set of Call options on the Bayer share
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Figure 8: Main effects for abs.transaction price changes of a set of Put options on the Bayer share
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As a next step we consider possible transformations of the regressors in order to improve the model
fit. Figures 7 and 8 already indicate that it may be better to transform some of the covariates, e.g.
by taking the logarithm, before they enter into the model as regressors.

With the four data sets already used in Table 1 we investigate log-, sqrt- and polynomial transfor-
mations of the covariates. This is done by building simple Poisson-GLMs with only one covariate,

e.g. the intrinsic value. For each data set and for each explanatory variable we fit four models of

the form
Yy ~ Poi(u)
with
L. py = exp(Bo + z¢f1)
2. = exp(Bo + log(x¢) )
3. pe = exp(Bo + /)
4. (

pe = exp(Bo + i1 + 2 B2)

where Y; denotes the t-th absolute option price change and z; denotes the t-th observation of one
particular explanatory variable. In the case of the logarithm it has to be ensured that z; > 0 for
all ¢. This can be done by adding a large enough constant ¢ to z; for all t. Proceeding in the same
way, it can also be assured that z; > 0 in the case of the square root transformation. We finally
evaluate the transformations by comparing residual deviances of these models. In general it can
be observed that log(time between transactions), log(trade volume), sqrt(abs. share price change)
and a polynomial of degree 2 for the intrinsic value lead to the best models with regard to residual
deviances. From now on, we will use these transformations of the explanatory variables for the
modelling of the absolute option price changes.

As a further step in the model building process we take into account possible interaction effects
between the regressors. With four possible explanatory variables we have to investigate < ;l ) =6
possible interaction effects. We use the step-function in S-Plus in order to determine significant
regressors and significant interaction effects between the regressors. In this way we obtain the final
model for each data set. Table 2 gives an overview of the covariates that enter into each model.
Although some important similarities in the models for the four different data sets can be observed
one can hardly expect to obtain completely identical models for the different data sets, considered
between January and September of the corresponding year. We use the S-Plus notation ”A : B”
to denote the interaction between the covariates A and B. For example, ”1) : 2)” denotes the

interaction between log(time between transactions) and log(trade volume).

In the following we will further discuss and interpret the model for the transaction price changes
of the set of Call options with expiration month September 1993. Table 3 shows the results of the
maximum-likelihood estimation for the GLM with the absolute transaction price changes of the

set of Call options on the Bayer share with expiration month September 1993 as response variable
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Significant regressors after stepwise covariate selection

Call 09/93 | Call 09/94 | Put 09/93 | Put 09/94
Intercept X X X X X X X X
1) log(time betw. transactions) X X X X X X X X
2) log(trade volume) X X X X X X X
3) poly(intrinsic value,2) X X X X X X X X
4) sqrt(abs. share price change) X X 0 0 X X
1):2) X X X X 0 X
1) :3) X X X X X X
1):4) 0 X X 0 X
2):3) 0 X X X 0
2): 4) X 0 X X 0
3):4) X X X X

Table 2: Significant (x) and highly significant (x x) regressors after stepwise regressor selection for
four data sets of option transaction price changes.

and the significant main and interaction effects according to Column 2 in Table 2 as regressors.
Yet, in a model with interaction effects it is not straightforward to interpret estimation results. For
this purpose we draw the following plots (Figure 9) where each plot shows the expected absolute
transaction price change of the option as a function of two of the explanatory variables on a linear

scale between their 10% and 90% quantiles with all other explanatory variables set to their median

values.
Parameter Est. | Std. error | t-value
f1 (Intercept) 1.297 0.035 | 37.31
B2 (log(Trade volume)) -0.175 0.014 | -13.01
B3 (log(Time betw. transactions)) 0.185 0.023 7.97
Bs (Intrinsic value) 0.031 1.5e-03 20.55
Bs ((Intrinsic value)?) 3.2e-04 4.4e-05 -6.88
Be (sqrt(Abs. share pr. change)) 0.262 0.044 6.02
Br (log(Trade volume):log(Time betw. transactions)) 0.074 9.4e-03 7.83
Ps (Intr. value:sqrt(Abs. share pr. change)) 5.8e-03 1.7e-03 3.41
By ((Intr. value)?:sqrt(Abs. share pr. change)) 7.0e-05 4.9e-05 1.44
P10 (Intr. value:log(Time betw. transactions)) 9.9e-04 8.8e-04 1.12
B11 ((Intr. value)?:log(Time betw. transactions)) -8.5e-05 2.3e-05 -3.36
P12 (log(Trade volume):sqrt(Abs. share pr. change)) -0.054 0.018 -3.04

Table 3: Summary of estimation results of the Poisson-GLM for the transaction price changes of the
set of Call options on the Bayer share with maturity September 1993, considered between January
and September 1993.

First of all, the plots in Figure 9 confirm the results of the influence of each of our explanatory
variables on the absolute transaction price changes of the options which we have already given in

Table 1. Due to basic economic considerations it is obvious that a high absolute price change of
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the underlying Bayer share will lead to a high absolute price change of the options on that share.
It is not a surprise either that, generally speaking, the larger S; — K of a Call option (i.e. the higher
the intrinsic value of the Call option as defined in the previous section) the higher the absolute
transaction price changes. As an example imagine a clearly out-of-the-money option shortly before
maturity. The value of this option will be close to zero and although there may still be some trading
activity for that option large absolute price movements can not be expected any more. Contrarily,
the price changes of a clearly in-the-money option shortly before maturity should approximately
equal the absolute price changes of the underlying. Economic interpretations of the relationship
between transaction rates (i.e. time between transactions) and transaction price changes have been
discussed in the literature in the context of market microstructure theory (see for example O’Hara
(1995)). For our Bayer option data example we have observed that low transaction rates (i.e. longer
times between transactions) are associated with larger absolute transaction price changes. A pos-
sible explanation for this is given by Diamond and Verecchia (1987). Provided that short-selling
is not feasible, they consider longer times between transactions as a possible signal for bad news
in the market. The absence of a short selling mechanism in this case prevents informed market
participants from profiting by exploiting the information through corresponding transactions. As
soon as the news have been spread in the market the price of the next transaction will reflect the
bad news and a large absolute price change is likely. We can finally observe in Figure 9 that,
in general, there is a negative relationship between trade volume and absolute transaction price
changes which confirms our results in Table 1, but is in contrast to a common theory (see for
example Easley and O’Hara (1987)) that large volumes per transaction indicate additional news
in the market and are likely to be associated with large absolute price changes. According to this
theory, given that they want to trade, informed traders prefer to trade larger amounts at any given
price to profit from their current informational advantage. As a result, large absolute price changes
associated with large trade volumes are likely. For a more detailed discussion of the relationship
between transaction price changes, trade volume and times between transactions in the context of
market microstructure theory see O’Hara (1995), Chapter 6.

Another observation which takes into account the interaction effects between the explanatory vari-
ables is the fact that, in general, the higher the intrinsic value of the option the larger the impact of
the other explanatory variables on the expected transaction price changes of the option. This can
be seen in the plots of the right column of Figure 9. Particularly high absolute transaction price
changes can be expected if the transaction rate is low and, at the same time, the option is clearly

in-the-money.
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Figure 9: Fitted regression surfaces of the Poisson-GLM for the absolute transaction price changes
of the set of Call options on the Bayer share with maturity Sept. 1993 when two regressors vary

and the remaining regressors are set to their median values.
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6 Regression modelling of the absolute transaction price changes
of a single security

We finally take into account the time series structure of the data and fit a Poisson-GLM with an
AR(1)-latent process in the mean as introduced in Section 4.2 to our data. For this purpose we
can not consider whole sets of options together, but have to focus on one particular security whose
absolute transaction price changes are the time series of interest.

As a representative example we consider again between January and September 1993 the Call
option on the Bayer share with strike price 280 DM and expiration month September 1993. Since
considering only one particular option reduces the data base (the total number of observations for
this security is 992), we also reduce the complexity of the regressors and only take into account
the traded volume, the time between transactions, the intrinsic value at the time of the trade
and the absolute price change of the underlying Bayer share without any transformations and
without interaction terms. This also makes the interpretations of the estimation results more
straightforward. Parameter estimation is carried out by the WinBUGS software with Markov Chain
Monte Carlo (MCMC) methods. Table 4 shows the estimation results of a MCMC simulation from
3 parallel chains (with different starting values) for each parameter where after an initial burn-in

of 2000 iterations a further 3000 iterations are recorded in each chain.

Parameter mean | std.err. | 2.5% | median | 97.5%
B1 (Intercept) 0.669 0.063 | 0.545 0.670 | 0.793
B2 (Trade volume) -0.004 0.002 | -0.008 | -0.004 | -0.001
B3 (Time betw. trans.) | 0.011 0.003 | 0.005 0.011 | 0.017
B4 (Intrinsic value) 0.031 0.004 | 0.024 0.031 | 0.038
Bs (Abs. share pr. ch.) | 0.226 0.044 | 0.138 0.226 | 0.311
p 0.190 0.050 | 0.091 0.191 | 0.288
o? 1L.111 | 0.085 | 0.958 | 1.107 | 1.286

Table 4: MCMC sampling results for the parameters of the Poisson-GLM with an AR(1)-latent
process applied to the Call option on the Bayer share with strike price 280 DM and expiration
month Sept. 1993 based on the last 3000 iterations in each chain.

The trajectories of the simulated chains and a consideration of the corresponding Gelman-Rubin
convergence statistics indicate that convergence is reached very quickly, which justifies the choice
of the burn-in. Autocorrelations within the chains are reasonably small, so that there is no need to
thin the recorded iterations. Figure 10 shows the posterior density estimates for the components
of the parameter vector B, Figure 6 shows the trajectories, the posterior density estimates and the
Gelman-Rubin convergence statistics for the parameters p and o2.

The estimation results for the autocorrelation coefficient of the latent process p imply that there
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latent process based on the last 3000 iterations in each chain.
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Figure 11: MCMC simulation, posterior density estimate and Gelman-Rubin convergence diagnos-
tics for p (left column) and o? (right column) in the Poisson-GLM with an AR(1) latent process.
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is indeed statistical evidence for some autocorrelation in the latent process. The posterior mean
estimate of the variance 62 of the latent variables u; is equal to 1.16. This implies that the latent
process has a strong impact on the expectation of the variable of interest given the regressors. In
our MCMC simulation this can be seen by considering the 992 posterior mean estimates of wu;,
t =1,...,992, which lie within the interval [—1.97,3.73], while those for x!3 lie within the smaller
interval [—0.77,3.38]. The lowest lower bound of all 992 95%-credible intervals of 4, ¢t = 1, ...,992, is
-3.34 while the largest upper bound of these credible intervals has the value 3.95. For the quantity
x%B, which measures the influence of the explanatory variables, these values are -1.91 and 4.17
respectively. It can be concluded that the effect of the latent variables on the absolute option price
changes is somewhat larger than the effect of the explanatory variables. The expectation, variance
and covariance of the variable of interest Y; (the absolute transaction price changes) conditional on

the regressors x; can be estimated according to (4.3), (4.4) and (4.5):

E(Yx;) = "% exiB =179.¢xiP

Var(Yilx) = 0. &P 4ot (6&
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— - t [ 2 ka2
CO’U(}/t,YVH_]JXt,XH_k) = Xt . extJrkB .e%u . (ep Ou _ ]_)

= exiﬁ . ex§+k6 . 319 . <6019k116 _ 1) .

Note that the estimated overdispersion is large while autocovariances and, consequently, autocor-
relations in the absolute transaction price change process fall off rather quickly. Naturally, the
question arises whether the incorporation of the latent process into the mean of the Poisson-GLM
leads to a better fit than an ordinary Poisson-GLM. In order to answer this question we fit an
ordinary Poisson-GLM to the same data. Table 5 gives the results of this estimation, carried out
in S-Plus with maximum-likelihood methods. It can be observed that concerning the relationship
between the explanatory variables and the absolute transaction price changes of the option, the
modelling results of both the Poisson-GLM with an AR(1) latent process and the ordinary Poisson-
GLM given in Table 4 and Table 5 respectively are in line with the results already discussed on
the basis of broader data and more complex regressors in the previous sections. In Figure 12 we
illustrate comparatively the way the ordinary Poisson-GLM of Table 5 and the Poisson-GLM with
an AR(1) latent process of Table 4 estimate the influence of each explanatory variable on the abso-
lute option price changes. In each plot, one of the explanatory variables is again shown on a linear,
untransformed scale between the 10%- and 90%-quantiles. With all other explanatory variables

set to their median values, the expected absolute option price change according to each model is
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calculated at ten equidistant grid points. It can be observed that the expected absolute transaction

price changes of the option are slightly larger in the Poisson-GLM with the AR(1) latent process

for almost all values of the explanatory variables.

Table 5: Estimation results of an ordinary Poisson-GLM fit to the data of the Call option on the

Parameter Estimate | Std.err. | t-value
B1 (Intercept) 1.2781 0.025 | 50.52
B2 (Trade volume) -0.0084 0.001 -7.45
B3 (Time betw. trans.) 0.0080 0.001 | 10.97
B4 (Intrinsic value) 0.0342 0.001 27.89
Bs (Abs. share pr. ch.) 0.2095 0.010 | 20.56

Bayer share with strike price 280 DM and expiration month Sept. 1993.
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Figure 12: Comparative illustration of the estimated influence of the explanatory variables on the
absolute transaction price changes of the Call option on the Bayer share with strike price 280 DM
and expiration month September 1993.
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In order to get a first informal impression of the goodness of fit of the previously discussed models
we compare the observations of the variable of interest to the fitted values of the models. We
consider the mode |A;] of the estimated Poi();) distribution as fitted value ¢, for the variable of
interest Y; and illustrate the accuracy of the fit of the two different models by calculating for both

models the quantity
992

SEM =i -yl
t=1
where residuals are squared and added for ¢t = 1,..,992. In the ordinary Poisson-GLM the calcu-

lation of SEM yields a value of 54021 while in the Poisson-GLM with the AR(1) latent process
SEM has the significantly smaller value 992. These results strongly indicate that the fit of the
Poisson-GLM with the AR(1) latent process is much better than the fit of the ordinary Poisson-
GLM. This informal approach, however, neglects the model complexity, which should be traded off

against the goodness of fit when comparing models.

A more formal way to assess the goodness of fit of these models is the consideration of deviances.
The deviance of an ordinary Poisson-GLM is defined by (see for example McCullagh and Nelder
(1989)):

D(y,A) := =2-[l(y, A) — I(y,y)] (6.6)
where Y; ~ Poi(X\;), At = exp(xiB), independent for ¢ = 1,2,...,T. Here [ denotes the log-
likelihood of the Poisson-GLM and X is the corresponding maximum-likelihood estimate. Basically,
the deviance can be considered as a function of the normalized log-likelihood of the model with
the log-likelihood of the saturated model as the normalizing constant. In the Poisson-GLM of
Table 5 the residual deviance is 5631 on 987 degrees of freedom compared to a Null deviance (the
deviance of a model with the Intercept as only regressor) of 7242 on 991 degrees of freedom. This
yields a p-value of 0 for a partial deviance test with the null-hypothesis Hy : [y = ... = 85 = 0.
Spiegelhalter et al. (2002) extend the concept of residual deviances to Bayesian models and define a
Bayesian deviance. For the Poisson-GLM and for the Poisson-GLM with the AR(1) latent process

considered in this paper the Bayesian deviance as defined by Spiegelhalter et al. (2002) is given by:

D(A) := =2 -log[p(y|A)] + 2 - log[p(y|y)] (6.7)

where p(y|A) denotes the probability function of the data given the vector of mean parameters
A. Note that (6.6) and (6.7) are equal in the Poisson-GLM if A = A. Spiegelhalter et al. (2002)

consider the mean deviance
R

DO = = > DY),
r=B

where A") denotes the r-th MCMC iterate of A, as a Bayesian measure of fit and the quantity



the mean deviance minus the deviance of the means, as the ”effective number of parameters” of
the Bayesian model. Here, X\ := RTIB Zf: B A denotes the posterior mean estimate of A. As a
criterion for the comparison of two Bayesian models they finally suggest the deviance information
criterton which is given by:

DIC := D(X) +2pp = D(A) + pp. (6.8)

Thus, the DIC' is the Bayesian measure of fit D(\), penalized by an additional complexity term

pp- A certain model is, as a general rule, to be preferred to another model, if its DIC value is lower.

In our fit of the Poisson-GLM with an AR(1) latent process we obtain a value of 5388 for the

Bayesian deviance D(A) and a value of 532 for D(A), which yields a value of 4856 for the effective
number of parameters in the model and a DIC value of 10244.

Of course, a direct comparison of Bayesian and non-Bayesian deviances is not possible. We there-
fore reconsider the ordinary Poisson-GLM in a Bayesian setting, choose the same priors for 8 as
in the model with the AR(1) latent process and run 3 parallel chains for each component of the
parameter vector 3. The simulated chains converge very quickly, so that it is again sufficient to
record 5000 iterations and consider the first 2000 as burn-in in each chain. The posterior mean

estimates of the components of 8 are identical to the maximum-Ilikelihood estimates in Table 5. We

obtain a Bayesian deviance D(X) of 5636 and a plug-in deviance D(X) of 5630 in this model. Thus,
the ”effective number of parameters” pp is equal to 6 and the DIC value is 5642 for the ordinary
Poisson-GLM considered in a Baysian setting.

The plug-in deviance confirms the previously discussed informal result that the fit of the ordinary
Poisson-GLM is clearly worse than the fit of the Poisson-GLM with an AR(1) latent process. The
latter model, however, has a very high value of effective parameters which can be interpreted as a
high degree of over-fitting. This could be expected since the low value of the estimate p and the high
value of 52 nearly result in independent, normally distributed latent variables u; for ¢t = 1,...,992.
This leads to a high DIC value and finally to the conclusion that, according to the DIC, the ordinary

Poisson-GLM is the "better” of the two considered models.

7 Conclusions

In this paper we have investigated the influence of a series of explanatory variables on absolute
transaction price changes of options on shares of the Bayer AG. For this purpose we have fitted
Poisson regression models to the available data and we have related the results to implications of
market microstructure theory. We have come to the conclusion that longer times between transac-
tions are in general associated with larger absolute transaction price changes of the options. The

influence of the trade volume on the absolute option price changes, however, is not perfectly clear
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in our data, although it could be observed that in most cases smaller trade volumes are associated
with larger transaction price changes. In any case, it can be concluded that the explanatory power
of the explanatory variables ”time between consecutive transactions” and ”trade volume” is rather
low with respect to the absolute transaction price changes of the options.

Furthermore we have observed that option-specific explanatory variables such as the intrinsic value
of the option at the time of the trade as well as the absolute price changes of the underlying share
have a significant influence on the absolute transaction price changes of the options, which is in
line with basic economic considerations. For the option-specific explanatory variables mentioned
before similar studies with detailed intraday data for the underlying should be carried out in order
to confirm the results obtained in this paper.

For the modelling of the absolute transaction price changes of one particular Call option in a
Bayesian model setting we have seen that the incorporation of an AR(1) latent process into the
mean of the ordinary Poisson-GLM, which accounts for both overdispersion and an autoregressive
structure of the absolute transaction price changes, leads to a significantly better fit. In our exam-
ple, however, according to the deviance information criterion, which trades off model complexity
with goodness-of-fit, the ordinary Poisson-GLM is the "better” model due to the high complexity
of the Poisson-GLM with the AR(1) latent process.

A simultaneous consideration of the transaction price processes of corresponding Put and Call op-
tions (e.g. in a bivariate autoregressive framework for the price change processes) could be a further

field of research.
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