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Abstract

In this paper we model absolute price changes of an option on the XETRA DAX index based

on quote-by-quote data from the EUREX exchange. In contrast to other authors, we focus on
a parameter-driven model for this purpose and use a Poisson Generalized Linear Model (GLM)
with a latent AR(1) process in the mean, which accounts for autocorrelation and overdispersion
in the data. Parameter estimation is carried out by Markov Chain Monte Carlo methods us-
ing the WinBUGS software. In a Bayesian context, we prove the superiority of this modelling
approach compared to an ordinary Poisson-GLM and to a complex Poisson-GLM with hetero-
geneous variance structure (but without taking into account any autocorrelations) by using the
deviance information criterion (DIC) as proposed by Spiegelhalter et al. (2002).
We include a broad range of explanatory variables into our regression modelling for which we
also consider interaction effects: While, according to our modelling results, the price develop-
ment of the underlying, the intrinsic value of the option at the time of the trade, the number
of new quotations between two price changes, the time between two price changes and the Bid-
Ask spread have significant effects on the size of the price changes, this is not the case for the
remaining time to maturity of the option. By giving possible interpretations of our modelling
results we also provide an empirical contribution to the understanding of the microstructure of
option markets.

Keywords: index options, quotation data, price change process, poisson regression, latent pro-

cess, autocorrelation, Markov Chain Monte Carlo, DIC
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1 Introduction, motivation and related research

In the field of financial econometrics and market microstructure theory the recent widespread
availability of intraday quotation and transaction data for exchange-traded securities, sometimes
also called ultra-high frequency financial data, has had an important impact on research. The
investigation and statistical modelling of these data has become a new focus of academic interest
since quotation and transaction data provide detailed information about the trading and asset
pricing process and therefore contribute to the verification of various theoretical implications in
these academic fields. The books by Bauwens and Giot (2001) and Dacorogna et al. (2001) are two
examples of publications covering various aspects related to this field of research. An introduction
to the econometric modelling of ultra-high frequency financial data as well as a survey of current
and future topics of research in this field is given by Hautsch and Pohlmeier (2002). One focus of
current research is the further development of autoregressive conditional duration (ACD) models
based on the work of Engle (2000), while other publications (e.g. Rydberg and Shephard (2003),
Liesenfeld and Pohlmeier (2003)) are concerned with the adequate modelling of the price process
at transaction level within a count data framework. Since transaction price changes of exchange-
traded securities are measured in multiples of a smallest possible incremental price change, count
data models which allow for the incorporation of other marks of the trading process as regressors
are used. Rydberg and Shephard (2003) decompose the price process at transaction level into three

components:
1. A binary process on {0, 1} modelling activity (meaning the price moves or not)
2. Another binary process on {—1, 1} modelling the direction of the price move
3. A process on strictly positive integers modelling the absolute value (=size) of the price move

Liesenfeld and Pohlmeier (2003) develop quite a similar model called integer count hurdle (ICH)
model where the two binary processes of the Rydberg-Shephard model are incorporated into a
trinomial autoregressive conditional multinomial (ACM) model (no price change or price movement
upwards or price movement downwards). In both publications some explanatory variables (e.g.
the time between consecutive transactions) are incorporated into the modelling and the models are
applied to stocks traded at the NYSE and the Frankfurt Stock Exchange respectively. In this paper
we concentrate on the last component of the previously described modelling approaches and consider
only absolute non-zero transaction price changes. While both Rydberg and Shephard (2003) and
Liesenfeld and Pohlmeier (2003) use Negative Binomial Generalized Linear ARMA (GLARMA)



models, which following the classification of Cox (1993) belong to the class of observation-driven
models, a parameter-driven Poisson-GLM with an AR(1) latent process in the mean is used in
this paper. An overview of parameter- and observation-driven regression models for time series of
counts with econometric and biometric applications can be found for example in Davis, Dunsmuir,
and Wang (1999), while Zeger (1988) and Chan and Ledolter (1995) explicitly discuss and develop
estimation techniques for the Poisson-GLM with an autoregressive latent process in the mean.
While applications have had their focus on stock markets in other publications, we consider non-zero
transaction price changes of an option on the German XETRA DAX index based on quote-by-quote
data from the EUREX exchange in this paper. While price changes of stocks are often limited to
a small number of discrete values (mainly £3,+2, +1 ticks), we have to deal with a wide range of
values in our option data example. Thus, only a modelling approach with the Poisson distribution
or the Negative Binomial distribution (our preference for the Poisson distribution will be elaborated
later) can be considered as adequate. In our regression analysis we include a wide range of other
marks of the trading process as explanatory variables: In addition to the time between consecutive
price changes, the Bid-Ask spread at the time of the trade and the number of new quotations
between two price changes we also consider option-specific quantities such as the price development
of the underlying, the intrinsic value of the option at the time of the trade and the remaining
time to maturity, which also provides an empirical contribution to the understanding of market
microstructure in general and option markets in particular.

Beside the Poisson-GLM with an AR(1) latent process in the mean we also fit an ordinary Poisson-
GLM and a Poisson-GLM with a heterogeneous variance structure to our data for comparison
purposes. Since parameter estimation in the more complex models is not feasible with standard
techniques such as maximum-likelihood estimation we use Markov Chain Monte Carlo (MCMC)
methods for parameter estimation. MCMC techniques are for example summarized in Chib (2001)
and discussed in detail in Gamerman (1997). Gilks, Richardson, and Spiegelhalter (1996) provide
examples of applications. It is, of course, not straightforward to compare the adequacy of different
modelling approaches, especially in a Bayesian context. We use an information criterion proposed
by Spiegelhalter, Best, Carlin, and van der Linde (2002) in order to finally compare and assess the
adequacy of the different models. For the computation the S-Plus and WinBUGS software packages
are used.

The paper is organized as follows: The available data is presented in Chapter 2. In Chapter 3 we
shortly introduce and discuss the regression models which we use for the modelling of the data.

The modelling results are presented in Chapter 4 and the adequacy of the models is comparatively



discussed in Chapter 5. Finally, Chapter 6 concludes, gives some interpretations of the results and

discusses weaknesses of our modelling approach.

2 Data presentation

The available data set for this paper consists of intraday quote-by-quote data for a European Call
option on the XETRA DAX index traded at the Eurex exchange. The strike price of the option
is 2600 points and its expiry month is March 2003. We consider in this paper the time period
between 10-Feb-2003 and 21-March-2003, the expiration day of the option. Figure 1 shows the
last prices of some selected Call options on the XETRA DAX index with different strike prices,

including the previously mentioned security, on a quote-by-quote data base during this time period.
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Figure 1: Last prices of some selected Call options on the XETRA DAX with different strike prices.

2.1 The variable of interest: Absolute option price changes

In this paper we analyze the changes of the quoted last prices of the Call option on the XETRA
DAX with strike price 2600 and expiration month March 2003 and relate these changes to a series
of explanatory variables. As already mentioned in Section 1, we do not model the direction of the
price changes, but consider only their absolute values. Since the dynamics of the price changes at
the beginning and at the end of the trading day may differ from those during the day, we exclude

the price changes before 10am and after 7pm from further investigation. This is in line with other



authors (e.g. Liesenfeld and Pohlmeier (2003)) who proceed in a similar way.

In our data set it can be observed that multiples of 10 ticks (a tick is the smallest incremental
change of the price of the security and equals in our data example 0.1 index points or EUR 0.50)
and to a lesser extent multiples of 5 ticks occur much more frequently than other values. An
explanation for this may be the traders’ preference for 'round’ values. 10 ticks represent exactly
1 index point and 5 ticks represent 0.5 index points. In order to avoid the problems this fact
may cause in the modelling, we group the data to classes of 10 ticks, i.e. a value of 0 of our new
grouped absolute price change variable means that there was an absolute price change between 1
and 10 ticks, a value of 1 stands for an absolute price change of 11-20 ticks, etc. Figure 2 shows
the histogram of the absolute price changes grouped in this way. From now on we will simply use
the term ”absolute option price changes” for the non-zero transaction price changes of the option
grouped as previously described.

Let t denote the time of a price change. For t = 1,2,...,T let Y; denote the absolute value of the
price change after grouping as described before. In the data example of the Call option on the
XETRA DAX with strike price 2600 and expiration month March 2003 we finally get a total of
T = 2419 observations.

Histogram of grouped abs. price changes of March 2600 Call on XETRA DAX

400 600 800 1000 1200

200

grouped absolute price change

Figure 2: Histogram of grouped non-zero transaction price changes of the Call option on the
XETRA DAX with strike price 2600 and expiration month March 2003.



2.2 Explanatory variables

We now introduce a series of explanatory variables that may have influence on Y; as previously
defined. In order to better understand the definition of the variables we will give a concrete data
example for illustration purposes.

The following table shows consecutive quotations of the Call option on the XETRA DAX with
strike price 2600 and expiration month March 2003 on 21-March-2003 a few minutes before trading
for this option ceased at 1 pm. Non-zero transaction price changes (i.e. non-zero changes of the last
price) of the option occurred at the points of time 71, 7o and 73. The corresponding values of the
variable of interest are Y; = 7 (since the price change at the point of time 71 is equal to 8 points or
80 ticks, which yields a value of 7 for our variable of interest grouped as described earlier), Y; 11 = 2
and Y;,9 = 1 where the t-th price change of the option in the time period we consider in this paper
occurred at the point of time 71 (a convention we will maintain in the following illustration of the

explanatory variables).

Date & time of quot. | Last price (in pts.) | Bid (in pts.) | Ask (in pts.)

2003-03-21 12:55:21 83 83.3 90

2003-03-21 12:56:10 83 84.7 91

2003-03-21 12:56:20 91 85.3 91 71 =2003-03-21 12:56:20
2003-03-21 12:56:22 91 91 92.8

2003-03-21 12:56:26 91 86.2 92.8

2003-03-21 12:56:31 91 85.3 92.8

2003-03-21 12:56:34 91 85.8 92.8

2003-03-21 12:56:44 91 84.8 92.8

2003-03-21 12:56:50 91 83.8 92.8

2003-03-21 12:56:54 91 88 92.8

2003-03-21 12:57:04 88 90 90.8 T2 =2003-03-21 12:57:04
2003-03-21 12:57:06 90 83 90.8 73 =2003-03-21 12:57:06
2003-03-21 12:57:36 90 83 92

With this data example as an illustration we now introduce possible explanatory variables and
define notations that we will maintain throughout the following sections. Histograms of all of the

possible explanatory variables are attached at the end of this section.

Last quoted Bid-Ask spread:

This variable, which we denote bas;, is defined as the Bid-Ask-spread, i.e. Ask price - Bid price, of
the quotation directly preceding the price-changing transaction. In the example bas; has the value

6.3 =91 — 84.7.



Number of quotations between two consecutive price changes:

This variable, denoted by N@Q;, counts the number of new quotations between the price changes
with indices t — 1 and ¢. In the example the value of NQ, 1 is 7 as there are 7 quotations between

the two consecutive changes of the last price of the option.

Time lag between two consecutive price changes:

Denoted by Deltalm,, this explanatory variable measures the time between two consecutive price
changes of the option. In the example Deltalm;y1 is equal to 44 seconds, the time between the

two price changes. This yields a value of 0.733 [minutes| for DeltaTmy ;.

Intrinsic value of the option at the time of the transaction:

The intrinsic value of a Call option at the point of time 7 is normally defined as max (S, — K, 0).

We now define the variable I'V; in a slightly different way by
1V, =85, — K

where 7 denotes the point of time of the price change t. This definition accounts for ’how far’ the
Call option is out-of-the-money and therefore provides more detailed information than the usual
definition of the intrinsic value. In the example I'V; has the value 88.37 = 2688.37 — 2600 since the
XETRA DAX index was quoted at 2688.37 points at the point of time 7.

Absolute price change of underlying since previous price change of option:

This variable, denoted by UnChy, is simply defined as the absolute value of the difference between
the price of the underlying at the point of time of the price change ¢ and the price of the underlying
at the point of time of the price change ¢ — 1.

Remaining time to maturity:

This variable is denoted by TT'M;. It measures the time span from the point of time at which
the t-th price change occurred and the time of maturity of the option. The option in the example
matures on 21-March 13:00:00. Thus, for example, 7T M;, o is equal to 2min 54sec which yields a
value of 0.0020139 [in days] for TT M.

In order to get an overview of these explanatory variables we show their histograms in Figure

3. The main range of the values of the Bid-Ask spread is, not taking into account some outlying



larger values, between 0 and 10 index points. The range of the number of new quotations between
two consecutive option price changes is between 0 and 300, again discarding some outlying larger
values. The histogram of the variable DeltaTm shows that the times between consecutive price
changes are rather short with most values smaller than 5 [minutes| and virtually no values larger
than 40 [minutes]. This is not a surprise since options on the XETRA DAX index are among the
most actively traded options at the EUREX exchange. The histogram of the explanatory variable
1V shows that most of the price changes occurred while the option was out-of-the-money. The
absolute price changes of the underlying DAX index between two consecutive option price changes
lie mainly between 0 and 20 index points and finally, the histogram of the variable TT'M confirms
that the trading activity for this option rose significantly shortly before maturity of the option, as

expected.
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3 Regression models for the statistical analysis

Before we take into account the time series structure of the price changes and fit a Poisson-GLM with
an AR(1) latent process in the mean to our data, we first consider an ordinary Poisson regression
model which seems to be a natural starting point for any count data regression. Since the Poisson
regression model is a special case of a Generalized Linear Model, its statistical properties are well-
known and parameter estimation can easily be handled (see for example McCullagh and Nelder
(1989)). The incorporation of an unobservable latent process in the mean of the Poisson-GLM
introduces autocorrelation into the model and therefore accounts for its time series structure. Pa-
rameter estimation in this class of models is, however, much more complicated than in the ordinary
Poisson-GLM. In the literature several estimation techniques have been proposed (see for example
Zeger (1988), Chan and Ledolter (1995) or Davis, Dunsmuir, and Wang (1999)). In this paper we
will use the WinBUGS software (freely available on the BUGS-project website http://www.mrc-
bsu.cam.ac.uk/bugs/welcome.shtml) which estimates the parameters of the model with Markov
Chain Monte Carlo (MCMC) methods. MCMC methods can be used in Bayesian Inference. In
contrast to the classical approach, model parameters are considered to be random variables in
Bayesian Inference. They are distributed according to a prior distribution which summarizes all
a-priori knowledge about the parameters obtained for example by previous experiments or experts’
assumptions. Then, given a random sample, the knowledge about the model parameters can be
updated by using the new sample and by calculating the conditional distribution of the parame-
ters given the new sample. This conditional distribution is commonly called posterior distribution.
MCMC methods can be used to obtain an approximate sample from a complex posterior distribu-
tion by recording values of a simulated Markov Chain with a limiting distribution which is equal
to the posterior distribution of the model parameters. The mean of these values generated by the
Markov Chain can then be used as estimate for the model parameters. For a detailed introduction
to MCMC estimation see for example Gamerman (1997) or Gilks, Richardson, and Spiegelhalter
(1996). We will assess convergence of the MCMC simulation with the method proposed by Gelman
and Rubin (1992).

As a third model we fit a Poisson-GLM with a non-standard variance, but without any autocorre-
lation structure to the data. We have also considered the use of the Negative Binomial distribution
instead of the Poisson distribution. The fit of an ordinary Negative Binomial model (a model of
the kind NB2 as described in Cameron and Trivedi (1998), Chapter 3.3) leads to fairly similar

results as the Poisson models concerning the influence of the explanatory variables on the variable

10



of interest as well as the estimated overdispersion of the data. The incorporation of an autore-
gressive latent process into the Negative Binomial model causes parameter identification problems.
Since additional identification conditions would have to be completely arbitrary we discard the
modelling approach with the Negative Binomial distribution and concentrate on the use of the
Poisson distribution. We will shortly introduce the models considered in this paper in the following

paragraphs.
3.1 The Poisson Generalized Linear Model

As already mentioned earlier, the Poisson regression model is a special case of the Generalized
Linear Model (GLM). In a GLM, given the covariates x;, the response variables y;, i = 1,...,n are

independent and identically distributed with a density of the form

F(5:6.0) = exp {ny(f)w) ey, ¢>} , (3.1)

which is (for a known ¢) a density from the exponential family. 6 is a location parameter (not
necessarily the mean) and ¢ is a dispersion parameter. The probability density function of the
Poisson distribution
fpoi(y) = exp{=A +ylog A —logy!}

can be rewritten in the form (3.1) with a(¢) =1, 6 =log\, b(0) = exp(f) = exp(logA) = A, and
c(y,¢) = —logy!. The function which links the regressors to the parameter(s) of the distribution
of the variable of interest is called link function. In the case of the Poisson regression model the
canonical link function is the log-link, i.e. 7 := x!3 = log()\;) for t = 1,..,T. Therefore, the

conditional mean of y; given the covariates x; is given by
BE(Y; | x¢) = exp(n;) = exp(xi8), t = 1,..,T.
One important property of the Poisson distribution is equidispersion, i.e.
A =EY; | x¢) =Var(Ys | x¢).

If in a data set the variance exceeds the mean, the data set is said to show overdispersion. For
a detailed discussion of count data regression in general and the modelling of overdispersed count

data in particular see for example Cameron and Trivedi (1998) or Winkelmann (2003).

3.2 Poisson-GLMs with an AR(1) latent process in the mean

This class of models can be considered as an extension of the Poisson-GLM described in the previous

section when the observations Y; come from a time series and are unlikely to be independent. The

11



general model framework as considered for example by Chan and Ledolter (1995) is given by:
Y, ~ Poi(\y),

At = exp(up + xi,@),

U = p - Up—1 + €, £t idd N(0,02) (3.2)

where the observations Y; conditional on x; and on the latent variables u; are independent for

t=1,..,T. Since {u;} is an ordinary AR(1) process, it follows that

E(’LLt) = 0
2
2 O¢
o, :=Var(u) =
Yu(k) := Cov(ug, uprg) = pkag.

Thus, in this model u; ~ N(0,02) and using the common formulas for the expectation and variance

of the log-normal distribution it follows that

Eeap(u)) = exp()

Var(eap(u)) = eap(o?)(eap(o?) —1).

Using these results it is easy to see that
t oa t
E(Yi|xt) = E(E(Yi|u, %)) = E(exp(uy)) - exp(x;B) = exp DY +x0 | . (3.3)

Using the abbreviation vy := exp(x3) the variance of Y; conditional on the regressors (but not

conditional on the latent process) can be calculated as:

2
o
Var(Yix:) = emp(;”) v +exp(ol)(exp(o?) — 1) - V7. (3.4)
Furthermore, for £ = 1,2,... the autocovariance between Y; and Y, conditional only on the
regressors can be calculated as :
Cov(Yy, Yipklxe, Xt4k) = vi-vern - exp(oy) - (exp(ptoy) —1). (3.5)

These results are also stated in Zeger (1988) and Davis, Dunsmuir, and Wang (1999) for a slightly
different parameterisation of the latent process.

Since Var(Yix;) > E(Y;|x;) the model allows for overdispersion. Note also that if v, (k) # 0 =

12



Cor(Ys, Yirr|xe, x¢1x) # 0, i.e. the latent process induces autocorrelation into Y;. Since 7, (k) =0
only when p = 0, autocorrelation in Y; given the regressors is present if p # 0. Davis, Dunsmuir,
and Wang (1999) elaborate that parameter-driven Poisson-GLMs with an AR(1) latent process
are, using some approximations, closely related to observation-driven Poisson-GLARMA models,
the Poisson equivalent of the models used by Rydberg and Shephard (2003) and Liesenfeld and
Pohlmeier (2003).

3.3 A Poisson-GLM with heterogeneous variance structure

In the Poisson-GLM with an AR(1) latent process discussed in the previous paragraph the variance

structure of {Y;} conditional on the regressors was given by
Var(Yix;) = M\ +c- A2

where \; := E(Yi|x;) and c is a constant. The assumption of a homogeneous variance structure
of this kind might be a too restrictive approach for our option data. We therefore discuss another
model which allows for a heterogeneous variance structure.

The model is given by:

A = exp(xiB+ uy)
(%)
Ut = €exp T Et
e X N(0,1). (3.6)

with two vectors of explanatory variables x; and x; for t = 1,...,T. Since
up ~ N (0, exp(Xja))

it follows that exp(u;) is log-normally distributed and, using the common formulas for the expecta-
tion and variance of the log-normal distribution the expectation and the variance of Y; conditional
on the regressors in the model (3.6) can be calculated similarly to the calculation of these quantities

in the Poisson-GLM with an AR(1) latent process in (3.4) and (3.5):

EY|x)) = E(E(Yi|u,x¢))
= Elexp(uy)) - exp(xiB)

— exp (0.5ef‘ia n xiﬁ) (3.7)

13



Var(Yi|x;) = exp <0.5e’~‘§a + Xiﬁ) +
+ exp (ef‘ia) . (exp (ei§a> — 1) : (eazp(xi,@))Q (3.8)

Equation (3.8) shows that this model allows for a heterogeneous variance, accounting for possible

overdispersion in the data.

4 Model building and modelling results

We first fit an ordinary Poisson-GLM to the data presented in Section 2 and conduct a stepwise
regressor selection (with the step function in S-Plus) to determine main- and interaction effects that
have a significant influence on the absolute price changes of our option example on the 5%-level.
We also investigate whether transformations of the explanatory variables (e.g. taking logarithms)
improve the model fit. In order to be able to compare the results of the different regression
approaches discussed in Section 3 we then maintain the transformations of the regressors for the

fit of the more complex models.

4.1 Fit of an ordinary Poisson-GLM

The following table shows the results of an ordinary least squares estimation for the ordinary
Poisson-GLM as described in Section 3.1 after transformation and standardization of the covariates
and elimination of those regressors that are not significant on the 5%-level. The common S-Plus
notation A:B for the interaction terms denotes the product of the regressors A and B. Note that
the explanatory variable TT M denoting the remaining time to maturity of the option tested out
completely.

Since it is not straightforward to interpret the estimation results in a model with variable transfor-
mations and interaction effects we draw fitted regression surfaces (Figure 4) where each plot shows
the expected absolute price changes of the option as a function of two of the explanatory variables
on a linear scale between the respective empirical 10%- and 90%-quantiles. The expected absolute
option price change is calculated according to the results of Table 1 with all other explanatory

variables set to their median values.

14
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Parameter Est. | Std. error | t-value

01 (Intercept) -0.51 0.03 | -16.03

B2 (stand. log(UnCh + c1)) 0.99 0.04 23.95

main | O3 (stand. IV) -2.50 1.41 -1.77
effects 64 (stand. log(NQ + c2)) 0.29 0.07 4.36
Bs (stand. log(bas)) 9.64 0.93 10.37

B (stand. log(DeltaTm)) 10.06 1.41 7.15

57 (stand. 1V : log(NQ + ¢2)) 0.28 0.06 | -4.38

inter- | s (stand. log(bas) : log(UnCh + c1)) -9.29 0.93 -9.98
action | By (stand. IV : log(UnCh + c1)) 3.46 1.43 2.42
effects | (1o (stand. log(bas) : log(NQ + c2)) -0.13 0.05 -2.73
P11 (stand. log(DeltaTm) : log(UnCh + c1)) | -9.91 1.42 -7.00

B2 (stand. log(NQ + c2) : log(DeltaTm)) -0.14 0.05 -2.94

Table 1: Estimation results of the Poisson-GLM for the absolute price changes of the Call option
on the XETRA DAX index with strike price 2600 and expiration month March 2003, obtained after
stepwise regressor selection using standardized and transformed regressors (¢; = 80, ¢ = 1).

Figure 4 shows that, as a very general rule, it can be said that higher values of all of the significant
explanatory variables (UnCh, IV, NQ, bas and DeltaTm) lead to higher expected absolute option
price changes. Particularly high absolute option price changes can be expected when the absolute
price change of the underlying (since the previous option price change) is high and if at the same
time the option is clearly in-the-money (i.e. its intrinsic value is > 0). The plot for these two
explanatory variables shows a clearly non-linear pattern with high expected absolute option price
changes for high values of IV and UnCh. The plots moreover confirm that the explanatory variable
UnCh has the greatest impact on the expected absolute option price change, which is, of course,

in line with economic considerations.

4.2 Fit of a Poisson-GLM with a latent AR(1)-process in the mean

We now take into account the time series structure of the data and fit a Poisson-GLM with an
AR(1) latent process in the mean to our option data and estimate the parameters with MCMC

methods in WinBUGS. The model as given in (3.2) can be written as:

Y: ~ Poi(\) (4.9
At = exp(Zy) (4.10
Zy = xiB+u (4.11
U = p-uU—1+ & (4.12

Et N N(0,0’?)
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In order to implement the model in WinBUGS the following transformations have to be made:

;From Equations (4.11) and (4.12) it follows that for ¢ > 2

Zy = Xiﬁ + pur—1 + €
= xB+p-(Zio1 —x,1B) + &
= (Xj—p-xt_1)B+p-Zi1+er
Thus,
Zi)Z1 ~ N ((xt = p-X_1)B+p- Zi-1,02) .

Since, as already discussed in Section 3.2

E(Ut) = O s

Var(u) = = for all ¢,
p

we get:

0.2
Zl ~ N (Xtﬁ7 = ) .

These considerations at hand, the model can be implemented in WinBUGS. As priors we choose un-
informative normal priors for the components of 3, an uninformative Gamma-prior for the precision

7. := 1/0? and a uniform prior on the interval [-1,1] for p:

p ~ U’I?,Zf[—l,l]
B ~ N(0,1000) fori=1,..,12

7. ~ I(0.05,0.05).

We run 3 independent chains for each parameter and reduce autocorrelations between the iterations
by only storing every 50th value. We record a total of 500 observations of each chain and consider
the first 100 iterations as burn-in. The trajectories of the chains and the Gelman-Rubin statistics
(plots not shown) justify these choices. In a second simulation we investigate prior sensitivity for
the parameter p and use an informative N(0,0.3%) prior truncated to [—1,1] for p. The MCMC
simulation leads to similar results (with slower convergence of the simulation), so that the prior
sensitivity of p can assumed to be negligible.

Table 2 shows the results of the MCMC simulation for the Poisson-GLM with an AR(1) latent

process in the mean fit to our option data (with a uniform prior for p).
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Parameter mean | Std. err. | 2.5% | med. | 97.5%
B1 (Intercept) -0.59 0.09 | -0.76 | -0.59 | -0.42
2 (stand. log(UnCh + c1)) 0.99 0.05 | 090 | 099 | 1.08
main | (3 (stand. IV) -0.85 1.59 | -3.95 | -0.81 2.13
effects | B4 (stand. log(NQ + c2)) 0.34 0.07 0.21 | 0.34 0.48
Bs (stand. log(bas)) 8.89 1.13 6.65 | 892 | 11.06
B (stand. log(DeltaTm)) 8.52 1.50 5.50 | 855 | 11.35
7 (stand. 1V : log(NQ + ¢2)) 0.12 0.19 | 023 | 011 ] 050
inter- | s (stand. log(bas) : log(UnCh + c1)) -8.56 1.13 | -10.73 | -8.56 | -6.35
action | By (stand. IV :log(UnCh + c1)) 1.61 1.58 | -1.35 | 1.57 4.66
effects | (1o (stand. log(bas) : log(NQ + c2)) -0.14 0.05 | -0.24 | -0.14 | -0.05
Bi1 (stand. log(DeltaTm) : log(UnCh + c1)) | -8.26 1.52 | -11.13 | -8.30 | -5.17
B2 (stand. log(NQ + c2) : log(DeltaT'm)) -0.22 0.05 | -0.33 | -0.22 | -0.13
p 0.97 0.02 0.93 0.97 0.99
o? 0.009 0.002 | 0.006 | 0.009 | 0.014

Table 2: Estimated posterior mean , std. error, 2.5% quantile, median and 97.5% quantile for the
parameters of the Poisson-GLM with an AR(1) latent process for the absolute price changes of the
Call option on the XETRA DAX index with strike price 2600 and expiration month March 2003
based on the last 400 recorded iterations in each chain (¢; = 80, ¢z = 1).

Here, the parameters 57 and (39 are not # 0 on a 5%-credible level. This implies that in this model
the interaction terms IV : log(N@ + c2) and IV : log(UnCh + ¢1) are not significant. Since [33
is not # 0 on a 5%-credible level either, it has to be investigated whether the explanatory I'V is
significant at all in this model setting. For this purpose we repeat the MCMC simulation without
the interaction terms IV : log(NQ+c2) and IV : log(UnCh+-c1). This yields very similar estimates
for all other parameters of the model and a value of 0.80 for (33 with a 95%-credible interval of
[0.72,0.88]. So, it can be concluded that there is a significant positive relationship between the
intrinsic value of the option and the absolute option price changes in this model setting.

The estimate for p implies that there is indeed a very high autocorrelation in the latent process.
However, the posterior mean estimate of the variance of the latent variables 2 is equal to 0.19, so
that, in general, the values of @i; ~ N(0,62) and as a consequence the contribution of the latent
process to the estimated expectation of {Y;} (conditional on the regressors) can expected to be
rather small. This can be confirmed by considering in our MCMC simulation the 2419 posterior
mean estimates of u;, ¢t = 1,...,2419 which lie within the interval [—0.84,0.68], while those for
xt3 lie within the considerably larger interval [—4.92,3.68]. The lowest lower bound of all 2419
95%-credible intervals of 4, t = 1,...,2419, is -1.59 while the largest upper bound of these credible
intervals has the value 1.33. For the quantity Xi,@, which measures the influence of the explanatory

variables, these values are -5.63 and 4.38 respectively.
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Defining yi; := exp(xt3) and denoting the posterior mean estimate of this quantity by /i, the fitted
mean, variance and covariances of {Y;} (conditional on the regressors) can be estimated by using

the posterior mean estimates 2 and fi; for o2 and p; in (3.3), (3.4) and (3.5):

—

E(Yilx) = "%y
= 1.10- i
. 0.562 . = 62 62 2
Var(Ye|x:) = e % - i +eu - (e u —1) - 1

= 1.10- i +0.25- a2

~ R R =2 N
COU(n,n+k‘Xt,Xt+k) = [t [tk - e%u . <€p Ou _ 1)

A~ A k
= Q- Pk o019 <eo.97 019 _ 1) 7

which yields
50\’1)(}/;571/;€+1‘Xtaxt+1) = it - fig11 - 0.24

for k = 1.

These results indicate that there is overdispersion and autocorrelation among the responses Y;
induced by the large autocorrelation present in the latent process.

In order to be able to interpret the estimation results plots similar to those for the ordinary Poisson-
GLM in Figure 4 where the expected absolute option price changes are again shown as a functions
of two of the explanatory variables on a linear, untransformed scale in each plot with all other
explanatory variables set to their median values can be considered. These plots (not shown for the
Poisson-GLM with an Ar(1) latent process) look very similar to those in Figure 4 and thus, the
general conclusions about the influence of the explanatory variables on the absolute option price

changes remain valid.

4.3 Fit of a Poisson-GLM with heterogeneous variance structure

We finally fit a model of the form (3.6) to the data. As regressors x; for the heterogeneous variance

term we choose the same (transformed and standardized) explanatory variables that already make
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up the vector x;, but without taking into account any interaction terms.

A first MCMC simulation yields that only the Intercept term and the Bid-Ask-spread are significant
on a 5%-credible level, so that we reduce the vector x; to (1,stand. log(bast))!.

So far, the model does not account for the time series structure of the data, so that we incorporate

an autoregressive structure into the process {u;} in a further MCMC simulation. We change the

Model (3.6) to

}/t ~ POl()\t)

A= exp(XiB+ uy)

U = p-u—1+¢&
xla

& = €xp 5 “ T

In the simulation the parameter p is not # 0 on a 5%-credible level and we therefore discard this
model in favour of the less complex Model (3.6).

We finally run 3 independent chains in order to estimate the parameters of the model (3.6) and
again, reduce autocorrelations within the chains by only storing every 100th value. The trajectories
of the chains and the Gelman-Rubin statistic indicate that convergence is then reached quite quickly.
We choose a burn-in of 100 iterations and record a further 400 iterations for each chain. Again, we

use Normal priors for the parameter vectors 3 and a:

B ~ N(0,10) fori=1,..,12

a; ~ N(0,10) fori=1,2

We had to choose rather informative priors for this simulation due to problems of exponential over-
flow in WinBUGS with the less informative priors used for the simulations of the models discussed

in the previous sections. Table 3 shows the results of the final MCMC simulation.

Again the plots similar to those in Figure 4 (ordinary Poisson-GLM) for the model (3.6) with
heterogeneous variance structure (plots not shown) do not lead to any different conclusions about
the influence of the covariates on the absolute option price changes compared to those already given

in the previous paragraphs.
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Parameter mean | Std. err. | 2.5% | med. | 97.5%
31 (Intercept) -0.56 0.04 | -0.63 | -0.56 | -0.49
B2 (stand. log(UnCh + c1)) 0.90 0.04 | 082 | 090 098
main | 35 (stand. IV) -2.01 1.34 | -4.62 | -2.01 0.69
effects | B4 (stand. log(NQ + c2)) 0.41 0.07 | 0.27 | 0.41 0.56
B (stand. log(bas)) 151 149 | 1.44 | 451 | 7.38
Be (stand. log(DeltaTm)) 6.35 1.48 | 3.52 | 6.41 9.17
7 (stand. 1V : log(NQ + ¢2)) 0.27 0.07 | -0.41 | 027 | -0.13
inter- | fs (stand. log(bas) : log(UnCh + c1)) -4.12 1.49 | -7.01 | -4.15 | -1.07
action | Bo (stand. IV :log(UnCh + c1)) 2.99 1.36 | 0.24 | 2.99 5.65
effects | Bio (stand. log(bas) : log(NQ + c2)) -0.24 0.07 | -0.37 | -0.24 | -0.09
f11 (stand. log(DeltaT'm) : log(UnCh + c1)) | -6.16 1.50 | -9.04 | -6.22 | -3.32
B2 (stand. log(NQ + c2) : log(DeltaTm)) -0.24 0.05 | -0.35 | -0.24 | -0.14
a1 (Intercept) -3.02 0.38 | -3.96 | -2.97 | -2.41
az (stand. log(bas)) 0.94 0.19 | 0.60 | 0.93 1.32

Table 3: Estimated posterior mean , std. error, 2.5% quantile, median and 97.5% quantile for the
parameters of the Poisson-GLM with heterogeneous error term variance (3.6) for the absolute price
changes of the Call option on the XETRA DAX index with strike price 2600 and expiration month
March 2003 (¢; = 80, ¢ = 1) based on the last 400 recorded iterations in each chain .

5 Assessment of model adequacy

When comparatively assessing the adequacy of different statistical models for a given data set, the

complexity of a certain model should be traded off against its goodness of fit.

One possibility to assess the goodness of fit of the previously discussed models is the consideration
of deviances. The deviance of an ordinary Poisson-GLM is defined by (see for example McCullagh

and Nelder (1989)):

A~ ~

D(y,A) :===2-[l(y,A) = l(y,y)] (5.13)

where Y; ~ Poi(\), At = exp(xi3), independent for ¢ = 1,2,...,T. Here [ denotes the log-
likelihood of the Poisson-GLM and X is the corresponding maximum-likelihood estimate. Basically,
the deviance can be considered as a function of the normalized log-likelihood of the model with
the log-likelihood of the saturated model as the normalizing constant. Spiegelhalter et al. (2002)
extend the concept of residual deviances to Bayesian models and define a Bayesian deviance. For
all Poisson-models considered in this paper the Bayesian deviance as defined by Spiegelhalter et al.
(2002) is given by:

D(A) == —2- loglp(y|\)] + 2 - Log[p(yly)] (5.14)

where p(y|A) denotes the probability function of the data given the vector of mean parameters A.

Note that (5.13) and (5.14) are equal in the Poisson-GLM if A = X. Spiegelhalter et al. (2002)
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consider the mean deviance

- 1 R
r=B

where A" denotes the r-th MCMC iterate of A, as a Bayesian measure of fit and the quantity

PD ‘= D()‘) - D(X)a

the mean deviance minus the deviance of the means, as the ”effective number of parameters” of
the Bayesian model. Here, X := RE—B Zf”: B A" denotes the posterior mean estimate of A. As a
criterion for the comparison of two Bayesian models they finally suggest the deviance information

criterion which is given by:

DIC := D(X) + 2pp = D(N) + pp. (5.15)

Thus, the DIC' is the Bayesian measure of fit D(X), penalized by an additional complexity term
pp, giving a Bayesian analogue to Akaike’s AIC criterion. A certain model is, as a general rule, to
be preferred to another model, if its DIC value is lower.

Of course, for non-Bayesian models there is no DIC value. In order to be able to compare the
ordinary Poisson-GLM to the Bayesian models we reconsider it in a Bayesian setting, choose an
N (0,1000) prior for each component of the parameter vector 3 and estimate the model by a MCMC
simulation in WinBUGS. Similarly to the simulations carried out for the other models we run again
3 independent chains, reduce autocorrelation by only storing every 50th value and record 500 itera-
tions after an initial burn-in of 500 iterations. This leads to estimation results for 3 which are very
similar to those obtained in the classical approach with maximum-likelihood estimation. Thus, it is
no surprise that the “plug-in” deviance D(X) of the Bayesian Poisson-GLM is equal to the deviance
of the classical model setting as calculated according to (5.13). In Table 4 we show the deviances
(with the log-likelihood of the saturated model as normalizing constant) and the DIC values of
the three Poisson-models considered in this paper. The deviances in Column 2 and Column 3 of
Table 4 indicate that the fit of the Poisson-GLM can indeed be improved by incorporating a latent
AR(1)-process into the mean of the Poisson-GLM and an even better fit can be obtained when the
error term variance of the ordinary Poisson-GLM is modelled as heterogeneous. However, since
the ”effective number of parameters” pp, as defined by Spiegelhalter et al. (2002) as a measure of
complexity, is considerably larger in the model with heterogeneous variance structure than in the
model with the latent AR(1)-process, the DIC value of the latter is lower and thus, the Poisson-
GLM with the latent AR(1)-process should be considered as "best” model.
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Model D) | D) | pp | DIC
Ordinary Poisson-GLM (Bayesian setting) 2416 | 2428 12 | 2440
Poisson-GLM with latent AR(1)-process 2107 | 2217 | 110 | 2327
Poisson-GLM with heterogeneous var. structure | 1974 | 2161 | 187 | 2348

Table 4: Deviances and DIC values for the Poisson option data models.

6 Conclusions and discussion

In this paper we have statistically analyzed the process of the absolute non-zero price changes of an
option on the XETRA DAX index based on quote-by-quote data from the EUREX exchange and
we have investigated the influence of a series of explanatory variables on this price process. For this
purpose we have fitted regression models of different complexity to the data which account for the
discreteness of the price changes and, depending on the particular model, allow for an autoregressive
and heterogeneous variance structure of the data. Using a deviance information criterion we have
selected a Poisson-GLM with an AR(1) latent process as the "best” of our models, suggesting
that overdispersion in our data is better modelled by an autoregressive component than by a
heterogeneous variance structure.

We have seen that all of the discussed models lead to the same conclusions about the relationship
between our selected explanatory variables and the absolute price changes of the option. In general
the absolute price changes of the underlying could be determined as the variable with the strongest
impact on the price changes of the option, which could be expected considering the construction of
a Call option as a right to buy the underlying at a pre-specified price. If the price of the underlying
changes significantly it is obvious that the price of the option must reflect this price movement of
the underlying and it is likely that the option price also changes significantly. However, we have
observed that this can only be expected for options that are in-the-money. In general, we could
observe that the more the option is in-the-money, the larger the absolute price changes of the
option. Particularly high absolute option price changes can, according to our modelling results,
be expected when there is a large absolute price change of the underlying since the previous price
change of the option and, at the same time, the option is clearly in the money. Moreover, we have
seen that, as a general rule, the higher the Bid-Ask spread at the time of the trade, the larger the
absolute option price changes. This relationship is also quite plausible since the fair price of the
option can be expected to lie somewhere between the Ask- and the Bid-price and the difference

between these prices and the fair price can be considered as some kind of additional premium
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payment to the market maker. Higher premiums will then, evidently, lead to higher absolute price
changes.

We have furthermore observed that the number of new quotations between two price changes of
the option also has quite a strong impact on the absolute option price changes. According to
our modelling results, the more new quotations between the price changes the higher the absolute
value of these price changes. A possible explanation for this may be the fact that the price process
is not mainly driven by some exogenous forces of supply and demand, but strongly associated
with some other publicly available information process. In this case, the market makers have to
constantly adjust their quotes to the new information even if there is no current trading interest.
When finally a trader wants to trade, the price must reflect all the accumulated information and
a high absolute price change is likely. For our option data example the information process that
strongly influences the price process of the option, is, of course, the price process of the underlying.
We have observed that many new quotations between two price changes of the option associated
with a high absolute price change of the underlying lead to particularly high absolute option
price changes which gives empirical evidence for this explanation. We have finally observed that
longer times between consecutive price changes also lead to higher expected absolute option price
changes. In the context of market microstructure theory Diamond and Verecchia (1987) give a
possible explanation for this. Provided that short-selling is not feasible, they consider longer times
between transactions as a possible signal for bad news in the market. Since informed traders who
do not already own the security are unable to trade and to explore their informational advantage
in this case by selling the security, the probability that there are no trades at all for a certain time
increases, given that the probability of a trade by a pure liquidity trader remains constant. When
finally the bad news have been spread in the market the price of the security must reflect the bad
news and a rather large downward price move (and thus a large absolute price move) is likely.
Our results may indicate empirical evidence for this theory. Yet, it has to be pointed out that in
order to provide better evidence, it is crucial to consider the direction of the price changes which
we have not done in this paper. The incorporation of the direction of the price changes in order
to construct a ”parameter-driven equivalent” of the models proposed by Rydberg and Shephard
(2003) and Liesenfeld and Pohlmeier (2003), which should then be applied to real trade-by-trade
data (including trades that do not change the price of the security), can be an interesting topic for
further research. Another interesting result is the insignificance of the remaining time to maturity
of the option. While this variable plays an important role in the determination of the price of an

option calculated according to the Black and Scholes formula, it has not had a significant impact on
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the size of the price changes of our option based on the available quotation data. Thus, according
to our results, the driving force for a rise in short-time volatility when the option gets close to
maturity (a phenomenon that can often be observed in option markets) must be the frequency of
the price changes rather than their size.

A major weakness of our modelling approach is the fact that we do not model the price changes
jointly with other marks of the trading process, but consider the price changes only conditional on
a set of information coming from other marks of the trading process, which enter as regressors into
our modelling. Using the prediction decomposition the joint distribution of the price changes Y;,

t =1,...,T and the explanatory variables X;, t = 1, ...,T can be written in the following form:

T
fyis o yr, X1, o X7 Hf (yelxe, B2 f (xe| FE2Y)
t=1

where

F)* = 0(Ys, X558 < t)

This approach is also stated in Rydberg and Shephard (2003). In this paper we have only focused
on the modelling of f(y|x:, F7]). The extension of our modelling approach into this broader

context will be a topic of further research.
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