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Abstract

This work is motivated by a mobility study conducted in the city of Mu-

nich, Germany. The variable of interest is a binary response, which indicates

whether public transport has been utilized or not. One of the central questions

is to identify areas of low/high utilization of public transport after adjusting

for explanatory factors such as trip, individual and household attributes. For

the spatial effects a modification of a class of Markov Random Fields (MRF)

models with proper joint distributions introduced by Pettitt et al. (2002) is

developed. It contains the intrinsic MRF in the limit and allows for efficient

Markov Chain Monte Carlo (MCMC) algorithms. Further cluster effects using

group and individual approaches are taken into consideration. The first one

models heterogeneity between clusters, while the second one models hetero-

geneity within clusters. A naive approach to include individual cluster effects

results in an unidentifiable model. It is shown how a reparametrization gives

identifiable parameters. This provides a new approach for modeling hetero-

geneity within clusters. Finally the proposed model classes are applied to the

mobility study.
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1 Introduction

This work has been motivated by a German mobility study investigating the usage of

public transport. Discrete choice models based on maximization of random utilities

( McFadden (1984)) have been often used in investigating such travel mode decisions

(Ben-Akiva and Lerman 1985, McFadden 2001 and Bhat (2006)) giving rise to the

familiar multinomial logit model. For a binary choice this gives a logit model. Since

the variable of interest is a binary indicator, whether public transport has been uti-

lized or not, we base our models on a logit formulation. Early papers (McGillivray

1972 and McFadden 1974) on travel mode decisions also consider binary choices, but

they do not include spatial components. The central question is to identify areas of

low/high utilization of public transport after adjusting for trip, individual and house-

hold attributes. The goal is to develop flexible statistical models for a binary response

with covariate, spatial and cluster effects. A large number of models are discussed

in the literature which incorporate covariates together with spatial information. We

provide now a short overview. In the context of general additive models, the simplest

possibility to account for spatial information would be to use an additional nominal

covariate indicating the region if there are multiple responses per region. But such an

approach does not give a model for spatial dependence. This property is especially

desired if the data volume is not large with respect to the number of covariates.

There are two approaches to incorporate spatial effects. The first one is appropri-

ate for data collected at specified locations, while the second one uses data regions.

The first approach is known as generalized linear kriging (Diggle et al. 1998). It is

based on generalized linear mixed models (Breslow and Clayton 1993), where spatial

random effects are modeled as realizations of a stationary Gaussian process with zero

mean and a parameterized covariance structure. Diggle et al. (1998) use Markov

Chain Monte Carlo (MCMC) methods for large data. Updating the covariance pa-

rameters is difficult since high dimensional matrix inversion and determinants are

required at each iteration. Therefore Heagerty and Lele (1998) use restrictions on

the dependence structure, while Gelfand et al. (2000) use importance sampling to

avoid matrix inversions. The second approach is appropriate when spatial effects are

associated with data regions. These do not need to be on a regular lattice. Now data

are assumed to be aggregated over regions and spatial effects are modeled for each

region instead for each observation. Here linear predictors are given as

ηi = x′
iα + bj(i), i = 1, . . . , n, j = 1, . . . , J ,

where J denotes the number of regions, b = (b1, · · · , bJ)′ are spatial effects and j(i)

indicates the region associated with the ith observation. Spatial effects are modeled as
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a realization from a Gaussian Markov random field (MRF) (Besag and Green (1993),

Banerjee et al. (2004) and Rue and Held (2005)). The name Gaussian conditional

autoregression (Gaussian CAR) is also used, since such a distribution is typically

given through its full conditionals. This allows fast individual updating of J << n

spatial effects in a Gibbs sampler. This approach requires a spatial neighborhood

structure. It is appropriate for our mobility application, since data are aggregated

over postal codes of Munich, Germany. We consider two postal codes as neighbors if

they have a joint border.

In contrast to stationary Gaussian processes used in kriging, in Gaussian CAR

models the explicit form of its precision matrix (inverse covariance matrix) is avail-

able. Moreover this precision matrix is usually sparse, which allows to compute its

determinant much faster than in the kriging approach. Pettitt et al. (2002) use this

fact and propose a specific dependence structure which provides even an analytical

computation of its determinant. Some Gaussian CAR models possess an improper

joint density. The simplest example is the intrinsic CAR model (Besag and Green

1993), whose precision matrix is only semi positive. Fahrmeir and Lang (2001) used

improper intrinsic CAR models as a prior in a semi parametric regression model for

multi categorical time-space data, while Knorr-Held and Rue (2002) applied intrinsic

CAR priors for Poisson models used in disease mapping. We study more advanced

proper Gaussian CAR models with a parameterized correlation matrix. In partic-

ular, we develop a modification of the Pettitt’s CAR model, which includes in the

limit the intrinsic CAR model in contrast to the formulation by Pettitt et al. (2002).

This modification still has all nice properties of the Pettitt et al. (2002) CAR models:

proper joint distributions, a similar interpretation of parameters, the same conditional

correlations and more important allows for fast computation of the determinant of

the precision matrix, providing fast Gibbs sampling. An alternative proper Gaussian

CAR model was also discussed in Sun et al. (2000). It also includes the intrinsic CAR

model in the limit and allows for fast computation of the determinant of the precision

matrix. It has been used to develop hierarchical spatio-temporal Poisson models for

disease mapping data, but not for binary spatial responses. Gaussian CAR models

will be considered in more detail in Section 2.

Another approach to regionally aggregated data is based on specifying the joint

distribution of the spatial effects directly yielding simultaneous autoregressive (SAR)

Gaussian models as introduced by Whittle (1954) and later studied by Cressie (1993)

and Anselin (1988). Especially economists prefer the simultaneous approach for the

analysis of spatial regional data (Anselin and Florax 1995 and Anselin and Florax

2004). Pinkse and Slade (1998) and McMillen (1992) consider a probit formulation
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with latent spatial regression following a SAR specification. While Pinkse and Slade

(1998) use the generalized method of moments for estimation, McMillen (1992) em-

ploys the EM algorithm. Beron and Vijverberg (2004) use a simulator for multivariate

normal probabilities to approximate the likelihood in a probit model with latent spa-

tial SAR formulation to facilitate maximum likelihood estimation. LeSage (2000)

gives a Bayesian analysis of probit and tobit models. A summary of these estimation

methods are provided by Fleming (2004). In a recent paper Wall (2004) points out

difficulties in interpreting the spatial dependence parameter for CAR and SAR mod-

els as spatial correlation parameters in nonregular lattices. We agree with N. Cressie

(1993) and H. Rue and L. Held (2005) that CAR models are easier to be interpreted

and do not consider SAR models in the following.

Finally, we mention auto logistic regression models (Besag 1974). Modeling the

distribution of plant species Huffer and Wu (1998) propose to extend the auto logistic

modeling of the success probability by incorporating a fixed effect term x′
iα. They

work on a regular rectangular lattice and one-observation-per-site data. But in spite

of this simplicity Huffer and Wu (1998) note that exact MLE is not tractable, except

when the number of sites is quite small, while two other estimation methods, namely

the coding method (Besag (1974)) and the maximum pseudo-likelihood method (Be-

sag (1975)), seem to be not sufficiently efficient. Huffer and Wu (1998) investigate

a MCMC MLE approach, which produces the likelihood function via Monte Carlo

simulations. They do not give any idea, how to account for possible interactions

between species. For the Gaussian CAR approach Pettitt et al. (2002) solve this

problem by modeling the correlation between several Gaussian CAR models for each

species applied to tree biodiversity data. Also Carlin and Banerjee (2003) develop this

approach for multiple cancer survival data. Further a multivariate extension of the

proper Gaussian CAR model developed in Sun et al. (1999) and Sun et al. (2000) is

considered by Gelfand and Vounatsou (2003) for multivariate continuous and multi-

nomial response data. An overview of multivariate CAR models is provided by Jin

et al. (2005). A different autologistic model for binary data in space and time was

developed by Dubin (1995), who explored this model in a very small simulation set

up. Here spatial interactions are modeled by a parameterized distance based weight

matrix, while time dependence is captured by an autologistic formulation.

In addition to spatial effects we extend our modeling of the linear predictor ηi

by cluster random effects. It allows us to take into account possible overdispersion

caused by unobserved heterogeneity. We consider two approaches, namely group and

individual cluster effects. The first one, which models heterogeneity between clusters,

follows the usual idea of having the same random effect within a cluster. The second
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approach allows for heterogeneity within a cluster, i.e. we model cluster effects within

a cluster as independent normally distributed random variables with zero mean and

a cluster specific variance. For K clusters we have to estimate K cluster specific

variances instead of K cluster effects as before. We will show how an unidentifiability

problem occurring in the second case can be overcome. Efficient MCMC algorithms

will be developed. In this paper we restrict our analysis to logit models with spatial

and cluster effects. However Prokopenko (2004) also develops MCMC algorithms for

probit formulations using a latent variable representation (Albert and Chib 1993).

2 Modeling of Spatial Effects Using Gaussian CAR

Models

The most popular kind of Markov random fields (MRF) are Gaussian MRF’s (Besag

and Green 1993), or Gaussian CAR models (Pettitt et al. 2002), where a random

vector b ∈ RJ is defined through its full conditionals as follows:

bj|b−j ∼ N

(

µj +
∑

j′ 6=j

cjj′(bj′ − µj′), κj

)

, j = 1, . . . , J .

Here b−j = (b1, . . . , bj−1, bj+1, . . . , bJ)t and N(µ, σ2) denotes a normal distribution

with mean µ and variance σ2. Besag and Green (1993) show that the joint distribution

of a zero-mean Gaussian CAR is given by b ∼ NJ (0, (IJ − C)−1M), where C = (cjj′)

with cjj = 0, j = 1, . . . , J , and M = diag(κ1, . . . , κJ). Here NJ(µ, Σ) denotes a J-

dimensional normal distribution with mean vector µ and covariance matrix Σ. The

precision matrix is given by Q = M−1(IJ − C). Below we present examples of

Gaussian CAR models. Further we assume that the neighborhood structure has no

isolated regions or groups of regions.

Example 1: The intrinsic Gaussian CAR (Besag and Green 1993) is defined by:

bj|b−j ∼ N(bj,
τ 2

Nj

) , j = 1, . . . , J, and bj =

∑

j∼j′ bj′

Nj

, (2.1)

where Nj = # of neighbors of the region j, and “j ∼ j′ ” denotes contiguous re-

gions. In particular, we have j /∼ j. The corresponding precision matrix is positive

semi-definite with rank = J − 1, therefore b has an improper density, but can be

characterized (see Prokopenko 2004).

Example 2: Pettitt et al. (2002) use a particular Gaussian CAR, where

bj|b−j ∼ N

(

φ

1 + |φ|Nj

∑

j∼j′

bj′ ,
τ 2

1 + |φ|Nj

)

. (2.2)
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The parameter φ measures the strength of the spatial dependency. There is no spatial

dependency, if φ = 0. Since maximum likelihood estimation is intractable for this

model MCMC methods have been used to estimate φ and τ 2. Pettitt et al. (2002)

show that a fast and simple update of φ for a Gibbs Step given the vector b and

τ 2 is available. In contrast to the intrinsic CAR, the joint distribution of b based

on conditionals specified in (2.2) is a proper distribution, which leads to a proper

posterior when used as a prior distribution. This will circumvent any problems in the

Gibbs sampler arising from using an improper prior.

Example 3: We introduce now a modified Pettitt’s CAR model, where the full

conditionals for b are given as follows:

bj|b−j ∼ N

(

φ

1 + |φ|Nj

∑

j∼j′

bj′ ,
(1 + |φ|)τ 2

1 + |φ|Nj

)

. (2.3)

This (also proper) distribution differs from Pettitt’s CAR (2.2) by the additional

term 1 + |φ| in the numerator of the conditional variance. This allows us to have the

intrinsic CAR (2.1) in the limit, when φ → ∞. Note that the conditional variance

of bj|b−j decreases to τ 2/Nj as |φ| increases to infinity, while in the original model

(2.2) this quantity decreases to zero, which is a very restrictive assumption. Further,

this model has the same behavior as Pettitt’s CAR (2.2) when φ goes to zero (no

spatial dependency), and also all partial correlations between bj and bi given all the

other sites are the same. In the modified Pettitt’s model we can also achieve a

simple update for φ. We write now τ−2 × Qm.P (φ) for the precision matrix of the

modified Pettitt’s model (2.3). In particular Qm.P (φ) = M−1(φ)(IJ − C(φ)), where

M(φ) = diag( (1+|φ|)
1+|φ|N1

, · · · , (1+|φ|)
1+|φ|NJ

) and C(φ) = (cjj‘(φ))jj‘=1,··· ,J with

cjj′(φ) =

{
φ

1+|φ|Nj
, if j ∼ j′

0, if j ∼/ j′, j = j′
.

Each update of φ requires the computation of the determinant of Qm.P (φ). With the

reparametrization ψ = φ

1+|φ|
we follow a similar approach as in Pettitt et al. (2002).

More precisely, if we define the diagonal matrix

D = diag(N1 − 1, . . . , NJ − 1) and Γ = (γjj′)j,j′=1,...,J =

{

1, if j ∼ j′

0, if j ∼/ j′, j = j′
,

then Qm.P (φ) can be written in the form Qm.P (ψ) = IJ + |ψ|D − ψΓ. If (λ1, . . . , λJ)

are the eigenvalues of Γ−D and (ν1, . . . , νJ) are the eigenvalues of Γ + D, then the

determinant of Qm.P (ψ) is equal to

|Qm.P (ψ)| =







∏

j(1 − ψλj), if ψ > 0

1, if ψ = 0
∏

j(1 − ψνj), if ψ < 0 .

(2.4)
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and can be computed quickly for any value of ψ. Finally we like to note that the

conditional variance of bj|b−j is independent of the spatial dependence parameter

for the proper Gaussian CAR model considered by Sun et al. (2000) in contrast to

the modified Pettitt’s CAR model (2.3). It is more reasonable to assume that this

conditional variance increases as dependence among the spatial effects decreases. If

φ = 0, then the conditional variance in Sun et al. (2000) still depends on Nj, while

this is not the case for the modified Pettitt’s CAR model. Therefore we prefer the

modified proper Pettitt’s CAR model over the proper CAR model studied by Sun

et al. (2000) for modeling spatial effects.

3 Spatial Logistic Regression Models with Group

Cluster Effects

For the mobility study we use a binary response vector Y = (Y1, . . . , Yn)t with

Yi =

{

1 if trip i used individual transport

0 if trip i used public transport
, i = 1, · · · , n, (3.1)

where Yi’s is Bernoulli with the success probabilities pi and assume that Yi given pi

are independent for i = 1, . . . , n. We specify pi through their logits :

θi := log

(
pi

1 − pi

)

= xt
iα

︸︷︷︸

fixed effect

+ bj(i)
︸︷︷︸

random spatial effect

+ cm(i)
︸︷︷︸

random group cluster effect

. (3.2)

Here the design vector xi multiplied with the regression parameter vector α ∈ Rp

represents fixed effects. With the vector b = (b1, . . . , bJ) we allow for random spatial

effects. As sites we take J = 74 postal code areas of the city of Munich. Therefore,

the index j(i) denotes the residence postal code of the person who takes trip i. In

order to be able to take into account possible spatial smoothness we assume, that bj’s

arise from the modified Pettitt’s CAR (2.3).

To model heterogeneity between clusters we allow for random cluster effects rep-

resented by the vector c = (c1, . . . , cM). Each of the M clusters (say age groups

or household types) induces a group specific random effect, which we denote by

cm,m = 1, . . . ,M , respectively. The index m(i) denotes the cluster of trip i. We

assume that cm ∼ N(0, σ2
c ) i.i.d. for m = 1, . . . , M .

Note that the likelihood of the response vector Y is proportional to

[Y| α, b, c] ∝
n∏

i=1

exp(Yi(xi
t
α + bj(i) + cm(i)))

1 + exp(xi
t
α + bj(i) + cm(i))

.
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Parameter Prior specification

Regression αl ∼ N(0, σ2
αl

), l = 1, . . . , p ind. σ2
αl

large

Spatial bj|b−j ∼ N
(

φ

1+|φ|Nj

∑

j∼j′ bj′ ,
(1+|φ|)τ2

1+|φ|Nj

)

j + 1, · · · J

Spatial dependence ψ := φ

1+|φ|
∈ (−1, 1) π(ψ) ∝ 1

(1−|ψ|)1−a , a > 0

Spatial variance π(τ 2) ∝ 1 or π(τ 2) = IG(aτ , bτ )
Cluster cm|σ2

c ∼ N(0, σ2
c ) i.i.d.

Cluster variance σ2
c ∼ IG(ac, bc or π(σ2

c ) ∝ 1)

Table 3.1: Prior distributions utilized in the spatial logistic regression model with
group cluster effects

Since we will follow a Bayesian approach we need to complete the model specifica-

tion by providing the prior specifications for α, φ, τ 2 and σ2
c . For this we denote the

density of a random variable X by [X] and the conditional density of X given Y

by [X|Y ], respectively. We assume independent prior distributions, i.e we assume

[α, b, c, φ, τ 2, σ2
c ] = [α]× [b|φ, τ 2]× [φ]× [τ 2]× [c|σ2

c ]× [σ2
c ] . The specific priors for

all parameters considered are given in Table 3.1. Here IG(a, b) denotes the inverse

gamma density given by [x] = 1
baΓ(a)xa+1 exp(− 1

bx
) for x > 0. MCMC methods allow

us to draw an arbitrary large number of joint samples from the posterior distribution

[α,b, c, φ, τ 2, σ2
c |Y] approximately. With these samples we can make parameter infer-

ence using for example estimated posterior means or density estimates of the marginal

posterior. Readers unfamiliar with MCMC methods can consult Chib (2001) for an

introduction and Gilks et al. (1996) for applications of MCMC methods.

Individual Metropolis Hastings (MH) updates are used for the regression αl, the

spatial bj and the cluster cm parameters, since good joint proposal distributions are

difficult to find. As individual proposal distributions we use a normal distribution with

mean equal to the previous value and a fixed value for the standard deviation. This

standard deviation is determined by pilot runs which resulted in an acceptance rate

between 30-60% (as proposed in Bennett et al. (1996) or Besag et al. (1995)). They

also serve as burnin phase. The reparameterized spatial hyperparameter ψ = φ

1+|φ|

also requires an MH Update.

The variance hyperparameters τ 2 and σ2
c can be updated in a Gibbs step. For

the full conditional of τ 2 we have [τ 2|Y,α,b, c, φ, σ2
c ] = [τ2|b, φ] ∝ [b|φ, τ2] × [τ2].

Using an IG(aτ , bτ ) prior for τ 2 it is easy to see that [τ 2|Y,α,b, c, φ, σ2
c ] is again

IG(a∗
τ , b

∗
τ ) with a∗

τ = aτ + J
2

and b∗τ =
{

1
bτ

+ b′ Q(φ)b
2

}−1

. When a flat improper prior

for τ 2 is used (as we have chosen), the posterior [τ 2|b, φ] is IG(a∗
τ , b

∗
τ ) with a∗

τ =
J
2
−1 and b∗τ =

{
1
2
b′ Q(φ)b

}−1
. Finally for the cluster variance σ2

c if σ2
c ∼ IG(ac, bc),

8



Parameter Update

αl, l = 1, . . . , p Individual MH with normal RW proposal
bj, j = 1, . . . , J Individual MH with normal RW proposal

ψ = φ

1+|φ|
MH Update with uniform(−1, 1) proposal

τ 2 Gibbs Update, FC = IG(a∗
τ , b

∗
τ )

cm, m = 1, . . . ,M Individual MH with normal RW proposal
σ2

c Gibbs Update, FC = IG(a∗
c , b

∗
c)

Table 3.2: Updating Schemes of the MCMC algorithm for a Spatial Logistic Re-
gression Model with Group Cluster Effects (MH = Metropolis Hastings step, RW =
random walk, FC = full conditional)

the full conditional σ2
c |Y,α,b, c, φ, τ 2 is IG(a∗

c , b
∗
c) with a∗

c = ac + M
2

and b∗c =
{

1
bc

+ c′c
2

}−1

. For an improper prior the full conditional density for σ2
c is a IG(a∗

c , b
∗
c)

density with a∗
c = M

2
−1 and b∗c =

{
1
2
c′c

}−1
. This density has a finite expectation

for M ≥ 5 and a finite variance for M ≥ 7. A summary of these update schemes is

given in Table 3.2.

4 Spatial Logistic Regression Models with Individ-

ual Cluster Effects

We consider now a more advanced model where individual cluster effects are modeled

by a normal distribution with fixed variance inside each cluster given by:

Yi|pi ∼ Bernoulli(pi) conditionally independent with

θi := log
(

pi

1−pi

)

= xt
iα

︸︷︷︸

fixed effect

+ bj(i)
︸︷︷︸

random spatial effect

+ cm(i),k(i)
︸ ︷︷ ︸

random individual cluster effect

, (4.1)

where for fixed m = 1, . . . ,M, cm,k ∼ N(0, σ2
m), k = 1, . . . , Km, i.i.d. As in Model (3.2),

M denotes the number of clusters and m(i) denotes the cluster of trip i. Km stands

for the number of trips, which belong to cluster m (i.e. K1 + . . . + KM = n) and

k(i) gives the number of trip i in its cluster. The specification of the fixed effects

α and the spatial effects b remain as before. In contrast to (3.2), the cluster effects

are now not the same for each trip in cluster m, namely cm, but random realizations

cm,k, k = 1, . . . , Km from the same cluster distribution N(0, σ2
m). This allows for

heterogeneity within each cluster.

In Model (4.1) we have to estimate in addition to the parameters α,b the cluster

effect variances σ
2 = (σ2

1, . . . , σ
2
M)t instead of the cluster effects c = (c1, . . . , cM)t and

their variance σ2
c for Model (3.2). One problem with Model (4.1) is that even without
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an intercept term α0 the model is unidentifiable. To understand this unidentifiability

we first substitute in (4.1) the logit link function with the probit link function, i.e.

we assume for i = 1, . . . , n:

Yi|pi ∼ Bernoulli(pi) conditionally independent with

pi = P{Yi = 1|xi,α, bj(i), cm(i),k(i)} = Φ(xt
iα + bj(i) + cm(i),k(i)),

(4.2)

where Φ(·) is the standard normal distribution function. This allows for the latent

variable representation (compare to Albert and Chib 1993):

Yi = 1|xi,α, bj(i), σ
2
m(i) ⇔ Zi ≤ 0, where

Zi = −ηi + ǫ∗i , ǫ∗i ∼ N(0, 1 + σ2
m(i)) independent and ηi = xt

iα + bj(i) .
(4.3)

We have for i = 1, . . . , n

P{Yi = 1|xi,α, bj(i), σ
2
m(i)} = P{Zi ≤ 0|xi,α, bj(i), σ

2
m(i)} = Φ




xt

iα + bj(i)
√

1 + σ2
m(i)



 .

(4.4)

Equation (4.4) shows that the parameters α,b and σ
2 are not jointly identifiable in

Model (4.2), since it is invariant with respect to the parameter vectors
{

k × (αt,bt,
√

1 + σ2
1, . . . ,

√

1 + σ2
M )t, k ∈ R

}

. If we define now

α
′ :=

α

√

1 + σ2
1

, b′ :=
b

√

1 + σ2
1

, σ
′2
m :=

1 + σ2
m

1 + σ2
1

, m = 2, . . . ,M, σ
′2
1 = 1, (4.5)

then the marginal distributions (4.4) of Yi|xi,α, bj(i), σ
2
m(i) from Model (4.2) will co-

incide with the marginal distributions from the following model:

Yi|pi ∼ Bernoulli(pi) conditionally independent with

pi = P{Yi = 1|xi,α
′, b′j(i), σ

′2
m(i)} =







Φ
(

xt
iα

′ + b′j(i)

)

if m(i) = 1

Φ
(

xt

i
α

′+b′
j(i)

σ′

m(i)

)

if m(i) = 2, . . . ,M .

(4.6)

Using (4.3) it follows, that also the joint distribution of Y in both Models (4.2)

and (4.6) are equal. Therefore Model (4.6) is an equivalent reparametrization of

Model (4.2). But this representation (4.6) has one parameter less and is therefore

identifiable. The above discussion helps us to understand the unidentifiability of logit

Model (4.1), since the behavior of both probit and logit link functions is quite similar

and they differ only significantly in the tails. So we use the same idea to construct

an identifiable logit model. In particular we assume for i = 1, . . . , n

Yi|pi ∼ Bernoulli(pi) conditionally independent with

log
(

pi

1−pi

)

=







xt
iα

′ + b′j(i) if m(i) = 1
xt

i
α

′+b′
j(i)

σ′

m(i)
if m(i) = 2, . . . ,M

,
(4.7)
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where α
′,b′,σ2′ := (σ2′

1 , . . . , σ2′

M)t are defined as in (4.5). From (4.7) it follows that

the likelihood of the response vector Y is proportional to

[Y| α
′, b′, σ

′] ∝
n∏

i=1

exp(Yi

xi
t
α

′+b′
j(i)

σ′

m(i)
)

1 + exp(
xi

tα
′+b′

j(i)

σ′

m(i)
)

,

where σ
′ := (1, σ′

2, . . . , σ
′
M)t, σ′

m :=
√

σ2′
m, m = 2, . . . ,M . We assume independent

prior distributions for the fixed effect α
′, the spatial parameters b′ given their de-

pendence parameter φ′ and the variance scalar τ 2′ and the cluster parameters σ
′.

Finally we assume independence between the hyperparameters φ′ := φ and τ 2′ :=
τ2√
1+σ

′2
1

. Therefore the joint prior distribution is given by [α′, b′, σ
′, φ′, τ 2′ ] = [α′]×

[b′|φ′, τ 2′ ] × [φ′] × [τ 2′ ] × [σ′] .

According to (4.5) large deviations from 1 for some σ′
m, m = 2, . . . ,M , correspond

to large values for some σ2
m, m = 1, . . . ,M , in the primary Model (4.1), which cor-

responds to insignificance of the regression and spatial effects in these clusters. This

implies that one should use a prior for σ′
m which is relatively concentrated around 1.

One such choice is a normal distribution N(1, 4) truncated on the interval [0.2, +∞),

which we have chosen as prior for σ′
m, m = 2, . . . ,M . Even though σ′

1 is fixed to 1,

a value of σ′
m ≥ 1(≤ 1) corresponds to σ2

m ≥ σ2
1(σ

2
m ≤ σ2

1). This shows that our prior

choice can support high and low variability of cluster m compared to cluster 1.

The parameters α
′,b′ and σ

′ will be updated using individual MH steps. Since

the full conditionals of τ 2′ and φ′ depend only on the spatial effects b′, their MCMC

updates have the same form as described in Table 3.2.

5 Simulation Studies

We conducted two simulation studies for spatial logistic regression one with group

cluster and the other with individual cluster effects. The first study is based on the

Logit Model (3.2) with the following mean structure:

θi := log

(
pi

1 − pi

)

= x1iα1 + x2iα2 + bj(i) + cm(i)

for i = 1, . . . , n, j = 1, . . . , J,m = 1, . . . ,M . Adapted to our mobility study we

simulated n = 2100 binary responses residing in J = 70 regions arranged on a 7× 10

regular lattice and in M = 5 clusters so, that each cluster is represented in each

region with 6 responses. More precisely, we chose xi1 as categorical covariate with

possible values 0 or 1 and xi2 as continuous covariate taking cycled integer values

between 1 and 23 with α1 = −1 and α2 = 0.05. With this choice we achieved good
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data mixing inside regions and clusters. Spatial effects b are simulated from the

modified Pettitt’s Model (2.3) with φ = 2 giving significant spatial smoothing. We

chose τ 2 = 0.64 which gives a similar range of the observed spatial effects in the

mobility data. A first order neighborhood dependence defined by joint borders was

selected. We simulated group cluster effects from c ∼ N5(0, σ
2
c ) with σ2

c = 1. As

priors we chose α1 ∼ N(0, 1002), α2 ∼ N(0, 102) and τ 2 ∝ 1 reflecting a diffuse prior

choice. For ψ = φ

1+|φ|
, ψ ∈ (−1, 1) the J = 70 regions may be too few to provide

enough information for estimating ψ. Therefore we chose an informative prior density

[ψ] ∼ 1
(1−|ψ|)1−a with a = 1.25. From the same reasons we took an informative prior

density for σ2
c , namely IG(5, 1/6) with mean 1.5, variance 3/4 and mode 1.

The MCMC algorithm of Section 3.2 was implemented in MATLAB and was run

for 20,000 iterations with every 10th iteration recorded. As ”burn in” phase served 5

pilot runs with 300 iterations per each pilot run giving an acceptance rate of 30− 60

% for the MH step. The resulting trace plots (not shown) show that such a length of

“burn in” phase is enough. The autocorrelation plots (not shown) indicate, that the

autocorrelations between recorded iterations are below 0.1. Figure 5.1 shows marginal

posterior density estimates of the parameters α0, α1, ψ = φ

1+|φ|
, τ 2 and σ2

c from four

independent simulated data sets, where the vertical fat dashed lines correspond to

the true parameter value. For each density curve its mode is also marked by a

thin vertical line. We see that in all four cases the true values are well inside 90%

credible intervals. Although the estimation of ψ is somewhat dispersed, posterior

mode estimates of the spatial and cluster effects (not shown) are quite precise. This

fact indicates the dominance of the observed information over the prior information

provided by CAR prior choice.

The second simulation is based on the Logit Model (4.7) with mean structure:

θ′i := log

(
pi

1 − pi

)

=
x1iα

′
1 + x2iα

′
2 + b′j(i)

σ′
m(i)

, i = 1, . . . , n, j = 1, . . . , J, m = 1, . . . ,M.

We used the same spatial and fixed effect structure as in the first simulation study,

in particular we set α′
1 = −1, α′

2 = 0.05, τ 2′ = 0.64, φ′ = 2. As true values

for the cluster parameters σ′
m, m = 2, . . . ,M , we take values 0.5, 1.25, 1.5 and 2.5,

respectively. According to Model (4.7) we set σ′
1 = 1. Prior choices for α

′,b′ and τ 2′

remain the same. For the prior distribution of ψ′ = φ′

1+|φ|′
we used now Uni(−1, 1),

since a similar prior choice as for the group cluster case causes slight underestimation

of ψ′. For the cluster parameters σ′
m, m = 1, . . . ,M , we used N(1, 4) distribution

truncated to the interval [0.2, +∞] as prior distribution. Figure 5.2 gives posterior

density estimates of the cluster variance parameters σ
′ using the MCMC algorithm

of Section 4.2 based on 20000 iterations with every 10th iteration recorded indicating
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Figure 5.1: Estimated Marginal Posterior Densities for Parameters α1, α2, τ
2, ψ, σ2

c in
Model (3.2) (solid for Data Set 1, dashed for Data Set 2, dash-dot for Data Set 3,
dotted for Data Set 4)

a satisfactory behavior. The remaining parameters show a similar behavior as the

corresponding parameters in Logit Model (4.7) (not shown).

Summarizing we see that all posterior estimates for the main parameters (α, b, c

for Model (3.2) and α, b, σ
′ for Model (4.7)) lie quite closely around the correspond-

ing true values. With regard to the spatial hyperparameters τ 2 (τ 2′) and ψ (ψ′) for

the group cluster Model (3.2) (individual cluster Model (4.7)) we draw the following

conclusions. The number of regions J = 70 seems to be enough for τ 2 (τ 2′). This is

not the case for ψ (ψ′). Further, a simulation study with a large number of regions

showed good precision for estimation of ψ, as well as robustness of the posterior with

respect to prior choice already for J = 500. Finally we note, that in contrast to indi-

vidual cluster Model (4.7), in group cluster Model (3.2) the small number of clusters

M causes lack of information for estimating the cluster variance σ2
c . If we want to

avoid an informative prior choice, the number of clusters must be greater equal 7 to

assure a finite variance of the posterior.
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′ in Model (4.7) (solid for

Data Set 1, dashed for Data Set 2, dash-dot for Data Set 3, dotted for Data Set 4)

6 Application: Mobility Data

6.1 Data Description

We analyze a data set studying mobility behavior of private households in Munich.

One central question is to identify areas of low/high utilization of public transport

after adjusting for trip, individual and household related attributes. The goal is to

find flexible statistical models which incorporate covariates together with spatial and

cluster information. The data was collected within the study “Mobility 97” (Zängler

2000). The participants are German-speaking persons not younger then 10 years,

which live in a private household in the state of Bavaria. In order to take into con-

sideration seasonal fluctuations in mobility behavior the survey was carried out in

three waves in March, June and October of 1997 with different participants for each

wave. Each participant reported all his or her trips conducted by public or individ-

ual transport during a period of two or three days. We consider part of the data

which includes 1375 trips taken by 296 persons in 167 households living in 74 postal

code areas of Munich. For each trip Y has value 1, if individual transport was used

and value 0, if public transport was used. Person, household and trip related covari-
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Covariable Number of Trips Using Most
type Variable Levels Individual Public Total frequently

Transport Transport obs. value

PERSON PERSONAL NO INCOME (< 200 DM) 24 31 55 0
related INCOME MIDDLE (200 − 3000 DM) 475 193 668 1

HIGH (> 3000 DM) 521 131 652 0

USAGE MAIN USER 731 100 831 1
SECONDARY USER 213 99 312 0
NOT USER 76 156 232 0

NET CARD YES 235 247 482 0
NO 785 108 893 1

SEX MALE 549 172 721 1
FEMALE 471 183 654 0

median
AGE metric (quadratic, normalized with Splus function poly(age,2)) 42 years

HOUSE- HOUSEHOLD SINGLE 156 125 281 0
HOLD TYPE SINGLE PARENT 84 10 94 0
related NOT SINGLE 780 220 1000 1

TRIP DAY TYPE WORK DAY 595 297 892 1
related WEEKEND 425 58 483 0

DISTANCE SHORT (≤ 3.5 km) 294 71 365 0
MIDDLE (3.6 − 21.5 km) 571 257 828 1
FAR (> 21.5 km) 155 27 182 0

WAY ALONE ALONE 507 267 774 1
NOT ALONE 513 88 601 0

DAY TIME DAY (6 a.m. - 9 p.m.) 905 336 1241 1
NIGHT (9 p.m. - 6 a.m.) 115 19 134 0

T O T A L 1020 355 1375

Table 6.1: Significant covariates identified in logistic regression model selection with-
out spatial and cluster effects

ates were recorded. Neglecting spatial and cluster effects standard model selection

techniques for logistic regression selected the following covariates. Person related co-

variates are age (metric), sex, personal income, car usage (main, secondary or not

user) and whether the person possesses or not a public transport net card. We retain

only one household related covariate, namely household type (single, single parent or

not single). Trip related covariates are day type (work day or weekend), day time

(day or night), distance and whether the person took the trip alone or not alone. Ta-

ble 6.1 shows the chosen covariates. For the covariate USAGE, note that both main

and secondary users must be not younger than 18 years and must have a driver li-

cense and a car available in the household. The following significant interactions were

identified: WAY ALONE:NET CARD, USAGE:SEX, WAY ALONE:USAGE, DIS-
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TANCE:USAGE, DAY TYPE:NET CARD, USAGE:DAY TIME, SEX:DAY TIME,

PERSONAL INCOME:NET CARD, DISTANCE:AGE and DAY TYPE:AGE. We

used this model as a starting model for our analysis. We like to note that a seasonal

effect measured by temperature is not significant. Trips which have been taken to-

gether by let us say k persons are treated as k trips each associated with the specific

covariates of these persons. The fact that these trips were conducted together is taken

into account by the covariate WAY ALONE defined in Table 6.1.

0 2 4 6 8
0

0.05

0.1

0.15

0.2

τ2

−1 −0.5 0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ψ = φ / (1+|φ|)

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

mean white: 0 is below 90%−c.i.;black: 0 is over 90%−c.i.;
gray: 0 is in 90%−c.i. (i.e. insignificance)

Figure 6.1: Results for Model 1: Top: Estimated Posterior Densities of Spatial Hy-
perparameters (Solid Line = Estimated Posterior Mode, Dashed Line = 90% CI).
Bottom: Estimated Posterior Mean Spatial Effects b̂j, j = 1, . . . , 74 and 90% CI

6.2 Results

We present the results for 8 different model specifications. Model 1 is a spatial

logit regression model with no cluster effects, while Models 2 — 5 are spatial logit

models with group cluster effects. Finally Models 6 — 8 are logit spatial models with

individual cluster effects. For all models 25000 MCMC iterations were run and every

25th iteration was recorded, giving acceptable low autocorrelations (not shown). We

found, that 10 pilot runs with 300 iterations per pilot run are sufficient as “burn in”.

As a starting point for the choice of fixed effects we used the covariates identified

in Table 6.1 involving a total of 36 regression parameters. The intercept effect is
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modeled within the spatial and cluster part. As prior for α1, . . . , α36 we chose in-

dependent normal distributions with zero mean and standard deviation equal to 5.

We consider an interaction as insignificant when the corresponding estimated 90%

credible interval (CI) contains the zero value for all interaction terms. If an interac-

tion is found to be insignificant, then the corresponding terms were removed and the

model reestimated. Continuing with this procedure we arrive at a model where all

interactions are significant.

For Model 1 we chose a uniform prior for ψ = φ

1+|φ|
on (−1, 1) and for [τ 2] ∝ 1.

The top row of Figure 6.1 presents estimated posterior densities for τ 2 and ψ. The

parameter ψ is negative, which indicates that positive spatial effects in an area can

be surrounded by negative spatial effects and vice versa. This is seen in Figure 6.1

(bottom row), where posterior means and their 90% CI of the spatial effects are

given.

In Models 2 — 5 we used group cluster specifications. First we considered in

Model 2 group clusters formed by the 74 postal codes. Since single trips are taken

by individuals and households we ideally would like to allow for person or household

specific effects. This would require the estimation of 296 person and 167 household

specific cluster variances. The data is too sparse to accommodate these models.

Therefore we form cluster groups by the number of trips taken by individuals or

households. Since it is unclear how many cluster groups should be considered, we

investigated several specifications. To avoid unbalanced cluster groups we chose the

cut points in such a way that the corresponding cluster groups consists of about equal

number of trips. For example for Model 3 we used 5 clusters with 1st cluster group

defined with ≥ 23 trips, the 2nd one with 16−22 trips, the 3rd one with 12−15 trips,

the 4th one with 8 − 11 trips and the 5th one with ≤ 7 trips per household. Model

4 and 5 use 12 and 5 cluster groups formed by the number of trips a household has

taken, respectively.

For σ2
c we choose σ2

c ∼ IG(3, 0.5), while prior choices for fixed and spatial param-

eters remain the same as in Model 1. Only in Model 2, in order to avoid numerical

problems (clustering around border values -1 and 1) we chose [ψ] ∝ (1 − |ψ|)0.5 in-

stead of [ψ] ∝ 1 on the interval (−1, 1). The posterior centrality estimates of the

hyperparameters and their 90% CI are given in Table 6.2. In Model 2 we have as

cluster groups the 74 postal codes. Therefore both structured (bj, j = 1, . . . , 74) and

unstructured (cj, j = 1, . . . , 74) spatial effects are included in Model 2. Figure 6.2

presents spatial maps with estimated posterior means for the structured spatial effects

bj (top left) and unstructured spatial effects cj (top middle). On the top right map we

present estimated posterior means of the sum bj + cj of structured and unstructured
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spatial effects. Corresponding 90% CI are given in the middle row of Figure 6.2.

Both structured and unstructured effects are insignificant, while their sum is, and

form a similar spatial pattern as in Model 1. Therefore it is not surprising that the

posterior density of ψ, are also similar (see bottom row of Figure 6.2).

Model Number of Parameter Mode Mean Median 90% CI
Clusters 5% 95%
74 formed ψ −0.500 −0.271 −0.372 −0.857 0.646

2 by postal τ2 3.628 4.777 4.313 0.981 10.335
codes σ2

c 0.554 0.836 0.678 0.315 1.912
5 formed ψ −0.541 −0.422 −0.446 −0.930 0.149

3 by # of trips τ2 6.262 9.124 8.233 3.358 18.417
per household σ2

c 0.802 1.270 1.076 0.486 2.797
12 formed ψ −0.507 −0.516 −0.538 −0.954 0.031

4 by # of trips τ2 6.293 8.299 7.452 3.194 16.067
per household σ2

c 0.880 1.272 1.122 0.589 2.398
5 formed ψ −0.874 −0.543 −0.594 −0.956 0.058

5 by # of trips τ2 4.025 5.298 4.777 2.020 9.685
per person σ2

c 0.526 0.753 0.646 0.324 1.585

6 3 formed ψ −0.468 −0.396 −0.418 −0.870 0.181

by household τ2′ 4.861 6.854 5.931 2.553 14.196
type σ′

2 0.277 0.484 0.430 0.226 0.921
σ′

3 1.439 1.461 1.443 1.068 1.943
7 5 formed ψ −0.410 −0.413 −0.422 −0.865 0.075

by # of trips τ2′ 10.769 17.101 14.799 6.002 36.512
per household σ′

2 0.922 1.010 0.973 0.648 1.464
σ′

3 2.842 2.951 2.913 2.240 3.734
σ′

4 1.430 1.486 1.459 1.078 2.019
σ′

5 1.822 1.797 1.789 1.313 2.343
8 5 formed ψ −0.476 −0.403 −0.439 −0.876 0.199

by # of trips τ2′ 7.538 9.468 8.232 3.167 19.895
per person σ′

2 1.027 1.058 1.041 0.752 1.430
σ′

3 1.168 1.180 1.166 0.797 1.610
σ′

4 1.271 1.300 1.287 0.897 1.768
σ′

5 1.553 1.681 1.642 1.196 2.255

Table 6.2: Point and Interval Posterior Estimates for the Hyperparameters in Models
2 - 5 (with Group Cluster Effects) and Models 6 - 8 (with Individual Cluster Effects)

In Figure 6.3 we present for Model 3 estimated posterior densities of the group

cluster effects cm, m = 1, . . . , 5. A cluster effect is significant (marked with *), if

its 90% CI does not include zero. Note that cluster effects for households with large

numbers of trips are positive and cluster effects for households with few numbers of

trips are negative. Finally the maps on the bottom row of Figure 6.4 give estimated

spatial effects.

Also in Models 4–5 only the higher cluster effects (i.e. with fewest numbers of

trips) are significant. For brevity we omit the corresponding density plots. For Models

4–5 the spatial patterns are similar to the ones of Models 1 or 3 and Model 2 when

the joint effect of structured and unstructured spatial components is considered. The

posterior density of ψ also remains similar (not shown for Models 3, 4 and 5). Table

6.2 gives posterior centrality estimates and 90% CI’s for the hyperparameters.
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Figure 6.2: Results for Model 2: Top: Estimated Spatial Effects: Structured b̂j, j =

1 : 74 (left), Unstructured ĉj, j = 1 : 74 (middle) and their Sum b̂j + cj, j = 1 : 74
(right). Middle: 90% Credible Intervals for Structured Effects, Unstructured Effects
and their Sum. Bottom: Estimated Posterior Densities of Hyperparameters (Solid
Line = Estimated Posterior Mode, Dashed Line = 90% CI)

We consider now model specifications with individual cluster effects given in Table

6.2. As before, we chose a flat prior [τ 2′ ] ∝ 1 and take [ψ′] ∝ (1 − |ψ′|)0.5 to avoid

numerical problems (clustering around border values -1 and 1). In Models 6–8 we

assume for σ′
2, . . . , σ

′
M a normal N(1, 1) prior truncated to (0.2, +∞).

The posterior centrality estimates and their 90% CI’s of the hyperparameters for

Models 6–8 are given in Table 6.2. We see that cluster components of the higher

clusters are significant, i.e. 1 /∈ 90% CI. This shows that the heterogeneity within

the group with the fewest numbers of trips per household (or per person) is the

largest. Further we see, that more cluster components are significant for individual

cluster effects formed by household type or number of trips per household than by the

number of trips per person. In all models with individual cluster effects the spatial

dependence hyperparameter ψ is negative and about the same size.

The estimates for the fixed effects α
′ in all 8 models are given in Table 6.3.

Posterior mode estimates are marked with *, when the corresponding parameter is

19



−2 0 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

 c1

−1 0 1 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

 c2

−4 −3 −2 −1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

 c3*

−2 −1 0
0

0.2

0.4

0.6

0.8

 c4

−3 −2 −1 0
0

0.2

0.4

0.6

0.8

 c5*

Figure 6.3: Estimated Posterior Densities of Group Cluster Effects cm, m = 1, . . . , 5
in Model 3. (Solid Line = Estimated Posterior Mode, Dashed Line = 90% CI)

insignificant, i.e. the 90% CI contains zero. If all terms of an interaction effect

were insignificant, the model was reduced and reestimated. Those interactions are

marked with “n.r.”, correspond to ”not represented” in the model. In particular the

significant interactions PERSONAL INCOME:NET CARD and DAY TIME:AGE

from the starting logistic model disappear.
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Model
1 2 3 4 5 6 7 8

Main Effect spatial spatial+group spatial+individual
only cluster cluster

PERSONAL INCOME

MIDDLE 0.41* 0.48* 1.63 1.41 0.71* 1.06 1.62 0.64*

HIGH 0.25* 0.42* 1.27 1.14 0.12* 0.76 1.46 0.24*

USAGE

SECOND.USER 0.38* 1.09* 1.27 1.16* 0.88* 1.11 1.23* 1.51
NOT.USER −3.87 −6.41 −6.52 −6.52 −5.90 −6.38 −9.99 −7.44

NET CARD

NO 2.07 2.67 3.03 3.32 2.72 2.78 3.90 3.11

SEX

FEMALE 0.28* 0.16* −0.19* −0.47* 0.10* 0.30* −0.48* 0.01*

AGE

POLY.AGE.1 16.80 8.73 11.64 11.53 9.95 6.11 7.97 9.81
POLY.AGE.2 −13.07 −8.96 −9.03 −8.64 −9.67 −8.93 −9.69 −7.63

HOUSEHOLD

SINGLE.PARENT 1.61 3.15 3.42 2.92 3.31 n. r. 4.24 3.65

NOT.SINGLE 0.70 0.68 0.25* 0.27* 0.90 n. r. 0.85* 0.96

DAY TYPE

WEEKEND 1.44 2.21 2.46 2.52 2.11 2.25 3.32 2.78

DISTANCE

MIDDLE −0.96 −1.15 −1.06 −1.17 −1.05 −1.29 −1.90 −1.16

FAR 0.32* 0.81* 0.98* 0.83* 0.97* 1.21* 0.78* 0.85*

WAY ALONE

NOT.ALONE 1.82 2.09 2.07 2.30 1.93 2.17 3.21 2.30

DAY TIME

NIGHT −0.58* −1.02 −1.12 −1.29 −1.13 −1.19 −1.99 −1.30

Interaction
WAY ALONE:NET CARD

NOT.ALONE:NO −1.86 −2.39 −2.37 −2.76 −2.37 −1.54 −1.69 −2.53

USAGE:SEX

SECOND.USER:FEMALE −1.70 −2.13 −2.07 −1.81 −2.01 −2.30 −2.80 −2.50

NOT.USER:FEMALE −0.20* 0.66* 0.58* 0.79* 0.40* 0.26* 1.39* 0.80*

WAY ALONE:USAGE

NOT.ALONE:SECOND.USER 0.79 1.21 0.80 0.76* 1.22 1.09 1.20* 1.32
NOT.ALONE:NOT.USER 1.75 3.65 4.19 3.76 3.41 4.35 5.08 4.22

DISTANCE:USAGE

MIDDLE:SECOND.USER −0.68* −1.03 −1.39 −0.97 −1.19 −1.31 −1.44* −1.54
FAR:SECOND.USER −1.02 −2.25 −2.12 −1.72 −2.22 −2.73 −2.41 −3.61
MIDDLE:NOT.USER 0.95 1.68 1.52 1.64 1.27 1.20 2.47 1.53

FAR:NOT.USER −1.19 −1.19* −1.55* −2.01 −1.51* −2.31 −2.68 −1.94

DAY TYPE:NET CARD

WEEKEND:NO n. r. −0.91 −1.23 −1.23 −1.07 −0.82* −1.51 −1.25

USAGE:DAY TIME

SECOND.USER:NIGHT 1.32 5.01 5.22 6.63 5.71 5.07 6.17 5.67

NOT.USER:NIGHT −0.06* 0.31* 0.45* 0.38* 0.26* 0.32* 0.72* 0.68*

SEX:DAY TIME

FEMALE:NIGHT 1.70 2.88 3.36 3.55 3.49 3.02 2.94 3.30

DISTANCE:AGE

MIDDLE:POLY.AGE.1 −12.93 n. r. n. r. n. r. n. r. n. r. n. r. n. r.

FAR:POLY.AGE.1 −0.09* n. r. n. r. n. r. n. r. n. r. n. r. n. r.

MIDDLE:POLY.AGE.2 −2.41* n. r. n. r. n. r. n. r. n. r. n. r. n. r.

FAR:POLY.AGE.2 0.76* n. r. n. r. n. r. n. r. n. r. n. r. n. r.

Table 6.3: Posterior Mode Estimates for Main Effect and Interaction Parameters (*=
90% credible interval does not include 0, n.r.= effect was not required in model, since
model with effect has a 90% credible interval which includes 0)
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6.3 Model Comparison

A general method for model comparison in Bayesian models estimated by MCMC is

the DIC criterion suggested by Spiegelhalter et al. (2002). It is developed for expo-

nential family models and based on the deviance. Even though binary logit models

belong to this class, Collett (2002) has shown that the residual deviance in binary

regression should not be used for model assessment, while the partial deviance is valid

for nested model comparison. Further, Figure 1 of Spiegelhalter et al. (2002) shows

that the DIC does not perform satisfactory for binary responses. Since our binary

responses cannot be grouped to binomial responses with sufficient large numbers of

trials because of the complexity of the fixed, spatial and cluster effects, we decided

not to use the DIC criterion. Meaningful DIC values of our models can be determined

as long as the binary regression data can be grouped to binomial regression data with

sufficiently large number of trials.

To facilitate model comparison we follow two alternative approaches. In the first

one we focus on the spatial fit, while in the second one we focus on the overall fit.

For the first focus we propose to use Dw the sum of weighted squared residuals over

all postal codes of Munich defined by

Dw(Y) :=
74∑

j=1

nj(p
empir
j − pestim

j )2 , (6.1)

where nj := number of trips in the jth postal code. Empirical probabilities p
empir
j

are equal to the observed proportion of trips using individual transport in postal code

area j, and posterior probability estimates pestim
j are based on the MCMC run, and

defined as:

pestim
j :=

1

nj ∗ R

∑

i: j(i)=j

R∑

r=1

exp(ηir)

1 + exp(ηir)
, (6.2)

where

ηir :=







xt
iαr + bj(i),r for Model 1

xt
iαr + bj(i),r + cm(i),r for Models 2-5

xt

i
α

′

r+b′
j(i),r

σ′

m(i),r
for Models 6-8 .

Here αr, bj,r and σ′
m,r are the corresponding MCMC estimates in the rth recorded

iteration.

In Table 6.4 we present value Dw for all 8 models and the number of parameters

required in calculating Dw. The total number of parameters required for Dw will

be used as a rough measure for the complexity of the model with regard to the

spatial fit. This means we regard these parameters as model parameters and the
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Model 1 2 3 4 5 6 7 8
spatial only spatial + group spatial + individual

cluster cluster
fixed effects 31 28 28 28 28 26 28 28
spatial effects 74 74 74 74 74 74 74 74
cluster effects 0 74 5 12 5 2 4 4
total number of 105 176 107 114 107 102 106 106
parameters for Dw

Dw 2.35 1.23 0.95 1.02 1.44 1.9 3.25 1.84
∑n

i=1(µi − yi)
2 110.49 106.54 96.05 94.91 102.86 108.30 103.77 107.56

∑n
i=1 σ2

i 129.75 111.96 104.19 102.64 109.84 114.21 111.50 114.55
PMCC 240.24 218.50 200.23 197.55 212.70 222.51 215.27 222.11

BS .0866 .0840 .0768 .0761 .0812 .0851 .0821 .0850

Table 6.4: Model Fit Comparison using Dw, PMCC and BS

spatial dependence parameter, spatial variance and the cluster variance parameters

in group cluster models as hyperparameters belonging to the prior. This approach

is consistent with the approach taken in Spiegelhalter et al. (2002), which point

out in their discussion that complexity depends on the focus of the analysis. We

want to add that in setting our focus on assessing the spatial fit, the corresponding

calculations of the complexity measure pD suggested by Spiegelhalter et al. (2002)

cannot be facilitated since the corresponding deviances are not available in closed

form as pointed out by S.P. Brooks in the discussion of Spiegelhalter et al. (2002).

According to Table 6.4 the best fit with regard to spatial probabilities has Model

3 (with group cluster effects). We see that even though the models with individual

cluster effects have a lower model complexity with regard to spatial fit, their goodness

of fit as measured by Dw is worse than Model 3. Model 4 has a comparable Dw value

to Model 3 but the model complexity is higher, therefore we prefer Model 3.

To complement our analysis of spatial fit we consider now also the predictive model

choice criterion (PMCC) of Gelfand and Ghosh (1998) and the Brier score BS (Brier

1950) as proper scoring rule (Gneiting and Raftery 2004). The PMCC is defined as

PMCC =
n∑

i=1

(µi − yi)
2 +

n∑

i=1

σ2
i

where µi := 1
R

∑R

r=1 pir and σ2
i := 1

R

∑R

r=1 pir(1 − pir) are MCMC based estimates of

the mean and variance of the posterior predictive distribution. Here pir = exp(ηir)
1+exp(ηir)

.

The second term is considered as a penalty term which will tend to be large both for

poor and overfitted models. The Brier score BS for our models is given by

BS =
1

nR

R∑

r=1

n∑

i=1

(pir − yi)
2.

PMCC and BS are given in Table 6.4 and again show that Models 3 and 4 are the

preferred models. This substantiates that Model 3 is the preferred overall model.
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For Model 3 we present a map with estimated spatial probabilities over postal

codes of Munich (Figure 6.4, top right map), which coincides quite well with the

map showing the empirical spatial probabilities (Figure 6.4, top left map). This

indicates that Model 3 has a reasonably good fit of the data with respect to the

spatial resolution.
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Figure 6.4: Top right map: Observed Probabilities of Individual Transport Use by
Postal Codes in Munich, Germany; Top left map: Posterior Mean Probability Esti-
mates of Individual Transport Use by Postal Codes in Munich, Germany for Model
3; Bottom maps: Estimated Spatial Effects b̂j, j = 1, . . . , 74 in Model 3.

6.4 Model Interpretation

After model fitting and model selection one is interested in what can be learned about

the travel mode decisions based on Model 3. First we estimate individual transport

probabilities when one or combinations of two covariates change. The remaining

covariates in the model are set to their “most usual values”, corresponding to the

modus for categorical covariates and median values for quantitative covariates (Table

6.1). Since Model 3 includes spatial effects we have to specify a postal code for which

we estimate these probabilities. We have chosen postal code area 81377, since this

24



postal code area has a large observed number of trips and the smallest 90% CI for

its spatial effect. Finally Model 3 contains group cluster effects with regard to the

number of trips a household has taken. Since each cluster group contains the similar

number of individual trips, for our investigations we chose the last, i.e. the 5th cluster

group corresponding to households with ≤ 7 trips, which has the smallest 90% CI for

its cluster effect c5. For “the most usual” trip associated with postal code 81377 and

5th cluster, the estimated posterior mean probability for taking individual transport

is equal to 0.7.

Figure 6.5 gives the estimated posterior mean probability with 90% credible
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Figure 6.5: Estimated posterior mean probabilities for using an individual transport
in Postal code area 81377 and 5th cluster group for different AGE, while other
covariates are set as in Table 6.1 (dotted lines correspond to 90% credible bounds)

bounds for choosing individual transport as age changes in postal code area 81377

and trips associated with the 5th cluster when the remaining covariates are set to

their “most usual value”. It is not very surprising that the probability of using a car

increases rapidly to an age of about 35 years, remains reasonably stable between 35

years and 65 years and decreases slowly after 65 years. Younger people have a lower

probability to own a car, while older people might prefer public transport options.

We can interpret the effect of age directly, since no interaction terms include age.

For almost all other covariate effects we have to consider covariate combinations

corresponding to interaction terms. Note that Model 3 includes 7 interaction terms.

In order to interpret effects of the categorical covariates we plot for each of the 7

interactions the estimated posterior mean probabilities for using individual transport.

For brevity we interpret only 2 of the 7 interaction plots. From top left panel of Figure
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Figure 6.6: Estimated posterior mean probabilities for individual transport in Postal
code area 81377 and 5th cluster group for different combinations of the covariates
which form the interaction, while other covariates are set to the “most usual value”
given in Table 6.1. Dotted lines correspond to 90% credible bounds.

6.6 we see that net card users prefer public transport for trips taken alone much more

often than when the trip is taken with others. This is to be expected since a net card

in general can only be used by a single person. In contrast users without a net card

take individual transport options much more often regardless if the trip taken alone

or not. The right panel in the second row shows an interesting behaviorial difference

between females and males. During the day there is a little difference. However during

night women nearly always use individual transport options, while males choose this

option only half as often. An explanation might be that women are afraid to use

public transport at night because of low usage and deserted stops, while males might

prefer a car free option at night. This shows that some expected behaviorial patterns

can be captured when interactions are allowed in the model. The remaining panels

of Figure 6.6 are interpreted in detail in Section 6.4 of Prokopenko (2004).
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We continue now with the interpretation of spatial effects. There are 24 postal

codes whose 90% CI’s do not include zero and therefore are significant. We expect

that the interpretation of the spatial effects is related to the structure of the subway

(U-Bahn) net and suburban railway (S-Bahn) net. Table 6.5 confirms our assumption

in general. The left column shows the numbers of postal code areas, which have U- or

S-stops inside. The right column contains the numbers of postal code areas without

with U- or S-stops without U- or S-stops inside PLZ
90% CI over 0 2 5

(80333, 81476)
90% CI below 0 11 6

(80999, 80634, 80797,
81243, 80689, 81373)

Table 6.5: Interpretation of spatial effects in context of presence/absence of the U-or
S- stops inside of postal codes; the postal code numbers of 8 untypical postal code
areas are given in parentheses.

stops. The estimated odds ratio of Table 6.5 is 2·6
11·5

≈ 0.22, which is below 1 (a 90%

confidence interval is [0.044, 1.091]). This confirms that presence of U- and S-stops

are related to significant spatial effects. While there is a general relationship between

significant spatial effects and the presence of the U+S-net in these postal areas, 8 areas

do not follow this pattern (see Table 6.5). These areas should therefore be of special

interest to the city planners, which seek to improve the public transport net, since

these areas indicate areas of low/high public transport usage even after adjustment of

trip, person, household specific effects and the structure of the public transportation

network. We noted that the estimate of the spatial dependency parameter ψ̂ ≈ −0.5

is negative. This can be explained by the specific structure of S- and U-Bahn net

of Munich, whose lines run from the center to suburbs like a star. Since the sign of

the spatial effects correlates with the presence/absence of the U-or S- stops, it is not

surprising, that especially far from the center the neighboring postal codes have often

spatial effects with opposite signs.

Finally we mention that cluster effects for households with large numbers of trips

are positive and cluster effects for households with few numbers of trips are negative

(Figure 6.3). This implies that households with high mobility needs use a car more

often than households with low mobility needs.
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7 Model Modifications and Extensions

A possible modification of the models developed in Section 3 and 4 is to consider the

problem of including interactions between cluster and spatial effects. For this we sug-

gest to use multivariate CAR models mentioned for example by Pettitt et al. (2002),

which is a model for b = (b1, . . . ,bJ)
t, where the components bj = (bj1, . . . , bjM)t, j =

1, . . . , J are M−dimensional vectors instead of scalars, as before. The joint distribu-

tion of the vector b is defined as follows:

b = (b1, . . . ,bJ)
t ∼ NJ×M

(
0, τ 2(Q−1 ⊗ V )

)
, V =









1 ρ · · · ρ

ρ 1
...

...
. . . ρ

ρ · · · ρ 1









∈ R
M×M ,

(7.1)

where A ⊗ B stands for Kronecker product of matrices A and B. In particular for

the multivariate modified Pettitt CAR, the conditional distribution is given then as

follows (compare with (2.3)):

bj|b−j ∼ NM

(

φ

1 + |φ|Nj

∑

j∼j′

bj′ ,
(1 + |φ|)τ 2

1 + |φ|Nj

V

)

.

The parameter ρ measures the strength of the cluster dependence. If ρ = 0 then

all M components of vector bj are iid, i.e. b decomposes in M iid. Gaussian CAR

models. As before, the parameter φ measures the strength of the spatial dependence.

If φ = 0 then the vectors bj, j = 1, . . . , J are independent and normally distributed

with mean zero and covariance matrix τ 2V . Properties of the multivariate CAR model

are studied in Pettitt et al. (2002). Gelfand and Vounatsou (2003) use multivariate

extensions of Sun et al. (2000) proper CAR models for multivariate continuous and

multinomial spatial data. Carlin and Banerjee (2003) use multivariate Gaussian CAR

models in multivariate generalized linear mixed models.

We now propose to apply the multivariate Gaussian CARs in a new way, namely

for modeling spatial-cluster interactions for univariate response data. More precisely,

we propose to model spatial and cluster effects jointly as some multivariate CAR. As

before, J denotes the number of regions, while M stands for the number of clusters.

Therefore the multivariate Gaussian CAR model is associated with a(M-categorial)

covariate instead of a(M-variate) response as usually. Then logits are modeled as

follows (compare with (3.2)):

θi := log

(
pi

1 − pi

)

= xt
iα

︸︷︷︸

fixed effect

+ bj(i),m(i)
︸ ︷︷ ︸

spatial and cluster effect

, (7.2)
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where b = (b1, . . . ,bJ)
t, bj = (bj1, . . . , bjM)t, j = 1, . . . , J is modeled as a realization

of the multivariate CAR (7.1). We have to estimate one additional parameter ρ,

which measures strength of a space-cluster interaction. The absence of interaction

is indicated by ρ = 0. In this case the M vectors (b1m, . . . , bJm)t, m = 1, . . . ,M

are independent identically distributed Gaussian CAR models. Model (7.2) has been

investigated for simulated data, where it performed well. However the sparseness

of the mobility data does not support an application of such models for this data.

Prokopenko (2004) also shows that modeled interaction present in the multivariate

CAR model (7.1) can be interpreted as a product of spatial and cluster effects.

A further extension would be to model heterogeneity within and between clus-

ters simultaneously, which would combine group and individual cluster approaches.

In particular we would assume cmk ∼ N(cm, σ2
m), cm ∼ N(0, σ2

c ) for m =

1, . . . ,M, k = 1, . . . , Km. (compare with 3.2 and 4.1). Here a similar non identifia-

bility problem has to be solved and is subject of current research.

8 Summary and Discussion

An extended version of the spatial Gaussian CAR model proposed by Pettitt et al.

(2002) has been presented, which allows for spatial independence and the intrinsic

CAR model as special cases. This model possesses a proper joint distribution and

allows for a fast update of the spatial dependence parameter. Additionally, this

modification has a more reasonable behavior of the conditional variance of a spatial

effect given all other spatial effects than the model considered in Sun et al. (2000).

In a hierarchical setup this extended CAR model has been used for binary spa-

tial regression data. To capture additional heterogeneity, cluster effects have been

included. In addition to the conventional modeling of heterogeneity between groups

(group cluster effects) through independent random effects, modeling of heterogeneity

within groups (individual cluster effects) has also been considered. A naive approach

yields an unidentifiable model. It is shown how the model can be reparametrized

to overcome nonidentifiability. Parameter estimation is facilitated by an MCMC ap-

proach. Separate MCMC algorithms have been developed for the two hierarchical

model classes considered: logistic regression with spatial and group cluster effects

and logistic regression with spatial and individual cluster effects. Probit formulations

could have used as well and have been investigated in Prokopenko (2004). There

latent variables are used for probit models with individual cluster effects requiring

only a single MH update. This is faster because of better mixing behavior than a

corresponding MCMC algorithm based on the logit formulation. A different approach
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to logit models is given in Holmes and Held (2004). However logit formulations are

easier to interpret and therefore more often used in practice. All MCMC algorithms

presented in this paper are validated through simulation. The usefulness of these

models has been demonstrated by the application to a mobility study. We show that

this approach is able to detect spatial regions where public transport options are

more/less often used after adjusting for explanatory factors.

For model comparison, we use the sum of weighted squared residuals as a measure

of fit and the number of parameters required for estimating spatial probabilities as a

rough measure of model complexity in addition to PMCC and Brier score. A more

theoretical based approach is still needed and of current research interest. Alternatives

such as posterior predictive p-values proposed by Gelman et al. (1996) are possible,

however their calibration is difficult in such complex settings (see Hjort et al. 2006).

The mobility study also included information on trips conducted by foot and bi-

cycle which have been ignored so far. A multionomial logit (MNL) analysis without

spatial and cluster effect of this data has been performed by Ehrlich (2002). There-

fore we plan to extend our analysis to MNL models with spatial and cluster effects.

For point location data a MNL model with spatial effects based on spatial distances

has been considered by Mohammadian and Kanaroglou (2003). However many dis-

crete choice modelers have objected to the restrictions implied by a MNL model. In

particular the MNL model assumes that the random utilities are independent iden-

tically distributed and that the responsiveness to attributes of alternatives across

individuals after controlling for individual characteristics is homogenous. To relax

these two restrictions the generalized extreme value (GEV) class of models and the

mixed multinomial logit (MMNL) class have been proposed (see for example Bhat

(2002) and Bhat (2006)). Bhat and Guo (2004) consider a mixed spatially correlated

logit model based on a GEV structure to accommodate correlations between spatial

units of a location point referenzed data. They use the Halton simulation method

(see Train (2003)) to simulate the corresponding likelihood for parameter estimation.

It would be interesting to provide alternative Bayesian estimates for these dicrete

choice models for point location data. In addition one can develop models following

the approach taken in this paper for spatially aggregated data allowing for a spatial

CAR formulation. The addition of cluster effects would provide an alternative to the

MMNL model class.
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