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Abstract

The association between a binary variableY and a variableX with an at least

ordinal measurement scale might be examined by selecting a cutpoint in the range

of X and then performing an association test for the obtained2 × 2 contingency

table using theχ2 statistic. The distribution of the maximally selectedχ2 statistic

(i.e. the maximalχ2 statistic over all possible cutpoints) under the null-hypothesis

of no association betweenX andY is different from the knownχ2 distribution.

In the last decades, this topic has been extensively studied for continuousX vari-

ables, but not for non-continuous variables with an at least ordinal measurement

scale (which include e.g. classical ordinal or discretized continuous variables).

In this paper, we suggest an exact method to determine the distribution of maxi-

mally selectedχ2 statistics in this context. This novel approach can be seen as a

method to measure the association between a binary variable and variables with

an at least ordinal scale of different types (ordinal, discretized continuous, etc).

As an illustration, this method is applied to a new data set describing pregnancy

and birth for 811 babies.

Key words: Association test, contingency table, exact distribution, variable selec-

tion, selection bias.
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1 Introduction

The following situation is not uncommon in medical data analysis. An at least ordi-

nal scaled variableX is suspected by the investigator to be associated with a binary

variableY . Let (xi, yi)i=1,...,N denoteN independently and identically distributed re-

alizations of the variablesX andY . N1 andN2 denote the numbers of observations

with yi = 1 andyi = 2, respectively. In this paper, we derive the exact distribution of

the maximally selectedχ2 statistic for suchX variables. This distribution can be used

to measure the association between at least ordinal scaledX variables and the binary

variableY and allows the comparison of severalX variables with different numbers

of possible values.

If X were nominal scaled, association tests such as the asymptoticχ2 test or

Fisher’s exact test for small samples (for a binaryX) could be employed to examine

the association betweenX andY using the sample(xi, yi)i=1,...,N . If X were contin-

uous, tests based on the normality assumption such as the two-samplest-test or rank

tests such as Wilcoxon’s rank sum test for two samples may be applied. The case of

an at least ordinal scaled but not continuous variable is much more difficult to handle.

Without loss of generality, such a variableX can be assumed to takeK distincts levels

a1, . . . , aK ∈ R in the sample(xi, yi)i=1,...,n, where2 ≤ K ≤ N anda1 < · · · < aK .

An option to measure the association betweenX andY is to transformX into binary

variablesX(k) for k = 1, . . . , K − 1 as follows

X(k) = 0 if X ≤ ak

X(k) = 1 otherwise.

Fisher’s exact test or the asymptoticχ2 test may then be applied to each variableX(k)

successively. However, one must be careful when interpreting thep-values output by

these tests. Selecting theX(k) yielding the smallestp-value and claiming thatak is a

relevant cutpoint ofX because thep-value is low would be an inappropriate approach.

This issue has been extensively studied in the case of continuous variables. Miller

and Siegmund (1982) prove that the maximally selectedχ2 statistic converges to a

normalized Brownian bridge under the null-hypothesis of no association betweenX

andY , whereas Halpern (1982) studies the case of small samples in a simulation study.



Koziol (1991) derives the exact distribution of maximally selectedχ2 statistics given

N1 andN2 using Durbin’s combinatorial approach (Durbin, 1971). Maximally selected

χ2 statistics ink × 2 contingency tables are investigated in Betensky and Rabinowitz

(1999). The distributions of other maximally selected statistics such as the statistic

used in Fisher’s exact test (Halpern, 1999) or McNemar’s statistic (Rabinowitz and

Betensky, 2000) have also been studied in the last few years.

In this paper, we are interested in the exact distribution of theχ2 statistic for all

types of at least ordinal scaled variables. Via simulations, we show in Section 3 that

Koziol’s approach is inappropriate to measure association between a binary variableY

and a non-continuous variableX with equal realizations in the sample(xi, yi)i=1,...,n

(K < N ). More specifically, under the null-hypothesis of no association betweenX

andY , Koziol’s approach tends to detect more association ifK is large. In the present

paper, we are concerned with at least ordinal scaled non-continuous variables, which

include e.g. classical ordinal variables (for instance a variable with possible values

”very good”, ”good”, ”bad”, ”very bad”), discrete metric variables (for instance the

number of children in a family), or essentially continuous variables which are mea-

sured in a discretized form in practice. For instance, the height of a newborn baby is

often given in centimeters and can thus take only a few values ranging from about 47

to 54 cm. For the types of variables described above, we generally haveK < N if

N is large enough, whereas continuous variables may be assumed to takeN distinct

values in the sample(xi, yi)i=1,...,N (K = N ). In the framework of maximally selected

statistics, a variable withK < N cannot be handled as a variable withK = N . The

fact that some values ofX are taken several times in the sample must be taken into

account when deriving the distribution of the maximally selectedχ2 statistic, since

the number of possible cutpoints isK − 1. In this paper, we propose a novel method

to derive the exact distribution of the maximally selectedχ2 statistic for all types of

at least ordinal scaled variables. This distribution depends on parametersN1, N2 and

m1, . . . ,mK , which are defined as

mk =
n∑

i=1

I(xi = ak), for k = 1, . . . , K,

whereI is the indicator function. Our novel approach is an adaptation of the proce-



dure proposed by Koziol (1991) and uses Durbin’s combinatorial approach. The exact

distribution of the maximally selectedχ2 statistic can be used to compute a measure

of association betweenX and a binary variableY using a sample(xi, yi)i=1,...,n. This

method has potentially many applications, especially in the field of medicine.

The paper is organized as follows. In Section 2, a method to compute the exact

distribution function of the maximally selectedχ2 statistic givenN1, N2, m1, . . . ,mK

is proposed. In Section 3, we show via simulations that our method is more appropriate

than Koziol’s method to compare variables with differentK and different numbers

of missing values. As an illustration, we use our method to measure the association

between various binary and at least ordinal scaled variables from a data set describing

pregnancy and delivery for 811 babies born between 1990 and 2004 in Section 4.

2 Distribution of the maximally selectedχ2 statistic

2.1 Framework

In this section,X is assumed to be a variable with an at least ordinal measurement

scale.Y is a binary variable with levelsY = 1, 2. For a given sample(xi, yi)i=1,...,N ,

let a1 < · · · < aK denote the different values taken byX. We consider the following

2× 2 contingency table, fork = 1, . . . , K − 1:

X ≤ ak X > ak Σ

Y = 1 n1,≤ak
n1,>ak

N1

Y = 2 n2,≤ak
n2,>ak

N2

n.,≤ak
=

∑k
j=1 mj n.,>ak

=
∑K

j=k+1 mj N

whereN1 andN2 denote the numbers of realizations withyi = 1 andyi = 2, re-

spectively andmj denotes the number of realizations withX = aj in the sample

(xi, yi)i=1,...,N . The correspondingχ2 statistic can be computed as

χ2
k =

N(n1,≤ak
n2,>ak

− n1,>ak
n2,≤ak

)2

N1N2n.,≤ak
n.,>ak

. (1)

In this context, we define the maximally selectedχ2 statistic as

χ2
max = arg max

k=1,...,K−1
χ2

k. (2)



The aim of this paper is to derive the distribution ofχ2
max givenN1, N2, m1, . . . ,mK

under the null-hypothesis of no association betweenX andY . For simplicity, we will

omitN1, N2, m1, . . . ,mK in the following:F denotes the distribution function ofχ2
max

given the parametersN1, N2, m1, . . . ,mK :

F (d) = p(χ2
max ≤ d).

2.2 Method

According to Miller and Siegmund (1982), theχ2 statistic obtained for the binary

variableX(k) can be formulated asχ2
k = A2

k, where

Ak =
N

N1

(
n2,≤ak

N2

− n.,≤ak

N
)/

√
n.,≤ak

N
(1− n.,≤ak

N
)(

1

N1

+
1

N2

), (3)

for all k = 1, . . . , K − 1. Let d be an arbitrary strictly positive real number. After

simple computations, one obtains from Equation 3 thatχ2
max ≤ d if and only if all

the points with coordinates(n.≤ak
, n2,≤ak

) for k = 1, . . . , K − 1 lie on or above the

function

lowerd(x) =
N2x

N
− N1N2

√
d

N

√
x

N
(1− x

N
)(

1

N1

+
1

N2

) (4)

and on or below the function

upperd(x) =
N2x

N
+

N1N2

√
d

N

√
x

N
(1− x

N
)(

1

N1

+
1

N2

). (5)

These curves may be denoted as boundaries. Letx(1) ≤ · · · ≤ x(N) denote the or-

dered realizations ofX. Let N2(i) denote the number of realizations withY = 2

andX ≤ x(i). The functions lowerd(x) and upperd(x) can also be represented on the

graph(i, N2(i)). A sufficient and necessary condition forχ2
max ≤ d is that the graph

(i, N2(i)) does not pass through any point of integer coordinates(i, j) with

i = n.,≤ak

and

upperd(i) < j ≤ i or max(0, i−N1) ≤ j < lowerd(i),

wherek = 1, . . . , K − 1. Let us denote these points asB1, . . . , Bq and their coordi-

nates as(i1, j1), . . . , (iq, jq), whereB1, . . . , Bq are labeled in order of increasingi and



increasingj within eachi. Under the null-hypothesis of no association betweenX

andY , the probability that the path(i, N2(i)) passes through at least one of the points

B1, . . . , Bq can be computed using Durbin’s combinatorial approach (Durbin, 1971),

as described by Koziol (1991). Here, we follow Koziol’s formulation. The number

bs of paths that pass through pointBs but do not pass through pointsB1, . . . , Bs−1 is

computed recursively as

bs =

 is

js

−
∑s−1

r=1

 is − ir

js − jr

 , s = 2, . . . , q

b1 =

 i1

j1

 .

The probability that the path(i, N2(i)) passes through at least one of the pointsB1, . . . , Bq

is then obtained as

p(χ2
max > d) =

 N

N2

−1
q∑

r=1

 N − ir

N2 − jr

 br. (6)

It follows

F (d) = 1−

 N

N2

−1
q∑

r=1

 N − ir

N2 − jr

 br. (7)

Our method, which is strongly related to the procedure described in Koziol (1991),

allows explicitly K < N . The two approaches differ in the definition of the points

B1, . . . , Bq. In Koziol (1991), the boundaries are formed by the pointsB1, . . . , Bq of

coordinates(i, j) satisfying

i = max {x ∈ N : j >
N2x

N
+

N1N2d

N

√
x

N
(1− x

N
)(

1

N1

+
1

N2

)} and 1 ≤ j ≤ N2,

or

i = min {x ∈ N : j <
N2x

N
− N1N2d

N

√
x

N
(1− x

N
)(

1

N1

+
1

N2

)} and 0 ≤ j ≤ N2−1.

As an example, the boundaries obtained with Koziol’s method and our new method

are represented in Figure 1 forN1 = 30, N2 = 40, m1 = 25, m2 = 10, m3 = 25,

m4 = 10 andd = 3. It can seen that the pointsB1, . . . , Bq defined by Koziol form a

’closed corridor’. With Koziol’s approach, paths which pass through a boundary point
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Figure 1: Boundaries obtained with Koziol’s approach (top) and our new approach

(bottom) ford = 3 N1 = 30, N2 = 40, m1 = 25, m2 = 10, m3 = 25 andm4 = 10.

with abscissai0 such thatx(i0) = x(i0+1) are counted for the computation ofF (d),

although they do not correspond to any concrete possible cutpoint. Thus, this approach

is inappropriate forX variables with possibly equal realizations. In our approach, only

the paths that would yieldχ2
k > d for at least onek are counted. These are the paths that

are strictly above the upper boundary or strictly below the lower boundary at abscissa

n.,≤ak
(k = 1, . . . , K − 1) only. Note that the obtained distribution functionF is the

same with both methods in the special caseK = N . In this special case, Koziol’s

approach is recommended, since computationally faster.

The formula given in Equation 6 can be used to measure the association between a

binary variableY and an at least ordinal scaled variableX using a sample(xi, yi)i=1,...,N

as follows. For allk = 1, . . . , K − 1, the valueχ2
k of theχ2 statistic for the sample

(xi, yi)i=1,...,N is computed using Equation 1 and the maximalχ2 statisticχ2
max is ob-

tained from Equation 2.F (χ2
max) is a measure of association betweenX andY . In

the following section, we show via simulations that our approach based on the maxi-

mally selectedχ2 statistic is more appropriate to measure association between a binary

variableY and a non-continuous predictor variableX than Koziol’s approach.



3 Simulations

3.1 Motivation

Koziol’s method as well as our method can be used to identify predictor variables

which are strongly associated with a binary variableY . Thus, they can be seen as

variable selection methods. This section deals with the variable selection bias of these

methods.

In the whole simulation, we make the hypothesis of no association between the

binary variableY and some at least ordinal scaled variablesX1, X2, X3. Suppose that

we compute a measure of association for each pair(X1, Y ), (X2, Y ) and(X3, Y ) based

on a given sample and select the variableXi with the highest association measure. An

effective measure of association is expected to selectX1, X2 andX3 with probability

1
3
. In Sections 3.2 and 3.3, we show that Koziol’s approach selects variables with large

K more often than variables with smallK. In contrast, the frequency of selection does

not depend on the number of different values in the sample with our method. Two

cases are examined:

• Classical ordinal variables for which the set of possible values{a1, . . . , aK} does

not depend on the specific sample. Such variables are examined in section 3.2.

• Essentially continuous variables which are measured as discrete variables. For

such variables, the set{a1, . . . , aK} depends on the considered sample. This

topic is examined in section 3.3.

For each case,Nrun data sets are simulated with different values ofN (N = 50 and

N = 100) and different a priori probabilities for the classesY = 1 andY = 2:

• First case (I)

The two classes have equal probabilities:

p1 = P (Y = 1) = 0.5

p2 = P (Y = 2) = 0.5.



• Second case (II)

The two classes have non-equal probabilities:

p1 = P (Y = 1) = 0.7

p2 = P (Y = 2) = 0.3.

For each simulated data set and each variable,χ2
max is determined andF (χ2

max) is

computed using successively Koziol’s boundaries and the boundaries defined in Sec-

tion 2. The variable(s) with the highestF (χ2
max) is (are) selected. This is done for

several distributions ofX1, X2, X3. Sections 3.2 and 3.3 give the description of the

variablesX1, X2, X3 for each examined case as well as tables containing the obtained

frequencies of selection forNrun = 1000 simulated data sets.

In addition, the problem of predictor variables with different numbers of missing

values is addressed in Section 3.4. In Shih (2004), it is shown that with some classical

split selection criteria used in the context of classification trees, the selection probabil-

ity of a given predictor variable depends highly on its number of missing values. In

Section 3.4, we show via simulations that our method does not induce such selection

bias, whereas Koziol’s method does. This makes our method able to measure asso-

ciation between a binary variable and predictor variables with different numbers of

missing values, which is a very common situation in practical medical studies.

3.2 Ordinal variables

We simulate data sets containing a binary variableY and ordinal variablesX1, X2, X3

with different numbers of possible values. The set of possible values is{1, 2, 3} for

X1, {1, 2, 3, 4, 5, 6, 7} for X2 and{1, 2, 3, 4, 5, 6, 7, 8, 9, 10} for X3. Let Ki denote the

number of possible values of variableXi. We study two cases successively for the

distribution of the variablesXi:

• First case (A)

For each variableXi, the different levels have equal probability:

P (Xi = 1) = . . . = P (Xi = Ki) = 1
Ki



X1 X2 X3

N = 50, p1 = 0.5, p2 = 0.5 38, 17 32, 39 30, 47

N = 50, p1 = 0.7, p2 = 0.3 36, 16 33, 37 32, 49

N = 100, p1 = 0.5, p2 = 0.5 31, 14 34, 37 36, 50

N = 100, p1 = 0.7, p2 = 0.3 33, 15 37, 40 30, 45

N = 50, p1 = 0.5, p2 = 0.5 33, 17 36, 41 32, 44

N = 50, p1 = 0.7, p2 = 0.3 36, 18 34, 39 30, 45

N = 100, p1 = 0.5, p2 = 0.5 35, 16 32, 38 33, 47

N = 100, p1 = 0.7, p2 = 0.3 34, 19 33, 37 33, 45

Table 1: Classical ordinal variables: Frequency of selection (in %) ofX1, X2, X3

for differentN , differentp1, p2, with our method (normal font) and Koziol’s method

(italic). Top: Case A (equal probabilities), bottom: Case B (non-equal probabilities).

• Second case (B)

For each variableXi, for k = 1, . . . , K

P (Xi = k) = c · 0.1 if k is odd,

P (Xi = k) = c · 0.2 if k is even,

wherec is a normalizing factor such that
∑Ki

k=1 p(Xi = k) = 1.

Thus, four configurations (I/A,I/B,II/A and II/B) are studied. For each configuration,

Nrun = 1000 simulation data sets are drawn randomly. The obtained frequencies

of selection for each configuration (I/A,I/B,II/A and II/B) and eachN can be found

in Table 1. As can be seen from Table 1, variable selection using Koziol’s criterion

is strongly biased. Variables with largeK are selected more often. With our new

criterion, no bias is observed. Similar results are obtained for the different values ofN ,

p1 andp2 and for the different distributions ofX1, X2, X3. The bias can be visualized

for N = 100 andp1 = 0.5 in Figure 2.
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Figure 2: Barplot representing the frequencies of selection ofX1, X2 and X3 for

N = 100 andp1 = 0.5, with our method (gray) and with Koziol’s method (black)

for classical ordinal variables (Case A: equal probabilities) and discretized normally

distributed variables.



3.3 Discretized continuous variables

In this section, continuous variables which are measured as discrete variables are ex-

amined. For the binary variableY , we follow the same scheme as in Section 3.2. Let

Zi, i = 1, 2, 3 be identically distributed continuous variables. Fori = 1, 2, 3, Xi is

defined as

Xi = round(Zi/αi) · αi,

whereα1 = 1, α2 = 0.5, α3 = 0.1 andround(x) denotes the integer approximation of

x. Thus,X1, X2, X3 correspond to different measurement precisions of identically dis-

tributed variablesZ1, Z2, Z3. Two cases are examined for the distribution ofZ1, Z2, Z3.

• First case (A)

Each variableZi is normally distributed:

Zi ∼ N (0, 1),

for i = 1, 2, 3.

• Second case (B)

Each variableZi is exponentially distributed:

Zi ∼ exp(1),

for i = 1, 2, 3.

As for ordinal variables,N is set successively toN = 50 andN = 100. For each of

the configurations (I/A,IB,II/A and II/B) and eachN , Nrun = 1000 data sets are drawn

randomly and the frequencies of selection are computed, either with Koziol’s approach

or with our new method. The results can be found in Table 2. Whereas the frequencies

of selection ofX1, X2, X3 are approximately equal with our new approach, Koziol’s

criterion selects more often variables with largeK. This difference between the two

approaches is observed for the different values ofN , p1 andp2 and for both normally

and exponentially distributedZi. The frequencies of selection for normally distributed

variables can be visualized forN = 100 andp1 = 0.5 in Figure 2.



X1 X2 X3

N = 50, p1 = 0.5, p2 = 0.5 39, 22 30, 27 31, 55

N = 50, p1 = 0.7, p2 = 0.3 36, 19 33, 31 31, 52

N = 100, p1 = 0.5, p2 = 0.5 34, 17 33, 28 34, 56

N = 100, p1 = 0.7, p2 = 0.3 32, 15 34, 30 34, 56

N = 50, p1 = 0.5, p2 = 0.5 36, 19 32, 28 32, 54

N = 50, p1 = 0.7, p2 = 0.3 35, 18 33, 31 31, 53

N = 100, p1 = 0.5, p2 = 0.5 38, 21 30, 29 32, 53

N = 100, p1 = 0.7, p2 = 0.3 32, 18 34, 30 34, 55

Table 2: Discretized continuous variables: Frequency of selection (in %) ofX1, X2, X3

for differentN , differentp1, p2, with our method (normal font) and Koziol’s method

(italic). Top: Case A (normal distribution), bottom: Case B (exponential distribution).

3.4 Selection bias due to missing values

In this subsection,X1, X2, X3 are identically distributed and missing values are intro-

duced at random. The number of missing values differs for the three variables. Four

cases are examined for the distribution ofX1, X2, X3:

• Ordinal A: TheKi different values have equal probability.

• Ordinal B: TheKi different values do not have equal probability (see Section

3.2 for the description of the distribution).

• Normal: X1, X2, X3 are obtained by rounding normally distributed variables

Z1, Z2, Z3.

• Exponential:X1, X2, X3 are obtained by rounding exponentially distributed vari-

ablesZ1, Z2, Z3.

Using the notations of Sections 3.2 and 3.3, we fixKi, i = 1, 2, 3 at 7 for ordinal

variables andαi, i = 1, 2, 3 at 0.5 for continuous variables. Similar results could be

obtained with other values ofKi andαi. N is fixed at 50 and the two levels of the

binary variableY have equal probability 0.5. For all four cases, the number of missing



X1 (0 MV) X2 (10) X3 (20 MV)

Ordinal A 30, 27 35, 36 35, 38

Ordinal B 34, 29 33, 32 33, 38

Normal 32, 30 32, 34 36, 37

Exponential 33, 34 32, 33 34, 35

Table 3: Frequency of selection (in %) ofX1, X2, X3 for different distributions and

different numbers of missing values. The number of missing values is specified in

parentheses.N = 50. p1 = p2 = 0.5. Nrun = 1000.

values is set to0 for X1, 10 for X2 and20 for X3. The results obtained with Koziol’s

method and our new approach forNrun = 1000 simulated data sets are presented in

Table 3.4. It can be seen that that the three variablesX1, X2 andX3 are selected with

the same frequency by our method, whereas Koziol’s method selects variables with

many missing values a little more often.

4 Application to pregnancy and birth data

To illustrate our approach, we consider a pregnancy and birth data set which we col-

lected by ourselves directly from internet users recruited on french-speaking preg-

nancy and birth websites. Table 4 describes the investigated binary variables (top)

and the candidate predictor variables (bottom). Each binary variable takes value 1 if

the answer is no, 2 if the answer is yes. The candidate predictor variables are dis-

crete metric variables (PREV IOUS) and discretized continuous variables (AGE,

HEIGHTMO, WEIGHTMO, PREV IOUS, HEIGHTBB, WEIGHTBB,

HEAD, DURATION , DIFF ). For each of them, Table 4 gives the numberK

of different values taken in the sample.

All pairs formed by a binary response variable and a candidate predictor variable

from Table 4 are examined successively. The following procedure is applied to each

pair.



Variable K Description

MEMBRANE − Did the membranes rupture before the beginning of labor ?

CESA − Did the mother have a cesarean section ?

EPISIO − Did the obstetrician perform an episiotomy ?

INDUCED − Was the delivery induced medically ?

SEX − Sex of the baby (1 - male, 2 - female)

AGE 25 Age of the mother (in year).

HEIGHTMO 32 Height of the mother (in cm).

WEIGHTMO 90 Weight of the mother before pregnancy (in kg).

PREVIOUS 7 Number of previous deliveries.

HEIGHTBB 39 Height of the baby at birth (in cm).

WEIGHTBB 39 Weight of the baby at birth (in g).

HEAD 30 Head circumference of the baby (in cm). About 30% missing values.

DURATION 16 Duration of the pregnancy (in weeks).

DIFF 61 Weight put on by the mother during pregnancy.

Table 4: Binary response variables (top) and candidate predictor variables (bottom)



MEMBRANE CESA EPISIO INDUCED SEX

AGE 0.2306 0.9766 0.7870 0.7322 0.7407

HEIGHTMO 0.8850 0.9977 0.5681 0.0932 0.2475

WEIGHTMO 0.9424 0.0536 0.6335 0.9928 0.3844

PREVIOUS 0.9993 0.9883 1 0.5735 0.4437

HEIGHTBB 0.5743 1 0.6455 0.9190 0.9999

WEIGHTBB 0.3869 1 0.2269 0.9771 0.9986

HEAD 0.3671 0.9954 0.8490 0.9986 0.9999

DURATION 0.8881 1 0.5555 0.9995 0.5700

DIFF 0.8922 0.4543 0.7417 0.700 0.2540

Table 5: Measure of associationF (χ2
max) between binary variables and predictor vari-

ables

1. Denote asa1, . . . , aK the different values taken by the candidate predictor vari-

ableX in the sample, witha1 < · · · < aK . If X is a classical ordinal variable

with values1, . . . , K, we havea1 = 1, . . . , aK = K. In the extreme case of

X taking different values for allN observations, we havea1 = x(1), . . . , aN =

x(N).

2. Fork = 1, . . . , K − 1, compute theχ2 statisticχ2
k from the2 × 2 contingency

table
X ≤ a X > ak

Y = 1 n1,≤ak
n1,>ak

Y = 2 n2,≤ak
n2,>ak

3. Determineχ2
max = maxk=1,...,K−1 χ2

k.

4. ComputeF (χ2
max) with the parametersN1, N2, m1, . . . ,mK .

The results can be found in Table 5. Most of the results from Table 5 agree with

previous obstetrical knowledge. For instance, the high association between the vari-

ables EPISIO and PREVIOUS may be explained by the current french obstetrical

policy: episiotomies are still routinely performed for nulliparous women. It is also



well-known that male babies are heavier in average than female babies (Liebermann

et al., 1997). The high association between the binary variable INDUCED and the

variable WEIGHTBB, HEAD and DURATION can be explained by the fact that post-

term pregnancies are one of the most common indications for labor induction. Ce-

sarean sections are known to be more common for big babies (James, 2001), which

agrees with the high association found for the binary variable CESA and the variables

HEIGHTBB, WEIGHTBB, HEAD and DURATION. A study by Cnattingius et al.

(1998) also pointed out that the risks for cesarean increase with maternal age or de-

crease with maternal height, which is consistent with our results.

5 Discussion

In this paper, we proposed a simple procedure based on Durbin’s combinatorial ap-

proach (Durbin, 1971) to compute the exact distribution of maximally selectedχ2

statistics in the context of at least ordinal scaled variables. This procedure can be

used to identify prognostic factors in clinical studies. In contrast to Koziol’s method,

the proposed method does not induce selection bias when the candidate predictor vari-

ables have different numbers of distinct values or different numbers of missing values

in the available sample. For essentially continuous predictor variables, a possible draw-

back of our method is that it computes the distribution of the maximally selectedχ2

statistic given the observedm1, . . . ,mK , not given the distribution ofX. However, this

feature can also be seen as an advantage: the procedure requires no assumptions on the

distribution of the predictor variableX. As an exact procedure, it is also appropriate

for small sample sizes which are common in clinical studies. It can be seen as a global

framework to measure association between a binary variable and all types of at least

ordinal scaled variables, for small and large sample sizes. The results obtained on the

pregnancy and birth data set agree with previous obstetrical knowledge.

In future work, our method could be interestingly applied to classification trees

(Breiman et al., 1984). In recent papers, maximally selected statistics and their asso-

ciatedp-values have been successfully applied to the problem of variable and cutpoint

selection in classification and regression trees (Shih, 2004; Lausen et al., 2004). The



association measure developed in this paper might also be used as a selection criterion

for choosing the best splitting variable and the best cutpoint. Since it allows the com-

parison of predictor variables of different types and avoids the selection bias due to

missing values, we expect it to perform better than the usual criteria in some cases.
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