Logo Logo
Hilfe
Hilfe
Switch Language to English

Kirchner, J.; Woehlke, G. und Schliwa, M. (1999): Universal and unique features of kinesin motors: Insights from a comparison of fungal and animal conventional kinesins. In: Biological Chemistry, Bd. 380, Nr. 7-8: S. 915-921 [PDF, 797kB]

[thumbnail of bc.1999.113.pdf]
Vorschau
Download (797kB)

Abstract

Kinesins are microtubule motors that use the energy derived from the hydrolysis of ATP to move unidirectionally along microtubules, The founding member of this still growing superfamily is conventional kinesin, a dimeric motor that moves processively towards the plus end of microtubules, Within the family of conventional kinesins, two groups can be distinguished to date, one derived from animal species, and one originating from filamentous fungi. So far no conventional kinesin has been reported from plant cells. Fungal and animal conventional kinesins differ in several respects, both in terms of their primary sequence and their physiological properties. Thus all fungal conventional kinesins move at velocities that are 4-5 times higher than those of animal conventional kinesins, and all of them appear to lack associated light chains. Both groups of motors are characterized by a number of group-specific sequence features which are considered here with respect to their functional importance. Animal and fungal conventional kinesins also share a number of sequence characteristics which point to common principles of motor function. The overall domain organization is remarkably similar. A C-terminal sequence motif common to all kinesins, which constitutes the only region of high homology outside the motor domain, suggests common principles of cargo association in both groups of motors. Consideration of the differences of, and similarities between, fungal and animal kinesins offers novel possibilities for experimentation (e.g., by constructing chimeras) that can be expected to contribute to our understanding of motor function.

Dokument bearbeiten Dokument bearbeiten